“Medical students can only be prepared for patient care when practising by hospital beds; Not only the teachers explaining diseases will teach them then, but diseases themselves… Let theory be combined with practice as it is in real life, and make students visit sickhouses once they are studying to be medical doctors; also have them take care of patients with all the knowledge that is expected from doctors.”

Lajos Markusovszky (1815-1893)
The Nagyszombat (now Trnava) university founded in 1635 by PÁZMÁNY Péter archbishop of Esztergom and the former Jesuit order institution was given a royal rank during Maria Theresa’s reign and turned from a truncated university to a real one with the addition of the missing fourth faculty, the Medical Faculty. All of the above formed an integral part of the comprehensive, imperial level reform process with the recognition in the background that health care is a key interest of the state and requires a high level of public intervention. The plans of the Medical Faculty in Nagyszombat was elaborated by the royal physician of the queen, the Dutchman Gerard van Swieten, based on the Medical Faculty in Vienna reformed by him as well. Organisation started with the decree of Maria Theresa dated on 7 November 1769. Before this, the whole university had received a royal rank with a royal charter on 17 July that year. To host the new faculty, a separate building was constructed according to the plans of Franz Anton Hillebrandt, which was completed in May 1772. Education was able to start in 1770, first with five faculties: Physiology and Pharmacology (PRANDT Ádám Ignác), Anatomy (TRNKA Vencel), Surgery (PLENCK József Jakab), Botany and Chemistry (WINTERL Jakab József) and General Pathology (SHORETITS Mihály), i.e. the actual clinics. Due to the lack of an own clinics, the education of general pathology faced severe difficulties, and the lack of the corpses and the botanical garden was also a great problem. By moving the university to Buda in 1777, these problems seemed to be solved.

The Ratio Educationis I issued simultaneously with the transfer to Buda modified the management of the University. The consistory considered as the representative of the state, which had been heading the university since 1767, was replaced by the university council (senate), however, practically with the same members. The magistratus academicus re-elected every year, which administered mostly the ritual issues, remained on. To lead the whole institution, a president and a director general and to lead the faculties, faculty directors (faculty presidents) were elected. A bit later (in 1786), Joseph II deleted this position (except the Medical Faculty) and their scope of authority was taken away by the previously marginalised deans. This time, the method of appointment of the tutors was also regulated. Based on the opinion of the faculty, the senate submitted a proposal to the king who decided on the appointment through the Royal Council of Governors.

It was on 25 March 1780 when Maria Theresa issued the Diploma Inaugurale, called as the “Magna Charta” of the university, in which she set among other general regulations the legal status of the university and the financial basis of the maintenance thereof. The successor of the
Queen, Joseph II was also dealing with the fate of the University. During his personal visits he decided on the translocation of the institution to Pest, which took place in 1784. The Medical Faculty found a home in a former Jesuits’ monastery at the corner of Hatvani (now Kossuth Lajos) and Újvilág (now Semmelweis) streets. The frequent relocations held back educational activity, since the majority of resources was directed to the establishment of the conditions. The rapidly developing Pest provided a larger and more diverse patient population than before and the number of clinical beds also increased up to 16. The reconstructed building of the monastery proved to be small for the growing number of departments (Theoretical Medicine, Natural History in 1784; Veterinary in 1787; Public Medicine and Special Medical Studies in 1793; Theoretical Surgery in 1808; Obstetrics in 1812 and Ophthalmology in 1817) and the increasing number of students. Practical Training was strongly held back by that contrary to the international practice, the clinics were located not in the city hospital, but in the building of the faculty, therefore, there was no possibility to regularly change the patient population necessary for education. Although there were many attempts by the faculty to involve the Saint Roch Hospital to expand the institutions of the faculty, they were systematically rejected due to the resistance of the city magistrate. Contrary to this, from the 20’s, the clinical trend emphasising practical education was established, the main representative of which was BENE Ferenc, the introducer of vaccinations against pox. Initially, based on the idea of van Swieden, the duration of the medical training was not regulated. First, a decree in 1774 determined the training period of physicians to be 5 years and according to the study regulation in 1786, it became 4 years. After tightening the examinations, the mutual recognition of medical diplomas had been valid since the reign of Joseph II (the principle of the so-called conformetur), at least as regards Vienna-Prague-Cracow-Pest. In 1804, Vienna left this agreement and obtained a privilege against the others. The surgeon master and civil surgeon training were 2 years long, while the pharmacist training was of 1 year. Midwives were trained in short courses started each semester. In 1787, the Veterinary course joined as well.

The end of the century, showing a vivid university life was replaced by the retrograde mentality of the era of Francis I. This is reflected by the Ratio Educationis II in 1806, created in the spirit of centralisation and the deprivation of the freedom of education, which was dealing with the Medical Faculty in a much deeper level than the previous one. It stipulated in details the teaching material and the obligations of the professors, it updated the order of the education and comprehensive exam and increased the length of education to 5 years. The president (praeses universitatis) executing the intent of the government and his deputy and the vice president (vice-praeses) who was at the same time the chancellor of the university played a key role in the management of the university. The university magistrate consisting of rectors, deans and seniors had only limited power. At the end of the 1810’s, even the faculty director position was reset, however, the professional supervision of the Medical Faculty was exercised by the national chief medical officer.

As in terms of the French revolutionary ideas feared by the government, medical training was a neutral area, at the beginning of the 19th Century, this was the only faculty able to perform considerable scientific activity and more significant developments. Contrary to the efforts, the substantial conditions of education became worse and worse due to overcrowding and the increasing demands. The devastation of the icy flood in 1838 increased on the problems in an extent that even the parliament was dealing with the situation of the Medical Faculty.

Under these narrow circumstances, the tutors of the faculty tried to keep up with the pace of international medical science which started to develop and specialise that time. In the light of the above should one consider that overtaking Vienna, Pest was one of the first cities to found an individual faculty of veterinary in 1793, which included the contracted forensic medicine and public health as well. Vaccination against pox has been applied in Hungary since 1799 and in 1824, headed by GEBHARDT Ferenc, a Central Vaccination Institute was established within the Medical Faculty. One of the most significant scientist of his era, KITAIBEL Pál was also among the tutors of this faculty. The Institute of Pathology founded in 1844 by ARÁNYI Lajos was one of the oldest similar institution in the world. At the beginning of 1847, only few months after the first experiment in the Massachusetts Hospital, Balassa tried anaesthesia with ether. The first anaesthetic surgery was performed few days later by SCHÖEPF-MEREI Ágost. The faculty was continuously playing key role in the fight against the great Hungarian epidemics (typhus, yellow fever, pox and the cholera leading to riots in 1831 and 1848-49).
The medical and surgical training courses were taught in Latin from the beginning. Education in Hungarian was first dealt with at the end of the 18th Century. RÁCZ Sámuel, who was the fifth professor of the medical faculty in 1793/94 to hold the position of rector, issued the first Hungarian physiology book in 1789 with the title “A physiologia rövid sommája” (Short summary of physiology), which was considered as the first Hungarian university textbook as well. In 1830, law allowed the use of Hungarian language and 3 years later, the first doctorate was written in Hungarian by FLÓR Ferenc and in 1844, Hungarian became the official language. Contrary to the national partiality of the tutors, the education in Hungarian was accepted by the Medical Faculty with reservations, since many of the students – and even some of the tutors – did not speak Hungarian and the Hungarian medical language was practically missing. Finally, the Hungarian as the language of education was introduced in 1848. The lower degree courses (surgeon master, midwife, veterinarian) had been held in the national languages since the beginnings, i.e. in Hungarian, German and Slovakian.

In the legal code of April 1848, a separate article (Art. XIX, 1848) was dealing with the university and promulgated the independence of the university and the principle of liberal freedom of education. The majority of the tutors and students actively took part in the freedom fight. Therefore, the reprisal after the surrender severely affected the tutors of the university. Many were forced to go to prison (BALASSA János), to hide (BUGÁT Pál) or to emigrate (e.g. SCHOEPF-MEREI who later founded a children’s hospital in Manchester). Certification procedures were performed, the tutors might hold their position depending on their loyalty and authority harassments were permanent. Tutors loyal to the emperor, but often of secondary level were employed by the faculty. At the time of the absolutism, the language of education and administration became the German instead of the Hungarian. Instead of the educational order of 1848, in the spirit of the “conformetur” principle, the Vienna order of 1833 was introduced. At the same time, there were modernisations as well. In this way, the secondary school maturity became obligatory and the faculty director position was deleted. Although experts were trained still in 9 faculties, the surgeon master course slowly faded and based on the pattern in Lemberg, Olmütz and Salzburg, this training was suspended also in Pest. In 1872, the guilds were also dissolved. As regards the language issue, a shift occurred only after the large foreign policy defeat of the royal court. In 1859, a delegation of students went to Vienna to restore the Hungarian language. In 1860, the right of autonomous rector and dean election was extended also to the university of Pest. As a result of the October Diploma, the main subjects were taught in Hungarian and the others in German, Slovakian or Latin depending on the demands. Finally, it was the Article XLIV of 1868 after the Austro-Hungarian Compromise to reinstate the Hungarian language. This time, many tutors not speaking Hungarian left the university, e.g. the outstanding physiologist, Jan Nepomuk Czermák resigned as well contrary to the efforts of his Hungarian colleagues to make him stay.

The harmonised medical training was introduced in 1872, thus, since 1878, only one medical diploma has been existed with the name “doctor of the universal medical sciences”. The new university decree in 1875 determined the order of the new and universal medical doctor comprehensive exam in addition to the provision of the freedom of education and the autonomy. In 1881, the duration of the academic year also changed. Earlier it had been between November and August and since that time, it has been between September and June. Due to the poor facilities, the main problem of the medical faculty was the lack of space. Although in 1848, the clinics were transferred from the Újvilág utca building, it proved to be only temporary, since after the suppression of the freedom fight, they returned there. The Saint Roch Hospital refused on to host the clinics and the capital failed to provide a site for the constructions for a long time. The acquisition of the Kunewalder house (located that time in the Országút, today in the Múzeum körút) in 1858 was a temporary relief that time, which was originally bought for the Institute of Veterinary. The surgery (Balassa), the zoology, the physiology and the obstetrics headed by Semmelweis that time were able to move here. The administration of the faculty and the library got temporary home in buildings nearby. A real solution was brought only by the large-scale constructions started in 1873 with a cost of 25 million krones, which were finished only in 1911. This time, the Üllői út considered that time as a rather outer belt area became the axis of the Medical Faculty, where the clinics, the institutions and the administration were located in two sites. Simultaneously, new, often parallel departments sufficiently equipped in the level of the era were established one after the other. The number of such departments almost
quadrupled until the 1880’s. In these still unique developments, EÖTVÖS József and TREFORT Ágoston ministers of the Ministry of Religion and Public Education, BERZEVICZY Albert state secretary, MARKUSOVSZKY Lajos councillor and on behalf of the Medical Faculty BALASSA János, KORÁNYI Frigyes and the later secretary of state, TÓTH Lajos played key role.

With the rapid development of the clinics, the catch-up of the lagging behind was successful. Parallelly to the constructions, the “medical school of Budapest” became clear around Balassa having launched a medical weekly “Orvosi Hetilap” and Markusovszky. As an effect of Semmelweis, this was the place where the deliberate prevention of surgical infections was started. Public health was among the first to get a department in Budapest, headed by the outstanding bacteriologist, FODOR József. By continuing the work of Schoepf-Merei and Sauer, KORÁNYI Frigyes was the one to begin the establishment of a Hungarian internal medicine school on a state-of-the-art foundation. His work was carried on by his son, Sándor. JENDRASSIK Ernő, named also as the Hungarian Charcot was one of the founders of neurology, DOLLINGER Gyula was that of orthopaedics and TAUFFER Vilmos was that of the surgical obstetrics and gynaecology. LUNICZER Sándor, the founder of modern surgery was the first to use the Lister’s system of antisepsis. Owing to the work of SCHULEK Vilmos, GRÓSZ Emil and IMRE József, Hungarian ophthalmology became this time famous throughout Europe. As regards paediatrics, the Bókays and KOPITS Jenő, the international expert of hip dislocation deserve mention. The first director of the Hungarian Pasteur Institution, HÓGYES Endre set the foundations of the later Nobel prize winner invention of BÁRÁNY Róbert. With the research of the fine structure of the nervous system, the anatomist LENHOSSÉK Mihály achieved the recognition of his Nobel prize winner colleague, Santiago Ramón y Cajal who considered him as his fellow during the creation of neuron studies. In stomatology, the work of ÁRKÖVI József, while in pharmacology, that of BALOGH Kálmán were outstanding. In 1907, the Radiology got a separate institute headed by the founder of radiology in Hungary, ALEXANDER Béla. Physiology became a modern science in the Medical Faculty owing to the outstanding Czermak of Czech origin. He was followed by JENDRASSIK Jenő whose aim was the foundation of the modern Hungarian physiology school.

The number of students drastically increased. In the 1860’s, their number was between 400-500, while in the 1880’s, it exceeded 1000. In the 1860’s, the first student associations were established. In 1862, aid society and 5 years later, a self-education association was founded. The end of the century was the first time when the issue of the admission of women arose. The medical faculty had generally a rejecting opinion thereabout. The first Hungarian female physician, countess HUGONNAY Vilma succeeded to achieve the recognition of her diploma obtained in 1879 only after 17 years of administrative struggling. In 1895, a decree made it possible for women to participate in trainings and practices in humanities, medical studies and pharmacology. The first female physician graduated in Budapest, STEINBERGER Sarolta was inaugurated on 3 November 1900. A real change in the training of female physicians was brought only by the world war.

During the World War I, the majority of the students and the tutors joined the army and the half of the beds the number of which increased to 2000 were maintained for the injured. The change to war industry and the economic exhaustion of the Monarchy drastically decreased the financial supply of education and also of the university. The war almost eliminated the students, however, after their disarmament, there was a dumping. Compared to the last year in peace, more than twice as many (6526) medical students wanted to continue their interrupted studies.

The revolution and the dictatorship of the proletariat triggered further chaos in 1918-19. The university was made subject to stringent central administration and there were significant transformations. There were changes in the personnel and the tutors considered as right wing were deprived of their positions. During the short existence of the Council Government, its measures could not be long-lasting. By rising to power of the counterrevolution, the faculty council qualified the events after 31 October 1919 as “ex lex” and further changes in personnel and certification procedures were started. Tutors were removed from the faculty, among others HEVESY György, one of the founders of nuclear medicine who later won the Nobel prize abroad or the outstanding ophthalmologist, GRÓSZ Emil, but his removal was only temporary.

From the annexed areas, a smaller migration started to the remaining “Mutilated Hungary” and especially to Budapest. Mostly the state-employed intellectuals (public officers, physicians, teachers etc.) were forced to migrate, partly as their
The economic crisis aggravated on by the mutilation of the country led to a financial crisis for the university it had never experienced before. The situation had just begun to normalise when the crisis in 1929 resulted again the decrease in the financial resources spent on education and health care. Unemployment appeared among the physicians as well, the workforce reduction in the university exceeded 10%, the investments stopped and the quarter of the beds had to be left empty due to financial reasons. The number of students sharply decreased as well (in 1925-26 there were 1729, in 1930-31 only 1234 students), contrary to the international trends. The reform of the medical training which had been on agenda for a long time was introduced in 1922. As a main principle, the researcher and practising physician trainings were in focus. The duration of the education increased to 6 years instead of 5, the comprehensive exams were separated in four cycles and the number of the courses announced was also increased. Later, the system of comprehensive exams was modified on, but it was entered into force only in 1943. In 1936, the classification of the diplomas changed. This was the time when the qualifications used even today, i.e. the rite, the cum laude and the summa cum laude were introduced. After a long time, also the pharmacist education was renewed by increasing the duration of the education from 2 years to 4 and by decreasing the practice from two years to one. Thereafter, the start of the pharmaceutical studies was not linked to a prior practice in a pharmacy, but after the maturity exam, one could immediately enrol.

Between the two world wars, internationally acknowledged schools were operating in the Medical Faculty of Budapest. The school of KORÁNYI Sándor who developed on the school founded by his father. Among his results, the elaboration of the functional examination methods of kidney and the reduction of tuberculosis are outstanding. Many of his students became academicians and heads of department, such as RUSZNYÁK István, HETÉNYI Géza and HAYNAL Imre. The research on cancer made by KROMPECHER Ödön who described the basocellular cancer, that on nucleins, complementaries and enzymes by LIEBERMANN Leó or that on morphology by SCHAFFER Károly were significant. As regards pathoanatomy, BUDAY Kálmán clarified the pathogenesis of necrotic stomatitis and mellitis. In microbiology PREISZ Hugó, in biochemistry HÁRI Pál, in physiology FARKAS Géza and in biology HUZELLA Tivadar can be mentioned. In the fields of clinical medicine, the paediatrician HEIM Pál, BÓKAY János and BÁLINT Rezső, the surgeon VEREBÉLY Tibor and the ophthalmologists GRÓSZ Emil and BLASKOVICS László were the outstanding experts of their fields. Apart from the military duty affecting the tutors as well and the care of the injured, the World War II had not trigger any special disturbance in the life of the Medical Faculty until 1944. With the approach of the front, the majority of the tutors were deployed. The rise to power of the Arrow Cross Party on 15 October 1944 posed new threats on the university and thus, the Medical Faculty as well. Contrary to the categorical order of the government, the university denied to move to Germany. Afterwards, there were plans to transfer the clinics and laboratories to Buda, however, they were mostly thwarted partly due to the repeat resistance of the faculty and partly due to the difficulties in transportation. Before the closure of the shell of fortress lines, the engineering, medicine, pharmacy and veterinary senior students were carried to Germany with a military call-up, i.e. the representatives of every programme considered as important regarding the continuation of the war. In this way, about 600 medical and
pharmacist students from the Medical Faculty Budapest were settled partly to Halle and partly to Austria with some of the education staff. They succeeded to return only after the war among huge difficulties and with the mediation of the university, with American passport.

Together with the city, the faculty was also heavily hit by the siege of Budapest. The damage in the buildings were enormous (four clinics were severely hit) and the majority of the equipment was also destroyed. The total damage was around 13 million golden pengő (at 1938). The largest devastation affected the Internal Medicine II, the Gynaecology I, the Dermatology, the Surgery II and the Paediatric Clinics, but several other buildings were damaged as well. This was aggravated by the freezing of the drainage system and the plundering affecting the whole city. Contrary to all these, the clinics were operating even in case of the siege, often under impossible circumstances. Even the Institute of Physiology and the Pathoanatomy department started to perform the care of the injured.

After the war, the tutors were significantly changed according to the taste of the new political forces having the power. The main tool of this was the certification procedure. It describes the ratios well that against 15 out of the 27 regular tutors of the medical faculty, procedures were launched or they were dismissed with various sanctions. In addition to this, in January 1945, IMRE József professor died which led the Ophthalmology Clinic to get empty. In addition to them, 6 honorary extraordinary tutors, 17 private professors and 11 physicians were dismissed. Out of the physicians above, 44 were still in Germany with the students carried there.

From June 1945 until his emigration, the Nobel Prize winner professor SZENT-GYÖRGYI Albert was among the tutors of the faculty, who was that time the head of the Department of Physiology and Medical Chemistry. From 1945, there was a sharp increase in the number of the students, which exceeded multiple times the capacity of the faculty, therefore, from 1947/48 onwards, they were forced to introduce admission examination. After the rising of the Communist Party to power, one of the most important factors became the origin of the candidate, therefore, the social composition of the students significantly changed. Soon, almost 25% was the ratio of the students from worker or pawn origin. The National Association of Peoples’ Colleges was founded and from the academic year 1951/52, the Scientific Students’ Association movement was introduced based on Soviet pattern. In 1948, education was reformed again. The examinations were tightened, education turned more pragmatic and the medical chemistry and physics were included into the curriculum, in addition to the biology in 1950. Due to political reasons, the Marxism and Leninism, the Russian language and the national defence knowledge were also added.

In this period, multiple hospitals were attached to universities by forming clinics. Therefore, the number of beds increased to 3167 in 1955 from the 1178 in 1946. In parallel, specialisation was going on within the disciplines, which led to further separations in the clinics as well. Areas with larger and larger costs entered into research, therefore, fallback behind the rich countries was evident. This was worsened on by the isolation policy in the 1950’s when there was Soviet influence also in science.

II. History of the separate Medical University: BOTE, SOTE (1951-2000)

After 1949, the Hungarian higher education underwent consecutive reforms. Due to the fight against churches, the name of the university was modified, therefore, instead of its founder, PÁZMÁNY Péter, the university got the name of one of its most prominent scientist tutors, EÖTVÖS Loránd on 1 September 1950. At the end of 1950, the Council of Ministers discontinued the former practice and traditions and decided the creation of specialist universities subject to the sectoral ministries. They wanted to reach it partly by founding new institutions and partly by the division of the currently existing ones. During the reorganisation, the Soviet higher education system of the 1930’s was taken as example, disregarding that since that time, this had been significantly modified also in the Soviet Union by resetting the unified management of higher education. The deadline of the completion of the action was planned to be on 1 February 1951. Within the framework of
this, the medical faculties of the universities were separated and transformed into separate specialist universities. In a parallel way, the new medical universities were subordinated not to the Ministry of Religion and Public Education, but the newly formed Ministry of Health. Therefore, from 1 February 1951, the Faculty of Medicine of the Eötvös Loránd University continued its operation as a separate Medical University of Budapest.

In 1955, the organisational transformations went on. Within the University, 3 faculties were formed (with their former names: Faculty of General Medicine, Faculty of Dentistry and Faculty of Pharmacy). On 1 September 1955, the rectorate was established. The pharmacist training was transferred permanently to the medical university from the Eötvös Loránd University back in 1951 and in 1952, the dentist training of new system was started. Finally, on 7 November 1969, for the 200th Anniversary of the Faculty of Medicine, the university took the name of SEMMELWEIS Ignác.

Separation had, however, some disadvantages as well. From certain aspects, the distance from the humanities and the Faculty of Sciences led to drawbacks for the medical profession. The everyday life of the new university was made more difficult by that it had only the narrowest professional institutes and the conditions for the cultural and sports life or the rooms suitable for hosting large events were missing. They were able to be terminated only by the large investments of the 1970’s. After the separation of the university, the separation from the BEAC university sports club also took place to form the Orvosegyetem Sport Club (OSC, Medical University Sports Club). The fencers and waterpolo players of the OSC have been the regular and successful participants of the Olympic Games and world championships.

The prints of the war had not even disappeared when as a protest against the communist power, the revolution broke out on 23 October 1956. In the student movements, the students of the medical university also took place and after the breaking out of the armed fight, the role of our university aimed mostly at the care of the injured, since our institutions were in the centre of the war in Budapest. The staff of the affected clinics and institutions exhibited superhuman and heroic withstand multiple times. Further buildings were damaged and the most severely hit building was the Dermatology clinic. The reprisal after the communist restoration did not avoid our university either. The victim of this reprisal was the innocently slandered and executed TÓTH Ilona senior physician student who is considered today as the martyr of our university.

After consolidation, the emerging external relations from the 1960’s facilitated us to keep up with the scientific international profession. In the following decades, serious developments were performed as well. The most important of them were the reconstruction of the Dermatology clinics demolished in 1956, the huge theoretical building finished in 1978, the Ophthalmology clinic I and the delivery of the Transplantation and Surgery Clinics in the beginning of the 1990’s. In the clinics, healing and education took place this time with more than 3100 beds.

The increase of the ratio of the international students has started to grow since the 1970’s. This time, they arrived mostly from the developing countries and mostly from the so-called democratic countries. Education in German language started in 1983 and after an experiment in 1987, the regular education in English language started in 1989.

The Act LXXX of 1993 on Higher Education made it the task of the universities to prepare for scientific degree and to award the PhD degree, based on which the Semmelweis University got its Doctoral School accredited in the same year and until 2018, it started 47 programmes.
III. The history of Semmelweis University (2000–2021)

At the end of the 1990’s, the transformation of the Hungarian higher education network was put on agenda with the aim of institutional integration. The final stage of this process was determined by the Act LII of 1999 on the Transformation of the Higher Education Institutional Network. Accordingly, even in July that year, three universities (the Semmelweis University of Medicine, the Haynal Imre University of Health Sciences and the University of Physical Education) elaborated the plan of the organisational, operational and financial policy of the university to be created, together with the call for application for the rector and the director general. After the preparatory work, on 1 January 2000, Semmelweis University was established by the merger of the Semmelweis University of Medicine, the Haynal Imre University of Health Sciences and the University of Physical Education, which consisted of the following faculties: Faculty of General Medicine, Faculty of Health Sciences, College Faculty of Health, Faculty of Dentistry, Faculty of Pharmacy and Faculty of Physical Education and Sport Sciences. From this group, the Faculty of Health Sciences of the Haynal Imre University of Health Sciences was removed and based on a governmental decree, it ceased to exist. (The successor of the Haynal Imre University of Health Sciences was the new organisation, the National Medical Centre formed from it, which was known as Szabolcs utca Hospital until its closure in 2007.) The College Faculty of Health of the Haynal Imre University of Health Sciences remained on the part of the university, which continued its operation from the end of 2001 with 5 faculties: Faculty of General Medicine, College Faculty of Health (from 2007 with the name of Faculty of Health Sciences), Faculty of Dentistry, Faculty of Pharmacy and Faculty of Physical Education and Sport Sciences. In its decision no 62/2008 on 29 May 2008, the Senate of Semmelweis University decided to found its sixth faculty, the Faculty of Health and Public Services with the participation of three institutions working in the border of natural sciences and social sciences, i.e. the Health Services Management Training Centre, the Institute of Mental Health and the Institute of Health Informatics, Development and Further Training. The faculty started its activity in January 2010 and the inaugural meeting of the Faculty Council was held on 21 April 2010. The new faculty has mostly social science orientation, however, it integrated interdisciplinary trainings at the border of the sciences. With its programmes, it covers the whole educational spectrum including the basic training, the master training, the doctoral training and the postgraduate specialist training courses in the field of healthcare management, mental and community health and health informatics.

In addition to the structural reorganisation, the new millennium brought significant developments as well. In 2003, the College Faculty of Health succeeded to move to a new site instead of its earlier fragmentation (Óbuda, Újpest, Józsefváros), to the Vas utca close to the centre of the university, into the fastidiously renovated building of the former Pátor sanatorium and later Balassa János Hospital. The Educational Centre of the Faculty of Dentistry was built between 2006-2007 in the site of the Pátria printing house, in the Szentkirályi utca. Almost all of the clinics and departments of the faculty moved to this state-of-the-art building. In September 2008, the plan of a long-standing desire of a second theoretical building, back from the 1960’s came true in the form of the Theoretical Medical Centre in the Tűzoltó utca, which won several architectural professional prizes. In the gross 27,000 m² of the building, there are research laboratories, study rooms, student laboratories, lecture rooms, a modern animal house and seven seminar rooms. The two latter investment was performed in the so-called PPP construction. Among the renovations of buildings, the multistage project of the Central Management Building (Üllői út 26) started in 2008 has to be mentioned, the first stage of which, the renovation, was finished in 2009 and the project was completed by the formation of the loft in 2012. The Ophthalmology Clinic in the Mária utca and the 1st Department of Pathology and Experimental Cancer Research were renovated in 2013. In the summer of 2012, the large-scale development of the Outer Clinical Site, the Korányi project was started, which is one of the most significant investment of the previous century of the university.

Between 2008 and 2010, Semmelweis University started three off-site trainings abroad. The first was the Asklepios Campus Hamburg, within the framework of which the stu-
Students studying in German language continue their studies in the Hamburg campus according to the Hungarian curriculum, after the theoretical training in Budapest and they get the medical (M.D.) diploma of the Semmelweis University at the end of the training. In cooperation with the L.U.de.S University, Lugano, Switzerland, the Italian and English language physiotherapy basic training (BSc) started in 2009, with the same curriculum as the Faculty of Health. In 2010, the Faculty of Health and Public Services established an off-site training in Bratislava. The postgraduate health management training programme organised jointly with the Health Management Academy, Bratislava was held in Slovakian language with two groups, one in 2010 and in 2012.

In 2010, Semmelweis University won the title of Prestigious Research University related to which it performed a large-scale tender with the title “Modern Medical Science Technologies in the Semmelweis University”. Within the framework of a tender of almost 3 billion Hungarian Forints, outstanding results were achieved in five distinguished fields of research: personalised medicine, imaging procedures and bioimaging, bio-engineering and nanomedicine, molecular medicine and in the integrative educational module. The university won the Research University qualification for the period 2013-16 as well, which is still possessed.

In Hungary in 2011, Semmelweis University was the first among the medical universities to develop e-learning learning materials within the framework of a two-year Social Renewal Operational Programme (TÁMOP) and the possibility became open to hold on-line examinations. Even in that year, the E-learning and Digital Content Development Centre was founded, which performs the coordination tasks of the development of the university learning materials.

In 2013, the Central Institute of Stomatology was terminated, the role of which was taken away by the Department of Community Dentistry within the university. This Department renovated in 2019 is the largest institute of the Faculty of Dentistry in terms of staff and floor area and in addition to the continuous patient care, it takes part in the education, specialist physician training and further education tasks as well. In 2014, the Thoracic Surgery Department was established, which is operating on the basis of the National Institute of Oncology. In December 2015, the first successful lung transplantation in Hungary was performed here. On 1 September 2014, the Faculty of Physical Education and Sport Sciences spun off Semmelweis University and it continued its operation separately again, with the name of University of Physical Education.

In the end of 2014, similarly to many Hungarian institutes of higher education, with the introduction of the chancellor position, the management system of Semmelweis University was changed. Education, research and patient care are managed by the rector, while the tasks regarding the operation and the management of the university were transferred to the chancellor. From 2015, the management of the Clinical Centre of the university was taken by the vice-rector for clinical affairs from the rector. In 2016, as a separate patient care institution of the university, the Centre of Oncology was formed after its spin-off from the Department of Radiology and Oncotherapy. On 1 August 2017, the Pető András College and its part, the Institute of Conductive Education joined the University, which has been operating as the Pető András Faculty. In this way, the number of faculties increased to six again.

In 2018, the university celebrated the 200th anniversary of the birth of Semmelweis Ignác after whom the university got its name and with the solemn opening ceremony of the academic year 2019/2020, the jubilee year of the university starts, with which we pay tribute to the 250th anniversary of the foundation of the university.

Compiled by
dr. László Molnár–Zenina Sági–Pálma Dobozi
JENDRASSIK Jenő,
tutor of physiology
1824-1891

LENHOSSEK József from 1864,
tutor of anatomy
1818-1888

GENERSICH Antal,
tutor of pathology
1842-1918

LUMNICZER Sándor,
tutor of surgery
1821-1892

MIHALKOVICS Géza,
tutor of anatomy
1844-1899

HÖGYES Endre,
tutor of general medicine
1847-1906
FODOR József, the first tutor of the independent public health 1843-1901

TAUFFER Vilmos, tutor of obstetrics and gynaecology 1851-1934

KORÁNYI Sándor, tutor of internal medicine 1866-1944

NÉKÁM Lajos, tutor of dermatology 1868-1957

KROMPECHER Ödön, tutor of pathology 1870-1926

HUZELLA Tivadar, the director of the Institute of Histology and Embryology 1886-1950
BALOGH Károly, the first dean of the Faculty of Dentistry 1895-1973

HAYNAL Imre, the director of the Department of Internal Medicine II 1892-1979

MOZSONYI Sándor, the first dean of the Faculty of Pharmacy 1889-1976

SZENT-GYÖRGYI Albert, Nobel Prize winner, tutor of biochemistry 1893-1986

BALÓ József, tutor of pathology 1895-1979

SZENTÁGOTHAI János, neuroscientist, tutor of anatomy 1912-1994
Changing the operating model (2021—)

On its decision 1/2021 (I. 28.) the Senate of Semmelweis University - including its six faculties, public education and vocational institutions, as well as its clinical centre forming an organic unit with its medical and health sciences training - supported the change of the operating model of Semmelweis University. The state transfers its maintenance rights to a public interest foundation to be established by the state for the maintenance of Semmelweis University, thus contributing to the achievement of the university’s strategic goals and the development of Hungarian medical and health science education and patient care.

Semmelweis University is already an elite university of international reputation, known and respected, which has reached the limits of its development due to current environmental constraints. A change of model could create the opportunity to achieve the goal of becoming one of the world’s top 100 universities.

The vision of Semmelweis University is to be recognised as one of the world’s leading universities, and as such, ensuring the unity of theoretical education, basic and translational research and clinical care, while respecting tradition. The university’s further goal is to implement the training of excellent professionals in medical and health sciences along with closely related pedagogical fields by widely applying the results of modern technology. The university employs methods of the highest level of healing, focusing on the areas of health preservation, disease prevention, personalized medicine, and societal expectations, and serving the rise of the nation.

The operational model (public law framework) of the University has not changed significantly in the last three decades. Since its establishment, it has operated as a central budgetary body, as part of public finances, regarding its management, financing, employment and motivation. The socio-economic environment of the University, as well as the sectoral governance of higher education, poses challenges to the current operating model which the institution can hardly meet within its current operational framework.

A change in operation model is necessary to enable the university to meet its own quality expectations and those of the market and knowledge industry.

The new model that will emerge as a result of the transformation will make it possible to achieve strategic goals:

1. By 2030, Semmelweis University will become one of Europe’s five most successful universities in the medical sciences and one of the top 100 out of 28,000 universities in the world.
2. Ensuring the sovereignty of Hungarian-language healthcare in Hungary and the nation, the entire system of medical and health professional training will be renewed as part of the curriculum reform launched in the year of the 250th anniversary of Semmelweis University.
3. Semmelweis University will train some of Europe’s top doctors, dentists, pharmacists, conductors, health and health related management as well as social science professionals.
4. A key export product of Semmelweis University is its foreign-language medical training, which generates significant revenues at national level, and which can be expanded by various means in the coming years.
5. Graduates of Semmelweis University are doctors and health professionals who know the Christian cultural roots that are so important in the field of medicine, and who not only understand the value of health, but live it.
6. Semmelweis University’s clinical patient care activities will be renewed by developing a complete public care portfolio, thus enhancing the health security of the Hungarian population and increasing trust in healthcare.
7. Health and pharmaceutical developments that ensure national sovereignty are implemented on the research and innovation base of the University.
8. The research output of Semmelweis University can be significantly increased in a practical, translational direction as a result of patient-centred health industry cooperation with national and international partners in line with governmental goals. In this process domestic health industry players will be given a prominent role.
9. Leadership in data-driven support for health and healthcare industry paradigm shift.
The aim of Semmelweis University is to contribute to the creation of a world-class medical and health sciences university in Hungary, to become a national educational and scientific base for disease management, and to support the re-launch of the economy through its developments.

In accordance with the provisions of Act XX of 2021 on “public trusts funds performing public function” and Act XX of 2021 on the “National Foundation for Health and Medical Training, the transfer of assets to the Foundation for National Health Care and Medical Education and Semmelweis University”, the Semmelweis University will continue to operate as a public interest university in the form of a foundation from 1 August 2021. The executive body of the foundation is the board of trustees, which exercises all the powers that do not fall within the competence of the founder or other foundation organization or body, in particular the maintenance rights of the university specified in the act on higher education. The Board of Trustees consists of five (5) natural persons. The members of the Board of Trustees are the Chairman and the members of the Board of Trustees.

Written by:

dr. László Molnár

Zenina Sági

Pálma Dobozi

Beatrix Valyon
HONORARY DOCTORS OF THE MEDICAL FACULTY OF BUDAPEST DURING THE UNIVERSITY’S SCIENCE ERA

1895/96
- Tivadar Károly, royal prince from Bavaria
- John Shaw Billings, professor from Philadelphia
- Rudolf Virchow, professor from Berlin
- Joseph Lister, professor from London
- Adolf Anders Retzius, professor from Stockholm
- Guido Bacelli, professor from Rome
- Pierre-Paul-Émile Roux, professor from Paris
- Károly Than, professor of Budapest

1899/1900
- Tivadar Duka, chief doctor Col. Emeritus of the royal Bengal army of England, on the occasion of his 50th anniversary of operation

1909/10
- Albert Apponyi, Minister of Culture, on the occasion of the XVI. International Medical Congress held in Budapest

1911/12
- Heinrich Wilhelm Waldeyer, professor from Berlin, on occasion of his 50th jubilee as a doctor

1914/15
- Otto Karl Schjerning, professor of Berlin

1928/29
- Friedrich Schmidt-Ott, Minister of State of Prussia

1930/31
- Harvey Williams Cushing, professor of Harvard University in Cambridge

1934/35
- Jenő Sipőcz, Lord Mayor of Budapest

1935/36
- Ferdinand-Jean Darier, Chairman of the French Society of Dermatology
- Anton Freiherr von Eiselsberg, professor from Vienna
- Karl Albert Ludwig Aschoff, professor from Freiburg
- August Krogh, professor from Copenhagen
- Granville Harrison Ross, professor at Yale University

1942/43
- Károly Szendy, Mayor of Budapest

LIST OF PERSONS AWARDED WITH THE „DOCTOR HONORIS CAUSA” TITLE AT THE BUDAPEST/SEMMELWEIS UNIVERSITY OF MEDICAL SCIENCES

1967
- Boris Vasilyevich Petrovsky (Soviet Union)

1969
- Pyotr Kuzmich Anohin (Soviet Union)
- Assen Hadyolov (Bulgaria)
- György Békéssy (USA)
- Vasily Vasilyevich Parin (Soviet Union)
- Daniel Bovet (Italy)
- Stefan Milcu (Romania)
- Karl Fellinger (Austria)
- Samuel Rapaport (Germany)
- Jules François (Belgium)
- Pyotr Grigoryevich Sergiyev (Soviet Union)

1972
- Marcelino G. Candau (Switzerland)

1976
- Britton Chance (USA)
- Leonid Semyonovich Persyanilov (Soviet Union)
- Tadeusz Krwawicz (Poland)

1978
- Vasyl Vasilyevich Zakusov (Soviet Union)

1980
- Uktam Aripov (Soviet Union)

1982
- Nikolai Nikolaevich Blohin (Soviet Union)

1983
- George Weder (USA)
- Philip Gerald Mechanick (USA)
- Viking Olov Björk (Sweden)
<table>
<thead>
<tr>
<th>Year</th>
<th>Names</th>
</tr>
</thead>
</table>
| 1984 | Walter Birkmayer (Austria)
Arje Scheinen (Finland) |
| 1985 | Jens J. Pintborg (Denmark)
Armand Hammer (USA)
Klaus Thurau (Germany) |
| 1986 | Hans Altmann (Austria)
Mitropan Studenikin (Soviet Union) |
| 1987 | John Gergely (USA)
Halfdan I. Mahler (Denmark)
Shogo Sasaki (Japan)
Ludwig Mecklinger (Germany)
F. Gotthard Schettler (Germany) |
| 1988 | László Ernster (Sweden)
Jan Solich (Czechoslovakia)
Dieter Schleger (Germany)
Emeric Szilágyi (USA)
Thomas P. Singer (USA)
George B. Udvarhelyi (USA) |
| 1989 | Douve D. Breimer (Netherlands) |
| 1990 | Yoshinori Nozawa (Japan)
Walter Künzel (Germany)
Herbert Oelshcläger (Germany)
Jerzy Maj (Poland)
Martin Reivich (USA) |
| 1991 | Friedrich Wilhelm Ahneweld (Germany)
László Róbert (France)
Endre A. Balázs (USA)
Benno Runnebaum (Germany)
Herbert Braunsteiner (Austria)
Heitaroh Iwata (Japan) |
| 1992 | Merton Sandler (England)
Hans Weidinger (Germany) |
| 1993 | György Ács (USA)
László Iffy (USA) |
| 1994 | Ursula Lachnit-Fixon (Germany)
Milan Chalabala (Slovakia)
Felix Unger (Austria)
Ulrich Joos (Germany)
Isaac van der Wald (Netherlands)
Sergio Ferri (Italy) |
| 1995 | Takao Yamauro (Japan)
H. W. Wouters (Netherlands) |
| 1996 | Károly Balogh (USA)
Thomas Rabe (Germany)
Horst Cotta (Germany)
Eberhard Ritz (Germany)
Viktor E. Frankl (Austria)
Heikki Ruskoaho (Finland)
John A. Hobkirk (England)
Thomas Schiiff (USA)
Dieter Ernst Lange (Germany)
Volkmar Schneider (Germany) |
| 1997 | Theodor Hellbrügge (Germany)
Hans-Günter Sonntag (Germany)
Thomas Kenner (Austria)
Moussa B. H. Youdim (Israel)
Edward R. Perl (USA) |
| 1998 | Bernd Brinkmann (Germany)
Frank A. Chervenak (USA)
Asim Kurjak (Croatia)
Ferenc Robicsek (USA)
Werner Schmidt (Germany)
André Haynal (Switzerland) |
| 1999 | Luis Gabriel Navar (USA)
Nikolaus Freudenberg (Germany)
Stefan Pollak (Germany)
Tamás Hacki (Germany)
Norbert Schwenzer (Germany)
Thomas D. Kerényi (USA)
Georg Stingl (Austria)
Thomas Michael Krieg (Germany)
Michael Wahl (Germany)
Juhani Leppäluoto (Finland)
Klaus Wolff (Austria) |
LIST OF PERSONS AWARDED WITH THE „DOCTOR HONORIS CAUSA” TITLE AT SEMMELWEIS UNIVERSITY

<table>
<thead>
<tr>
<th>Year</th>
<th>Names and Nationalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Allen Cowley (USA), Péter Illés (Germany), Iván Kiss (Germany), Ryszard Jerzy Gryglewski (Poland), Emmanuel van Praag (France), Claes B. Wollheim (Switzerland), Gottfried O. H. Naumann (Germany), Gabriel P. Haas (USA), Gerd Schmitz (Germany), Elemér Zsigmond (USA)</td>
</tr>
<tr>
<td>2001</td>
<td>Pekka Juhani Saukko (Finland), Leo M. Sreebny (USA), N. Joan Abbott (England), Christopher Squier (USA), Ádám Tegzess (Netherlands), Gottfried Heinisch (Austria), Herbert Rübben (Germany), Han C. G. Kemper (Netherlands)</td>
</tr>
<tr>
<td>2002</td>
<td>Jacques Rogge (Belgium, Switzerland), Sataro Goto (Japan), Matthias Brandis (Germany), John Holloszy (USA), János Alpár (USA), Denys Wheatley (England), Angelo Benedetti (Italy), Ferenc Jolesz (USA), Tatsuo Nagai (Japan)</td>
</tr>
<tr>
<td>2003</td>
<td>Thomas E. Andreoli (USA), Michael Georgieff (Germany), László Víg (Hungary), György Gosztonyi (Germany), Martin Black (England), Helmut Hahn (Germany), Thomas Detre (USA), Carl Hermann Lücking (Germany), David B. Ferguson (England), Marteen J. H. Slooff (Netherlands)</td>
</tr>
<tr>
<td>2004</td>
<td>Stephen Katz (USA), Sebastian G. B. Amyes (England), Sir George Radda (England), Michael Marberger (Austria), István Seri (USA), Peter Gängler (Germany), Osmo Hänninen (Finland), Albert William Taylor (USA), Barry D. Kahan (USA)</td>
</tr>
<tr>
<td>2005</td>
<td>Vilmos Vécsei (Ausztria), Louis Ignarro (USA), Gyöngyi Szabó (USA), Heinrich Schmidt-Gayk (Germany), Jos Hendrik Willem Hoogmartens (Belgium), Cynthia K. Larive (USA), Tibor Hortobágyi (USA), Vladimir Brusic (Australia)</td>
</tr>
<tr>
<td>2006</td>
<td>Uwe Wilhelm Joseph Heemann (Germany), Philippe Morel (Switzerland), Rolf Christian Gaillard (Switzerland), Mátyás Sándor (USA), Hideki Ohno (Japan)</td>
</tr>
<tr>
<td>2007</td>
<td>John Raymond Garrett (England), Michael Landthaler (Germany), Kamal K. Midha (Canada), Gertrud Prüster (Denmark), Roberto Romero (USA), Heinz Schilcher (Germany), Jörg Schubert (Germany), Clemens Sorg (Austria)</td>
</tr>
<tr>
<td>2008</td>
<td>Olaf Bodamer (Austria), Péter Pál Bucsky (Germany), Kelvin Davies (USA), Gabor Kaley (USA), Anton Sculean (Netherlands)</td>
</tr>
<tr>
<td>Year</td>
<td>Honorees</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 2009 | Maynard R. Case (England)
Christopher R. Chapple (England)
László Endrényi (Canada)
Zsuzsanna Fábry (Hungary – USA)
Bruno Grandi (Italy)
Jerzy Kosiewicz (Poland)
Karl-Heinz Kuck (Germany)
Peter Malfertheiner (Germany)
Franco Mantero (Italy)
Éva Mezey (Hungary – USA)
Georg Petroianu (Germany – USA)
Tamás Péter Sótonyi (Hungary) |
| 2010 | Roger Y. Tsien (USA)
Masaki Kitajima (Japan)
Hartmut P. H. Neumann (Germany)
István Boldogh (USA)
Constantin Copotoiu (Marosvásárhely, Romania) |
| 2011 | Péter Ferenczi (Austria)
Dirk Pickuth (Germany)
Andrzej Wiecек (Poland)
Renato V. Iozzo (USA)
Örs Nagy (Romania)
István Bocskai (Romania)
James S. Skinner (USA) |
| 2012 | Pierre Corvol (France)
Tibor Juhász (USA)
George Berci (USA)
Axel Ullrich (Germany)
Jozef Corveleyn (Belgium)
Joseph Kutzin (Switzerland)
Daan Braveman (USA)
Imre G. Csizmadia (Canada)
Árpád Gyéresi (Marosvásárhely, Romania)
Vinod P. Shah (JSS University of Mysore, India)
Jürgen Michael Steinacker (Germany) |
| 2013 | Peter Gabor Medveczky (USA)
Arthur J. Moss (USA)
Gerhard M. Kostner (Austria)
Marie T. O’Toole (USA)
Peep Veski (Estonia)
Kai-Ming Chan (China)
Paul G. M. Luiten (Netherlands) |
| 2014 | Richard M. Satava (USA)
René Sylvain Kahn (Netherlands)
Péter Gloviczki (USA)
Herbert Ehringer (Austria) |
| 2015 | Shigeru Saito (Japan)
Pál Pacher (USA)
Jacques Marescaux (France)
Leena Kaarina Bruckner-Tudermann (Germany)
Stephan Züchner (Germany)
Fausto J. Pinto (Portugal)
György Kálmán Béla Sándor (Finland)
Panos Macheras (Greece)
Attila A. Hincal (Turkey) |
| 2016 | László Bögre (England)
Walter Klepetko (Austria)
Lajos Okolicsányi (Italy)
György Kúnos (USA)
Josep Figueras (Spain)
Henning H. Blume (Germany)
Gábor Tigyi (USA) |
| 2017 | Gerhard Hindricks (Germany)
Christine Baylis (USA)
Rainer Schulz (Germany)
Mikael Björnstedt (Sweden)
Keiichi Maruyama (Japan)
Josef Smolen (Austria)
Clive G. Wilson (England)
Stefán Offermanns (Germany) |
<table>
<thead>
<tr>
<th>Year</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Dr. Miklos Sahin-Toth (USA)</td>
</tr>
<tr>
<td></td>
<td>Dr. Maria Antonietta Stazi (Italy)</td>
</tr>
<tr>
<td></td>
<td>Dr. Piotr L. Chlost (Poland)</td>
</tr>
<tr>
<td></td>
<td>Dr. Jianquang Xu (China)</td>
</tr>
<tr>
<td></td>
<td>Dr. Daan J. A. Crommelin (Netherlands)</td>
</tr>
<tr>
<td></td>
<td>Dr. Olavi Pelkonen (Finland)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Scott David Solomon (USA)</td>
</tr>
<tr>
<td></td>
<td>Offermanns, Stefan (Németországi)</td>
</tr>
<tr>
<td>2019</td>
<td>Komajda, Michel (Franciaország)</td>
</tr>
<tr>
<td></td>
<td>Hausenloy, Derek John (Szingapúr)</td>
</tr>
<tr>
<td></td>
<td>Bax, Jeroen (Hollandia)</td>
</tr>
<tr>
<td></td>
<td>Hogendoorn, Pancras (Hollandia)</td>
</tr>
<tr>
<td></td>
<td>Madonna, Rosalinda (Olaszország-USA)</td>
</tr>
<tr>
<td></td>
<td>Schirmacher, Peter (Németországi)</td>
</tr>
<tr>
<td></td>
<td>Mühlebach, Stefan (Svájc)</td>
</tr>
<tr>
<td></td>
<td>Tóth István (Ausztrália)</td>
</tr>
<tr>
<td>2020</td>
<td>Prof. Hans Henkes (Németországi)</td>
</tr>
<tr>
<td></td>
<td>Prof. Gerasimos Filipatto (Görögországi)</td>
</tr>
<tr>
<td></td>
<td>Dr. Markó-Varga György (Svédrországi)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Jude Fitzebbon (Anglia)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Udo Hoffmann (USA)</td>
</tr>
<tr>
<td>2021</td>
<td>Prof. Stefan Anker (Germany)</td>
</tr>
<tr>
<td></td>
<td>Prof. Mariann Pavone-Gyöngyösi (Austria)</td>
</tr>
<tr>
<td></td>
<td>Prof. Gary Francis Baxter (England)</td>
</tr>
<tr>
<td></td>
<td>Prof. Olschewski Andrea (Austria)</td>
</tr>
<tr>
<td></td>
<td>Prof. Shahrokh Francis Shariat (Austria)</td>
</tr>
<tr>
<td></td>
<td>Prof. Carlos J. Bustamante (USA)</td>
</tr>
<tr>
<td></td>
<td>Prof. Ondrej Viklicky (Czech Republic)</td>
</tr>
<tr>
<td></td>
<td>Prof. Hans Henri Marcel Paul Kluge (Denmark)</td>
</tr>
</tbody>
</table>

PRIVATE TUTORS OF SEMMELWEIS UNIVERSITY

<table>
<thead>
<tr>
<th>Year</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Dr. Árpád Mayer head physician, Uzsoki Hospital, Oncology Centre</td>
</tr>
<tr>
<td></td>
<td>Dr. László Takácsi Nagy deputy head physician, Uzsoki street Hospital, Oncology Centre</td>
</tr>
<tr>
<td>1996</td>
<td>Dr. Elemér Nemesánszky head physician, Buda Hospital of the Hospitaller Order of Saint John of God</td>
</tr>
<tr>
<td></td>
<td>Dr. István Hartyaniszky, chief physician, National Institute Of Cardiology</td>
</tr>
<tr>
<td></td>
<td>Dr. János Strausz medical director, Törökbálint Institute of Pulmonology</td>
</tr>
<tr>
<td></td>
<td>Dr. Szabolcs Ottó deputy director-general chief physician, National Oncological Institute</td>
</tr>
<tr>
<td></td>
<td>Dr. András S. Szabó associate professor, Head of Department, Saint Stephen University</td>
</tr>
<tr>
<td></td>
<td>Dr. Endre Ludwig head physician, Péterféy Sándor street Hospital</td>
</tr>
<tr>
<td>1997</td>
<td>Dr. Béla Goldschmidt head physician, Saint Roch Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr. János Hamar head physician, National Institute Of Traumatology</td>
</tr>
<tr>
<td></td>
<td>Dr. György Jermendy head physician, Bajcsy-Zsilinszky Metropolitan Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr. György Karmos senior research fellow, Hungarian Academy of Sciences, Institute of Psychology</td>
</tr>
<tr>
<td></td>
<td>Dr. Elek Kisida head physician, Buda Hospital of the Hospitaller Order of Saint John of God</td>
</tr>
<tr>
<td></td>
<td>Dr. Tibor Raposa head physician, Saint Stephen Metropolitan Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr. Géza Tasnádi head physician, Pál Heim Metropolitan Municipality Children's Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr. István Péter Temesvári head physician, National Institute of Rheumatology and Physiotherapy</td>
</tr>
<tr>
<td></td>
<td>Dr. József Tóth head physician, National Oncological Institute</td>
</tr>
<tr>
<td></td>
<td>Dr. Károly Sándor Tóth head physician, Saint Margaret Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr. Valéria Váradi head physician, Saint Margaret Hospital</td>
</tr>
<tr>
<td></td>
<td>Dr. Gábor Pethő director of quality assurance, Pharmavit Ltd.</td>
</tr>
</tbody>
</table>
1998 Dr. Hedvig Bodánszky consultant, National Medical Centre
Dr. István Láng chief physician, National Oncology Institute
Dr. Béla Lombay head physician, B-A-Z County Hospital, Radiology Institute, Department of Paediatric Radiology
Dr. János Radó physician, Virányos Clinic
Dr. Károly Simon head physician, Saint Emeric Hospital-Clinic

1999 Dr. György Bodoky chief physician, Saint Ladislaus Hospital
Dr. Kristóf Nékám head physician, Buda Hospital of the Hospitaller Order of Saint John of God
Dr. Gyula Poór director-general chief physician, National Institute of Rheumatology and Physiotherapy
Dr. László Simon head physician, Tolna County Municipal Hospital, Szekszárd
Dr. Attila Tankó medical specialist, District II. Municipality Clinic
Dr. Gábor Veres director-general chief physician, Balatonfüred State Hospital
Dr. István Vermes chief physician, Medical Spectrum, Twente (Netherlands)
Dr. Bosco Camelo associate professor, University of Rome
Dr. Péter Gőblyös head physician, National Institute of Hematology and Immunology

2000 Dr. Miklós Bély head physician, Buda Hospital of the Hospitaller Order of Saint John of God
Dr. György Berencsi head physician, Béla Johan National Epidemiology Centre
Dr. Tamás Szabó Head of the scientific group, Central School of Sport

2001 Dr. Sándor Frenyó head physician, National Traumatology Institute
Dr. Ferenc Horkay head physician, National Cardiology Institute
Dr. Krisztina Kádár chief physician, National Cardiology Institute
Dr. Lajos Kotsis chief physician, National Korányi Institute of TBC and Pulmonology
Dr. Ilona Kovács senior research fellow, No. I. Institute of Pathology and Experimental Cancer Research
Dr. Aladár Rónaszéki head physician, Elizabeth Hospital of Péterfy Sándor street Hospital
Dr. Ágnes Szébeni head physician Emeritus, Ministry of Home Affairs Central Hospital
Dr. András Végh head physician, Pál Heim Metropolitan Municipality Children’s Hospital
Dr. Gábor Winkler head physician, Saint John Hospital

2002 Dr. Mátyás J. Baló (Banga) head physician, Central Hospital of the Hungarian Homeland Defence Forces, Department of Internal Medicine
Dr. Béla Büki chief physician, Kremsi Hospital, Department of Otolaryngology
Dr. Sándor Czirjak chief physician, Deputy Director-General, National Scientific Institute of Neurosurgery
Dr. Gyula Domján head physician, Saint Roch Hospital, No. I. Department of Internal Medicine
Dr. Sándor Dubecz chief physician, National Oncology Institute, Department of General Surgery and Thoracic Surgery
Dr. Lajos Kullmann director-general chief physician, National Medical Rehabilitative Institute
Dr. Ádám László head physician, Bajcsy-Zsilinszky Hospital, Department of Obstetrics and Gynecology
Dr. Károly Nagy deputy scientific director, National Institute of Dermatology and Venereology
Dr. Erzsébet Temesvári senior research fellow, National Institute of Dermatology and Venereology
2003
Dr. Áron Altorjay head physician, Fejér County Saint George Hospital
Dr. István Bodrogi head physician, National Oncology Institute
Dr. Károly Cseh head physician, Sándor Korányi Hospital and Clinic
Dr. Gábor Faludi head physician, Kütvölgyi Clinical Array
Dr. Irén Herjavecz head physician, National Korányi Institute of TBC and Pulmonology
Dr. Kálmán Róna scientific consultant, Department of Forensic Medicine
Dr. György Szeifert chief physician, National Scientific Institute of Neurosurgery
Dr. Imre Klebovics head of science department, EGIS Pharmaceuticals PLC

2004
Dr. Jenő Julow head physician, National Scientific Institute of Neurosurgery
Dr. László Bognár head physician, National Scientific Institute of Neurosurgery

2005
Dr. György Bagdy head of laboratory, scientific director, National Institute of Psychiatry and Neurology
Dr. Katalin Borbély head physician, National Scientific Institute of Neurosurgery

2006
Dr. Ildikó Horváth head physician, National Korányi Institute of TBC and Pulmonology, doctor of the Hungarian Academy of Sciences
Dr. László Dézsi research supervisor, Gedeon Richter PLC Research Department of Pharmacology and Drug Safety
Dr. Tamás Szamosi consultant, No. II. Clinic of Paediatrics

2007
Dr. Róbert Veres head physician, National Scientific Institute of Neurosurgery

2008
Dr. Attila Csekeő head physician, National Korányi Institute of TBC and Pulmonology

2009
Dr. Péter Andréka head physician, György Gottsegen National Cardiology Institute, Department of Cardiology
Dr. István Szikora deputy director-general chief physician, National Neuroscience Institute

2010
Dr. Tamás Görcs lecturer, Department of Anatomy, Histology and Embyrology
Dr. György Keleti head physician comm. Joint Saint Emeric and Saint Ladislaus Hospital, Surgery Department
Dr. Ödön Gaál graduate chemist emeritus, National Institute of Nutritional Science (1972-2005)

2011
Dr. Béla Schumann director, Laborexpert Kft.
Dr. Miklós Lőw chemist emeritus, Gedeon Richter PLC
Dr. András Bálint project manager chief physician, Saint Emeric Municipal Hospital, General Surgery Section
Dr. Miklós Merksz head physician, Pál Heim Metropolitan Municipality Children’s Hospital, Department of Urologic Surgery
Dr. András Telekes head physician, Bajcsy-Zsilinszky Metropolitan Hospital-Clinic, Department of Oncology

2013
Dr. Attila Vörös chief physician, State Medical Centre - Central Hospital of the Hungarian Homeland Defence Forces
Dr. Zoltán Takács-Nagy head physician, National Oncology Institute, Department of Radiotherapy
2014 Dr. György Ostoharics-Horváth chief physician, Aladár Petz County Hospital, Department of Psychiatry, Mental Hygiene and Addictology

2015 Dr. Sándor Bende chief physician, titular associate professor, B-A-Z County Hospital and University Teaching Hospital
Dr. Tamás Sándor chief physician, (retired volunteer assistant), 2nd Department of Surgery

2016 Dr. Ferenc Ender chief physician, Joint Saint Emeric and Saint Ladislaus Metropolitan Hospital, Surgery Department

2017 Virág Katalin Bognár self-employed sociology instructor
Dr. Bertalan Meskó, Webicina Kft., manager
Dr. Gamal Eldin Mohamed Elmowag head physician, Budaörs Healthcare Centre
Dr. Miklós Szokoly director-general consultant, Péterfy Sándor street Hospital, Clinic and Casualty Centre
Dr. Tamás Iváncsy associate professor, Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Department of Electric Power Engineering
Dr. Judit Moldvay chief physician, National Korányi Pulmonology Institute, Tumor Biology Department
Dr. Géza Nagy college professor, Semmelweis Hospital, head physician, University of Miskolc, Faculty of Healthcare

2021 Prof. Dr. Ádány Róza egyetemi tanár, Népegészségtani Intézet
Prof. Dr. Fülöp Tamás egyetemi tanár, Népegészségtani Intézet
FOUNDATION FOR NATIONAL HEALTH CARE AND MEDICAL EDUCATION

Act IX of 2021 on „public trusts funds performing public function” and Act XX of 2021 on the “Foundation for National Health Care and Medical Education, the transfer of assets to the Foundation for National Health Care and Medical Education and Semmelweis University”

The executive body of the foundation is the Board of Trustees, which exercises all the powers that do not fall within the competence of the founder or other foundation organization or body, in particular the maintenance rights of the university specified in the act on higher education. The Board of Trustees consists of five (5) natural persons. The members of the Board of Trustees are the Chairman and the members of the Board of Trustees.

Members of the Board of Trustees

CHAIRMAN
Dr. Gábor Orbán
(Chief Executive Officer of Gedeon Richter Plc.)

MEMBERS
Dr. Jonathán Róbert Bedros
(Director General of Szent Imre University Training Hospital)
Dr. Péter Gloviczki
(Professor of Vascular Surgery at Mayo Clinic)
Dr. Béla Péter Merkely
(Rector of Semmelweis University, Director of the Heart and Vascular Centre)
Dr. Miklós Szőcska
(Director of the Health Services Management Training Centre and the Institute of Digital Health Sciences, Dean of the Faculty of Health and Public Administration)

Supervisory Board

CHAIRWOMAN
Dr. Róza Nagy
(Chief Adviser to the President of Magyar Nemzeti Bank i.e. Hungarian National Bank)

MEMBERS
Dr. Zoltán Hankó
(President of the Hungarian Chamber of Pharmacists)
István Havas
(Executive Director)
Senate

The Senate is the supreme autonomous leading body endowed with rights of decisional authority, initiative, review and control. The chairman of the Senate is the rector of Semmelweis University.

The makeup of the Senate

The member of the Senate may be such a person – excluding representatives of the Student’s Union and other representative organisations – who is employed by Semmelweis University in an employment relationship or as a full-time working public servant, i.e. lecturer, researcher, teacher, or other scope of activity. The Senate consists of 45 members. This number is determined according to the seats available based on position, election and delegation as a result of election, defined in Section 13, part (4)-(5) of the Organisational and Operational Rules. The Rector and Chancellor are ex officio members of the Senate.

Members of the Senate

<table>
<thead>
<tr>
<th>RECTOR</th>
<th>Dr. Béla Merkely</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANCELLOR</td>
<td>Dr. Lívia Pavlik</td>
</tr>
<tr>
<td>FACULTY OF MEDICINE</td>
<td>Dr. Miklós Kellermayer</td>
</tr>
<tr>
<td></td>
<td>Dr. Edit Buzás</td>
</tr>
<tr>
<td></td>
<td>Dr. Péter Ferdinandy</td>
</tr>
<tr>
<td></td>
<td>Dr. Alán Alpár</td>
</tr>
<tr>
<td>FACULTY OF HEALTH SCIENCES</td>
<td>Dr. Zoltán Zsolt Nagy</td>
</tr>
<tr>
<td></td>
<td>Dr. Gabriella Bednárikné Dörnyei</td>
</tr>
<tr>
<td></td>
<td>Dr. István Vingender</td>
</tr>
<tr>
<td></td>
<td>Dr. Tímea Tóth</td>
</tr>
<tr>
<td>FACULTY OF DENTISTRY</td>
<td>Dr. Gábor Gerber</td>
</tr>
<tr>
<td></td>
<td>Dr. Károly Bartha</td>
</tr>
<tr>
<td></td>
<td>Dr. Csaba Dobó Nagy</td>
</tr>
<tr>
<td>FACULTY OF PHARMACEUTICAL SCIENCES</td>
<td>Dr. Romána Zelkó</td>
</tr>
<tr>
<td></td>
<td>Dr. István Antal</td>
</tr>
<tr>
<td></td>
<td>Dr. Szabolcs Béni</td>
</tr>
<tr>
<td>FACULTY OF HEALTH AND PUBLIC SERVICES</td>
<td>Dr. Miklós Szócska</td>
</tr>
<tr>
<td></td>
<td>Dr. Eszter Zimányiné Sinkó</td>
</tr>
<tr>
<td></td>
<td>Dr. Beáta Judit Pethesné Dávid</td>
</tr>
<tr>
<td>PETHŐ ANDRÁS FACULTY</td>
<td>Dr. Andrea Tenk Miklósné Zsebe</td>
</tr>
<tr>
<td></td>
<td>Dr. Éva Szabó Dr. Feketené</td>
</tr>
<tr>
<td></td>
<td>Dr. Ibolya Túri</td>
</tr>
<tr>
<td>KÁROLY RÁCZ SCHOOL OF PHD STUDIES</td>
<td>Dr. Zoltán Benyó</td>
</tr>
</tbody>
</table>
CLINICAL CENTRE
Dr. Attila Szabó
Dr. Ferenc Bánhidy
Dr. Péter Hermann
Dr. Balázs Hankó
Dr. Péter Nyirády
Dr. Attila Szijártó

STUDENT’S UNION
Tamás Hegedűs
Bence Gusztáv Stubnya
Bálint Mátyás Borsik
Bálint Tripolszky
Edina Vajda
Frida Méth
Hermann Daniel
Szilárd Szigeti
Cintia Szabó
Viktória Kiss
Bence Áron Benedikti

DOCTORANDUS STUDENT UNION
Dr. Szilárd Szanyi

PUBLIC SERVICE COUNCIL
Krisztina Tódorné Bognár
Kornélia Dr. Tóthné Kónya

SEMMELWEIS LABOUR ORGANISATION
Dr. Zoltán Berki
Dr. Katalin Antmann
(according to Section 13. Parts (2) and (3) of the Organisational and Operational Rules)

INVITEES
Dr. Ágoston Szél
Irén Baumgartnerné Holló
Dr. Zsolt Kovács
Dr. Levente Török
Dr. Andrea Kormos
Dr. Marcel Pop
Dr. Attila Mócsai
András Boros
Istvánné Riesz
Dr. Péter Reichert
Dr. Miklós Szathmári
András Balogh
Eszter Kovács
Emőke Márton
representatives of the supervising ministries
GOVERNMENT SEMMELWEIS UNIVERSITY

RECTOR: Prof. Dr. Béla Merkely M.D., Ph.D., D.Sc.

CHANCELLOR: Dr. Lívia Pavlik
VICE RECTORS:
Prof. Dr. Ferenc Bánhidy M.D., Ph.D., D.Sc.
General Affairs
Prof. Dr. Péter Hermann D.M.D., M.Sc., Ph.D.
Educational Affairs
Prof. Dr. Péter Ferdinandy M.D., Ph.D., D.Sc., MBA
Scientific Affairs
Prof. Dr. Attila Szabó M.D., Ph.D., D.Sc.
Clinical Affairs
Dr. Éva Feketéné Szabó
Strategical and Developmental Affairs
Prof. Dr. Alán Alpár M.D., Ph.D., D.Sc.
International Studies

DEANS:
Prof. Dr. Miklós Kellermayer M.D., Ph.D., D.Sc.
Faculty of Medicine
Dr. Gábor Gerber D.M.D., Ph.D.
Faculty of Dentistry
Prof. Dr. István Antal dr. pharm., Ph.D.
Faculty of Pharmaceutical Sciences
College Prof. Dr. Gabriella Dörnyei Ph.D.
Faculty of Health Sciences
Dr. Miklós Szócska, Ph.D.
Faculty of Health and Public Administration
Dr. Andrea Zsebe-Tenk, Ph. D.
András Pető Faculty

PRESIDENT OF THE DOCTORAL COUNCIL:
Prof. Dr. Zoltán Benyó M.D., Ph.D., D.Sc.

HEAD OF THE CENTER FOR EDUCATION OF INTERNATIONAL STUDIES
Prof. Dr. Alán Alpár M.D., Ph.D., D.Sc.

DIRECTOR of the DIRECTORATE OF INTERNATIONAL STUDIES
and ACADEMIC PROGRAM DIRECTOR FOR MEDICINE, DENTISTRY AND PHARMACEUTICAL SCIENCES IN ENGLISH:
Prof. Dr. Miklós Csala M.D., Ph.D., D.Sc.

Division of English Language Programs
Office: Basic Medical Science Center
1094 Budapest IX., Tűzoltó u. 37-47, first floor 1604
Phone: (36-1) 266-0452
e-mail: studies@semmelweis-univ.hu
Website http://semmelweis.hu/english/education/english-language-program/

Head of Division:
Ms. Andrea Kevi (459-1500 ext 60081; kevi.andrea@semmelweis-univ.hu)
Directorate Office
Manager:

Ms. Zsuzsanna Busa (459-1500 ext 60069; busa.zsuzsanna@semmelweis-univ.hu)

Staff:

Ms. Viktória Bálint (459-1500/ ext 60479; admission@semmelweis-univ.hu)
Ms. Renáta Bódlai (459-1500/ ext 60073; bodai.renata@semmelweis-univ.hu)
Ms. Alexandra Gonda (459-1500/ ext 60481; gonda.alexandra@semmelweis-univ.hu)
Ms. Borbála Hanák (459-1500/ ext 60487; hanak.borbala@semmelweis-univ.hu)
Mr. Balázs Horváth (459-1500 ext 60079; horvath.balazs1@semmelweis-univ.hu)
Ms. Tímea Jurászík (459-1500 ext 60080; juraszik.timea@semmelweis-univ.hu)
Ms. Ildikó Juhász (459-1500 ext 60078; juhasz.ildiko2@semmelweis-univ.hu)
Ms. Sarolta Kokavec (459-1500 ext 60070; kokavec.szolga@semmelweis-univ.hu)
Ms. Borbála Hanák (459-1500 ext 60073; hanak.borbala@semmelweis-univ.hu)

Ms. Dorottya Kóros (koros.dorottya@semmelweis-univ.hu)

Ms. Tímea Kotálik (459-1500 ext 60075; kotalik.timea@semmelweis-univ.hu)
Ms. Márta Ágnes Mészáros (459-1500/ ext 60077; meszaros.marta@semmelweis-univ.hu)
Ms. Lili Murakózi (459-1500/ ext 60488; murakozi.lili@semmelweis-univ.hu)
Ms. Viktória Kalmár (459-1500 ext 60074; student.pharma@semmelweis-univ.hu)
Ms. Diána Veszti (459-1500 ext 60071; student.pharma@semmelweis-univ.hu)
Ms. Petronella Szabó (459-1500 ext 60485; szabo.petra@semmelweis-univ.hu)
Ms. Alexandra Noémi Szujó (459-1500 ext 60072; szujo.alexandra@semmelweis-univ.hu)
Ms. Anikó Kaluzsa (kaluzsa.aniko@semmelweis-univ.hu)

Office hours:
Monday: 9.30 a.m. – 12 p.m.
Wednesday: CLOSED
Thursday: 10 a.m. – 12 p.m.
Tuesday: 9.30 a.m. – 12 p.m.
Friday: 10 a.m. – 12 p.m.
SCHEDULE FOR THE 2022/2023 ACADEMIC YEAR
(Faculty of Medicine, Faculty of Dentistry, Faculty of Pharmaceutical Sciences)

The dates are subject to change!

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Ceremony</td>
<td>September 3, 2022</td>
</tr>
<tr>
<td>First Semester</td>
<td></td>
</tr>
</tbody>
</table>
| Date of registration
- 1st year
- the other years | August 29-30, 2022
August 29 – September 2, 2022 |
| First day of the semester
Faculty of Medicine (1st– 5th years) | September 5, 2022 |
| Faculty of Dentistry | September 5, 2022 |
| Faculty of Pharmaceutical Sciences (1st– 4th years) | September 5, 2022 |
| Last day of the semester
Faculty of Medicine (1st– 5th years) | December 9, 2022 |
| Faculty of Dentistry | December 9, 2022 |
| Faculty of Pharmaceutical Sciences (1st– 4th years) | December 9, 2022 |
| 5th year Pharmaceutical Sciences:
Practical training | July 18 – September 16, 2022 |
| The semester lasts for 5th year Pharm. Sc. (12 weeks) | September 19 – December 9, 2022 |
| **Examination period** | |
| Faculty of Medicine (1st– 5th years) | December 12, 2022–January 27, 2023 |
| Faculty of Dentistry (1st– 5th years) | December 12, 2022–January 27, 2023 |
| Faculty of Pharmaceutical Sciences (1st–5th years) | December 12, 2022–January 27, 2023 |
| **Second Semester** | |
| Date of registration (1st– 5th/6th years) | January 23 – 27, 2023 |
| First day of the semester
Medicine and Dentistry for 1st- 5th years | January 30, 2023 |
| Last day of the semester
Medicine and 1st– 4th years Dentistry for 1st- 5th years | May 12, 2023 |
| Last day of the semester for 5th year Dentistry | April 28, 2023 |
| Faculty of Pharmaceutical Sciences | |
| First day of the semester (1st– 4th years) | January 30, 2023 |
| Last day of the semester (1st– 4th years) | May 12, 2023 |
| First day of the semester (practice) for 5th year | January 30, 2023 |
Last day of the semester (practice)
 for 5th year
 May 30, 2023

Examination period for Faculty of Medicine, Faculty of Dentistry
 1st – 5th year Medicine
 May 15 – June 30, 2023
 1st – 4th year Dentistry
 May 15 – June 30, 2023
 5th year Dentistry
 May 1 – June 16, 2023

Faculty of Pharmaceutical Sciences
 1st – 4th year
 May 15 – June 30, 2023

Exam held outside the academic year – EOAY
 August 21 – 25, 2023 (presumably)

EOAY for Pharm. Sc. 4th year
 July 3–7, 2023 (presumably)

2022/2023 Schedule for 6th year Medicine
 July 11, 2022 – April 28, 2022
2023/2024 Schedule for 6th year Medicine
 July 10, 2023 – April 26, 2024

General Board Examination Period
 Faculty of Medicine
 November 22-29, 2022
 May 24 – June 9, 2023

 Faculty of Dentistry
 June 19 – 23, 2023
 September 4, 2023
 December 11, 2023 (repeat written exam)

 Faculty of Pharmaceutical Sciences
 June 1 - 23, 2023

Graduation Ceremony for Dentistry
 July 8, 2023 planned (Saturday)
Graduation Ceremony for Pharm. Sciences
 July 1, 2023 planned (Saturday)

 Holidays:
 November 1, 2022 (Tuesday)
 March 15, 2023 (Wednesday)
 May 1, 2023 (Monday)
 May 29, 2023 (Monday)
 April 3 – 10 2023
 Spring holidays include:
 April 7, 2023 (Good Friday)
 April 10, 2023 (Easter Monday)

Research Students’ Conference:
 February 8 – 9 – 10, 2023
 April 18 – 21, 2023 (No education held on April 19-20)
THE WORDS OF THE VOW AT REGISTRATION

I,, student of Semmelweis University promise under oath that I will respect the Hungarian laws and the Fundamental Law of Hungary. I promise that I shall abide by the regulations of Semmelweis University. I promise solemnly that I will respect the professors and teachers of the University, and that my conduct will be in keeping with the honor of my profession. I will keep the secrets of the patients that I learn about in the course of my studies. I will pursue my studies with full sense of responsibility to prepare myself to the best of my abilities for all my duties and obligations in my profession so as to be able to serve with my knowledge the progress of mankind. So help me God!

THE WORDS OF OATH AT GRADUATION

Faculties of Medicine and Dentistry

“I, swear that I will devote myself to the medical profession at all times. I will use the knowledge acquired in the field of medicine to prevent and cure diseases, and to benefit the physical and mental well-being of my patients. I will not betray the confidence of those who turn to me, nor will I take advantage of their defenselessness, nor will I disclose their secrets. I will treat every person with equal care and attention. I will maintain the high quality of my knowledge and skills by continuous education, but will also acknowledge the limits of my knowledge and abilities. I will submit myself to the ethical requirements of my medical practice. I will strive to enhance the reputation of the medical profession and SEMMELWEIS University.”

Faculty of Pharmaceutical Sciences

I,, swear that in virtue of my acquired knowledge of pharmaceutical sciences, I shall do my professional duty with the utmost diligence, and I shall always behave worthy of my profession. I shall place before all things the care for and the healing of my patients. I shall not reveal any data concerning the health status or the medication of my patients. I shall maintain my theoretical and practical knowledge at a high level. I shall never use my knowledge for activities that are contrary to the ethical code of pharmacists. As a participant in the activity of healing, I shall use my knowledge only for the defense and restitution of health to my fellow humans. I shall do my best to promote the science of pharmacy and keep the good name of the Semmelweis University.
PLAGIARISM DECLARATION

at the Faculty of Medicine
(Declaration on compliance with regulations on preparing thesis work)

I, the undersigned, name: ..

(Neptun code: ..) hereby declare by signing this declaration that this thesis work, entitled:

..
..
..

is my own work, and I adhered to the provisions of Act LXXVI of 1999 on Copyright in the preparation of the thesis work and respected the rules laid down by the University.

I acknowledge by signing this declaration that Semmelweis University refuses accepting the thesis provided it can be proved that this thesis work was not carried out by me or violation of copyright law arises with regard to the thesis.

I am also aware, that the authorization holders may take action against me because of violation of copyright law, which may result in legal consequences, including consequences of civil law, infringements act and criminal law.

Budapest, ..., 20..............

...

student’s signature
ReCTORIAL CIRCULAR

On the Independent Work of Students and on Certain Questions Concerning Lecture and Practice Policies

In order to meet the requirement for independent student work and to ensure the smooth functioning of lectures and practices, I hereby draw the attention of the students of Semmelweis University to the following:

I. In the course of testing one’s knowledge and practical skills, it is prohibited, under disciplinary liability, to use any unauthorized material, or to secure any illicit advantage. For the purpose of this provision, advantages ensured to disabled students in accordance with legal provisions or university regulations and allowances based upon individual decisions made in accordance with Chapter III Part III of The Rules of Operation and Organization of Semmelweis University qualify as allowed advantages.

II. The independent creation of original work, as well as the true and accurate citation, and the precise and complete indication of the sources used are not only scientific requirements, but also obligations arising from legal regulation.

Intellectual property is protected by the laws of Hungary. The content of this protection is defined particularly by the Copyright Act, the acts on inventions and patents, and on trademarks and the Civil Code of Hungary. The intellectual property of another person is only allowed to be used in accordance with these regulations.

All creations of literature, science and art shall fall under copyright protection as defined by Act No LXXVI of 1999 on copyright. According to this act, from a work disclosed to the public any part may be cited by indication of the source and naming the author indicated therein. Such citation shall be true to the original and its scope shall be justified by the nature and purpose of the borrowing work. The free use is permitted only so far as it does not conflict with a normal exploitation of the work and does not unreasonably prejudice the legitimate interests of the author, and it is in compliance with the requirements of fairness and is not designed for a purpose incompatible with the intention of free use.

The consequences of the abuse of rights relating to intellectual property are provided by law, thus the abuse of these rights may also fall under disciplinary liability.

III. In the absence of previous authorization, it is prohibited, under disciplinary liability, to take photos or make video or sound recordings at lectures and practices. In addition, any misuse of the likeness or recorded voice of another person shall be deemed as a violation of inherent rights and may result in other consequences. The disclosure of likeness or recorded voice of another person shall be authorized by that person.

I request all students to take notice of the above.
Attention to Students of Foreign Language Programs at Semmelweis University

In recent years, Semmelweis University has built a valuable student community by maintaining high academic standards and placing much emphasis on the ethical integrity of our education. The overwhelming majority of our students appreciate our efforts. Unfortunately, a small minority does not want to accept our ethical guidelines, and tries to take undue advantage at exams by using unacceptable techniques.

We therefore do implement the following sanctions:

Against students who are found at exams possessing forbidden items, including electrical devices, such as mobile phones, ipods, etc. a disciplinary action will be initiated that can end with immediate discharge with disgrace from Semmelweis University. By implementing this rule, we wish to preserve the academic and material value of the Semmelweis Diploma.

NEPTUN.NET Unified Education System

Summary for Students

At Semmelweis University, the education system NEPTUN.Net is used for performing administrative tasks related to education. The users of the system – registry clerks, faculty secretaries, instructors and students – have different authorities to access the information stored in the system.

For the students of the institution, the system provides the following functions:
- To check their personal data and information related to their studies,
- To register for subjects,
- To register for exams,
- To check grades entered into the system,
- To monitor the grants transferred,
- To get information on their payment obligations,
- To manage their finances,
- To receive messages within the system from registry clerks, secretaries of institutions and instructors.

You get your user ID and password to the NEPTUN.Net system from the Dean’s Office or the Registry of the Faculty where you have been admitted. Users with students’ rights may only manage their own data. In order to prevent unauthorized access, it is very important that you change your password from time to time. It is recommended that you change the password immediately upon entering the system for the first time. The password should be minimum 6 characters long, consisting of letters, numbers or a mixture of both.

Students can access the NEPTUN.Net system on any computer located in students’ terminal rooms (in the Student Centre /NET/ and in the Central Library) or any other computer with Internet access using a browser (Internet Explorer 7 or Mozilla Firefox version 2) from the official university Neptun Portal (http://net.neptun.sote.hu).

(For a detailed description of the Students’ WEB please check the Neptun Portal – Support / Neptun usage / Aids by role / Aids for students).

Entering the system

On the Neptun Portal, click on the Student icon to enter. Then choose the server you wish to use. Enter the Neptun code (ID) and the password on the window which appears.

Once you enter you can choose from the following data groups at the top of the page:
Personal data, Studies, Subjects, Exams, Finances, Information, Administration

Upon entering the Neptun.Net system, students have to perform the following operations during a term:
Registration
Subject registration
Exam registration
Registration

You can access the registration function in the “Administration” menu. Here you can register for the next term by clicking on the link “Registration”. On the page “Registration requests”, when clicking on “New” in the status column of the current semester, a window is displayed where you have to declare whether you choose to register with an “Active” or a “Passive” status. After you have chosen the appropriate option, click on the button “I declare”. (Such registration is only available if Registration period is displayed under “Periods” in the “Information” menu! If you have not chosen any course for the semester yet, but you intend to register with an “Active” status, the program will ask you to make sure whether you really want to continue the registration process. If you choose the option “no” at this stage, this means that registration will not be completed, and before you do so, you can take up your courses. If you choose “OK”, you can continue registration. Naturally, you are free to take up courses afterwards.)

Subject registration (choosing subjects, choosing courses)

Choose the link “Subject registration” in the “Subjects” menu.

1. Displaying the list of subjects: Select the appropriate semester (e.g. 2022/23/1) and the curriculum, then select “Subject list of the chosen curriculum” under “Subject type” to display obligatory and elective subjects. The option “Other elective subjects” may be used if the institution concerned manages its elective subjects separated from the curricula. If you do not find any subject in this list, this only means that at your institution these elective subjects are also integrated into the curricula. In this case, you should choose the option “Subject list of the chosen curriculum” at this question. By ticking “Show only those subjects that will be launched” you can make sure that only those subjects appear in the displayed subject list which will be launched in the semester selected. You can display the subject list filtered according to the conditions set by clicking on the “List subjects” button.

2. Display, search and ordering options in the subject list: On the top of the list you can set the number of subjects to be displayed on one page. If the list is longer than one page, you can use the two-way arrows on the top of the list or the drop-down menu to turn pages. By clicking on the printer icon, you can print the page displayed. When you find the subject required, click on any detail and all details of the selected subject will be displayed in a pop-up window.

3. Subject details / Current courses tab: Here you can see the courses launched in the given semester for the selected subject. You can now choose the subject and its course or courses. You can choose the courses by marking the checkbox on the right of the course list, then confirm your choice by clicking on “Save” at the bottom of the page. You have to choose more than one course for the same subject if more than one course type (e.g. theoretical and practical) are announced. In this case, you need to choose one course for each course type. This is not true for exam courses which must be chosen independently in all cases, which means that you cannot choose an exam course and another course type for the same subject at the same time. Course registration will only be successful if:
 – you have fulfilled the requirements for subject and course registration,
 – none of the courses selected is booked out (in the students/limit column the number of students is under the limit),
 – you have selected one course for each course type (e.g. theoretical, practical),
 – it is preliminary or final subject and course registration period,
 – you have not completed the subject so far.

For more information on a given course, click on any detail of the given course in the list to display the course information in a new pop-up window.

4. Deregistering subjects: If for any reason you would like to drop a chosen subject, you can do so under “Registered subjects” in the “Subjects” menu. On this page you can see the subjects you have chosen in the current registration period; you can change courses or deregister subjects here. If in any subject line you click on “Deregister subject”, the system will first ask whether you really want to drop the given subject and if you answer yes, the subject will be dropped and deleted from the list of registered subjects. Naturally, this means that your registration for the courses of the deregistered subjects is also deleted and you will be informed of this. (Subject deregistration is possible during the preliminary or final subject or course registration period.)

5. Changing courses: If you want to change the course(s) you have chosen in a given subject you can do this by clicking on any detail of the given subject to display the pop-up window “Subject details”. Here on the “Current courses” tab in the last column of the list you have to select the course(s) required and unmark the course(s) to be dropped, then confirm the change by clicking on the „Save” button. The system will report on the change or the reasons for potential errors.
Exam registration

You can find “Exam registration” in the “Exams” menu. On this page you can register for exams or cancel your registration. In the exam list, exams which you have already registered for will appear in blue. To cancel an exam registration, go to the „Selected exams” menu.

1. **List exams**: On entering the page for the first time all future exam dates announced in the current semester will appear, but you can filter the list. If you only want to see the exam dates of a given subject, select the subject from the “Subjects” roll-down menu, then click on the button “List exams”.

2. **Exam registration**: To register for an exam, click on “Register” in the line of the given date. The program will report on the success or failure of exam registration.

3. **Cancelling exam registration**: If you register for an exam by mistake or you simply change your mind and want to cancel your registration, click on „Cancel” next to the given exam. (Normally this can be done prior to the exam within the cancellation deadline.)

4. **Payment of retake exam fee**: By clicking on “Payment” under “Finances”, you will be taken to the page where the list of settled and payable items is displayed. Here you can also fulfill your financial obligations. On the “Payment” tab, click on the “Transcribe item” button and on the appearing “Transcribe item” window, enter the payment title (retake exam), then select the subject for which you would like to transcribe the exam fee from the roll-down list. Finally, click on the „Create item” button. You can take over the invoice of the item created in the Dean’s Office. To list current items, select the current semester using the “Semester” roll-down menu under “Filters” on the 1.) „List items” tab. (Items you have displayed are marked as “Own item” in the “Status” column.) To view the details of a given item, click on “Details” in the line of the item concerned.

Message management

During term time, students may receive messages on various topics. This menu can be found on the left-hand side of the page. Here you can see the messages sent to the student by the Dean’s Office clerk in charge of his/her year or the instructor of a chosen course. You can view the text of the message on a new window by clicking on the required topic in the list of messages.

The NEPTUN system assists students and university employees in the accurate and effective performance of administrative tasks related to their studies. **In order to ensure faultless operation, it is indispensable that authority rules are complied with and that accurate data is provided. Therefore, please note that data changes or wrong data must be corrected within 8 days using „Modify data”**.
THE DEPARTMENTS OF SEMMELWEIS UNIVERSITY

Semmelweis University, Faculty of Medicine

Department of Anatomy, Histology and Embryology
1094 Budapest IX., Tűzoltó u. 58.
Phone: 215-6920 ext 53601 Dr. Székely
53652 Dr. Csáki (Pharm.)
Head of the Department: Prof. Dr. Alán Alpár

Department of Biophysics and Radiation Biology
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 267-6261 ext 60211 Dr. Voszka, 60220
Head of the Department: Prof. Dr. Miklós Kellermayer

Department of Genetics, Cell- and Immunobiology
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2940 ext 56234 Dr. Holub, 56251 Dr. Láng,
56502 Dr. Semsei
Head of the Department: Prof. Dr. Edit Buzás

Department of Pharmacology and Pharmacotherapy
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2930 ext 56267 Dr. Riba, 56337 Dr. Kató
Head of the Department: Prof. Dr. Péter Ferdinandy

Department of Forensic Medicine
1091 Budapest IX., Üllői út 93.
Phone: 215-7300 ext 53467 Dr. Almádi
Head of the Department: Dr. András Kiss

Department of Biochemistry
1094 Budapest IX., Tűzoltó u. 37-47.
Phone:+36-1-4591500 ext 60024, 60022, 60023
Dr. Chinopoulos; 60066 Dr. Tóth
Head of the Department: Prof. Dr. László Csanády

Department of Molecular Biology
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 266-2615 ext 60132 Dr. Keszler
Head of the Department: Prof. Dr. Miklós Csala

Department of Physiology
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 266-9180 ext 60439 Dr. Várnai, 60450 Dr. Balla
Head of the Department: Prof. Dr. László Hunyady

Department of Translational Medicine
1094 Budapest IX., Tűzoltó u. 37-47.
Phone: 210-0306, 459-1500/60300
Head of the Department: Prof. Dr. Zoltán Benyó

Institute of Public Health
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2930 ext 56184 Dr. Horváth
Head of the Institute: Prof. Dr. Zoltán István Ungvári

Institute of Behavioral Sciences
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2930 ext 56126 Motyovszki
Head of the Institute: Dr. György Purebl

Institute of Medical Microbiology
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-2959 ext 56320 Dr. Ghidán,
Head of the Institute: Prof. Dr. Dóra Szabó

I. Department of Pathology and Experimental Cancer Research
1085 Budapest VIII., Üllői út 26.
Phone: 266-1638 ext 54465 Dr. Nagy, ext 54425 Dr. Rác
Head of the Department: Prof. Dr. András Matolcsy

Department of Pathology, Forensic and Insurance Medicine
1091 Budapest IX., Üllői út 93.
Phone: 215-7300 ext 53460 Dr. Kenedy
Head of the Department: Prof. Dr. András Kiss

Department of Anesthesiology and Intensive Therapy
1082 Budapest VIII., Üllői út 78/B.
B-part of the building, 4th floor
Phone: 355-6565, 325-1100; ext 62062 Dr. Vass, Dr. Kállai, Dr.
Gyöngyösi
Head of the Department: Prof. Dr. János Gál

Department of Internal Medicine and Oncology (BOK)
1083 Budapest VIII., Korányi Sándor u. 2/A
Phone: 459-1500 ext 51526 Dr. Studinger
Head of the Department: Prof. Dr. István Takács

Department of Internal Medicine and Hematology (BHK)
1088 Budapest VIII., Szentkirályi u. 46.
Phone: 375-4364; Dr. Keltai
Head of the Department: Prof. Dr. Tamás Masszi

Department of Dermatology, Dermatooncology and Venerology
1085 Budapest VIII., Máriá u. 41.
Phone: 266-0465 Dr. Lőrincz (Med.), ext 55776
Dr. Hidvégi (Dent.)
Head of the Department: Prof. Dr. Péter Holló
Department of Family Medicine
1085 Budapest VIII., Stáhly Ignác u. 9. floor 5.
Phone: 214-0841 Dr. Becze
Head of the Department: Dr. Péter Torzsa

Department of Oncology – National Institute of Oncology
1122 Budapest XII., Ráth György u. 7-9.
Phone: 224-8600 ext 3186, 1143 Dr. Ágoston
Head of the Department: Prof. Dr. Csaba Polgár

Department of Otorhinolaryngology, Head and Neck Surgery
1083 Budapest VIII., Szigony u. 36.
Phone: 334-2384 ext 52350 Dr. Bencsik
Head of the Department: Prof. Dr. László Tamás

I. Department of Pediatrics
1083 Budapest VIII., Bókay J. u. 53-54.
Phone: 334-3186 Dr. Balogh, ext 52631 Dr. Krikovszky
Head of Department: Prof. Dr. Attila Szabó

II. Department of Pediatrics
1094 Budapest IX., Tűzoltó. u. 7-9.
Phone: 215-1380, ext 52976; 52861, 52965 Dr. Erdélyi,
Dr. Bánsági, Dr. Müller, Dr. Horváth, Dr. Szarvas,
52966 Dr. Gács
Head of the Department: Prof. Dr. Gábor Kovács

Heart and Vascular Centre
Városmajor Street Building
1122 Budapest XII., Városmajor. u. 68.
Phone: 458-6847; 458-6810 Dr. Bárczi
Head of the Department: Prof. Dr. Béla Merkely

Department of Neurology
1088 Budapest VIII., Balassa u. 6.
Phone: 210-0330 ext 51123 Dr. Debreczeni, Dr. Scheidl
Head of the Department: Prof. Dr. Dániel Bereczki

Department of Neurosurgery
1145 Budapest XIV., Amerikai út 57.
Phone: 467-9325; 251-2999 ext 325 Prof. Nyáry
Head of the Department: Prof. Dr. Péter Banczerowski

Department of Orthopedics
1113 Budapest XI., Karolina út 27.
Phone: 466-6611, Dr. Holnapy
Head of the Department: Prof. Dr. György Szőke

Department of Psychiatry and Psychotherapy
1083 Budapest VIII., Balassa u. 6.
Phone: 210-0330 extension 51100
Head of the Department: Prof. Dr. János Réthelyi
Tutors: Dr. Hidasi 51217, Dr. Seres, 51230 Dr. Szilvay,
51229 Dr. Unoka
Education officer: Hajnal Kiss, Tünde Szécsi 51322 (Basement room 003.)

Department of Pulmonology
1125 Budapest XII., Diósárok u. 1/C
Phone: 355-8682 ext 57055 Dr. Horváth
Head of the Department: Prof. Dr. Veronika Müller

Medical Imaging Centre
1082 Budapest VIII., Üllői út 78/A
Phone: 459-1500 ext. 61628 Dr. Kozák
Head of the Department: Dr. Pál Maurovicz-Horvat

Department of Radiology
1082 Budapest VIII., Üllői út 78/A
Phone: 459-1500 ext. 61628 Dr. Tárnoki
Head of the Department: Prof. Dr. Viktor Bérczi

Department of Surgery, Transplantation and Gastroenterology
1082 Budapest VIII., Üllői út 78.
Phone: 313-5216 ext 52120 Dr. Damján, Dr. Telkes
Head of the Department: Prof. Dr. Attila Szijártó

Department of Surgical Research and Techniques
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 459-1500 ext 56569 Dr. Szabó
Head of the Department: Dr. Andrea Ferencz

Department of Vascular and Endovascular Surgery
1122 Budapest XII., Városmajor u. 68.
Phone: 458-6700, Dr. Járányi
Head (assigned) of the Department: Prof. Dr. Péter Sótonyi

Department of Ophthalmology
1085 Budapest VIII., Mária u. 39.
Phone: 266-0513 ext. 51612 Dr. Resch
Head of the Department: Prof. Dr. Zoltán Zsolt Nagy

Department of Obstetrics and Gynecology
1088 Budapest VIII. Baross u. 27.
Phone: 266-0473 Dr. Nagy
1082 Budapest VIII., Üllői út 78/A
Phone: 313-7856
Head of the Department: Prof. Dr. Nándor Ács

Department of Transfusion Medicine
1089 Budapest VIII., Nagyvárad tér 4., 16th floor
Phone: 459-1500/56157
Appointed Head of the Department: Prof. Dr. Attila Tordai

Department of Traumatology
1081 Budapest, VIII. Fiumei út 17.
1145 Budapest, XIV., Uzsoki u. 29.
Phone: 467-3851 Dr. Berta
Head of the Department: Prof. Dr. László Hangody
Semmelweis University, Faculty of Dentistry

Department of Prosthodontics
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Dr. Márton
Head of the Department: Prof. Dr. Csaba Dobó Nagy

Independent Section of Radiology
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 459-1500 ext 59322 Prof. Márton
Head of the Department: Prof. Dr. Csaba Dobó Nagy

Department of Pedodontics and Orthodontics
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Prof. Márton
Head (assigned) of the Department: Dr. Nóémi Katinka Rózsa

Department of Conservative Dentistry
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Prof. Márton, ext 59378 Dr. Lohinai
Head of the Department: Dr. János Vág

Department of Oral Biology
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-4415 ext 56310 Dr. Kerémi; 56420, Dr. Kádár
Head of the Department: Dr. Ákos Zsemberi

Institute of Digital Health Sciences
1089 Budapest VIII., Ferenc tér 15. floor II.
Phone: 488-7620; 210-0328 Mr. Marosi
Director: Dr. Miklós Szócska

Center of Physical Education and Sport Sciences
1107 Budapest X., Zágrábi út 14.
Phone: 215-9337, 262-5529, 264-1408, 262-5529
Director: Kornélia Várszegi

Department of Oral Diagnostics
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 ext 59322 Prof. Márton
Head of the Department: Prof. Dr. Csaba Dobó Nagy

Department of Oro-Maxillofacial Surgery and Stomatology
1085 Budapest VIII., Mária u. 52.
Phone: 266-0457 ext 55866, 55867 Dr. Szűcs
Head of the Department: Dr. Zsolt Németh

Department of Periodontology
Dental Centre
1085 Budapest VIII., Szentkirályi u. 47.
Phone: 318-0011 59190 Dr. Nagy
Head of the Department: Prof. Dr. Péter Windisch

Department of General Dental Preclinical Practice
Dental Centre
1088 Budapest VIII., Szentkirályi u. 47.
Phone: 459-1472; 459-1500 ext 59112; 59322
Head and tutor of the Department: Prof. Dr. Krisztina Márton
Assistant lecturer: Dr. Anna Júlia Dézsi (tutor), Dr. Tamás Demeter Ph.D
Clinical specialist: Dr. Csilla Erdei, Dr. Zoltán Kovács,
Resident: Dr. Fanni Andrea Vass, Dr. Zsófia Vincze

Department in Community Dentistry
1085 Budapest VIII., Mikszáth Kálmán tér 5.
Phone: 317-6600, 317-2222
Head of the Department: Dr. Orsolya Németh
Semmelweis University, Faculty of Pharmaceutical Sciences

University Pharmacy, Department of Pharmacy Administration
1092 Budapest IX., Hőgyes Endre u. 9.
Phone: 476-3600 ext 53010 Dr. Mesko, 3049 Dr. Mészáros
Head of the Institute: Prof. Dr. Romána Zelkó

Institute of Pharmacognosy
1085 Budapest VIII., Üllői út 26.
Phone: 317-2979 ext 55372 Dr. Sólyomváry
Head of the Institute: Dr. Szabolcs Béni

Department of Pharmacognosy
1092 Budapest IX., Hőgyes Endre u. 7.
Phone: 476-3600 Dr. Hajdú, Dr. Antal, Prof. Marton
Head of the Department: Prof. Dr. István Antal

Department of Pharmaceutical Chemistry
1092 Budapest IX., Hőgyes Endre u. 7-9.
Phone: 476-3600; 217-0891 Prof. Takács–Novák, ext 53023
Dr. Völgyi
Head of the Institute: Dr. Péter Horváth

Department of Pharmacodynamics
1089 Budapest VIII., Nagyvárad tér 4.
Phone: 210-4411, 210-2927 ext 56108 Prof. Tekes,
56324 Prof. Szökő
Head of the Department: Dr. Tamás Tábi

Department of Organic Chemistry
1092 Budapest IX., Hőgyes Endre u. 7.
Phone: 476-3600 ext 53025 Dr. Tétényi
Head of the Institute: Dr. István Mándity

Semmelweis University, Faculty of Health Sciences

Department of Nursing
1088 Budapest, Vas u. 17., room 150
Phone: +(36-1)486-5936
Head of the Department: Zoltán Balogh RN, PT, M.Sc., Ph.D.

Department of Physiotherapy
1088 Budapest, Vas u. 17., room 305
Phone: +(36-1)486-5980
Head of the Department: Dr. Mónika Horváth Ph.D.

Section of Physical Education
1088 Budapest, Vas u. 17., room 421
Phone: +(36-)486-5850
Head of the section: Gábor Soós

Department of Dietetics and Nutrition Sciences
1088 Budapest, Vas u. 17., room 38
Phone: +(36-1)486-4820
Head of the Department: Dr. Mártá Veresné Bálint Ph.D.

Department of Oxyology and Emergency Care
1088 Budapest, Vas u. 17., room 145
Phone: +(36-1)486-5840
Head of the Department: Péter Kanizsa MD, PhD, DEAA

Department of Clinical Studies in Obstetrics and Gynaecology
1088 Budapest, Vas u. 17., room 144
Phone: +(36-1)486-4890
Head of the Department: János Rigó M.D., Ph.D., D.Sc.

Department of Family Care Methodology
1088 Budapest, Vas u. 17., room 245
Phone: +(36-1)486-4840
Head of the Department: Dr. Zsolt Kálmán Somogyvári M.D.,
MSc., Ph.D.

Department of Epidemiology
1088 Budapest, Vas u. 17., room 126
Phone: +(36-1)486-4870
Head of the Department: Dr. István Barcs CSc.

Department of Clinical Studies
1088 Budapest, Vas u. 17., room F/9
Phone: +(36-1)486-5970
Head of the Department: Dr. Klára Gadó Ph.D., M.D.

Department of Clinical Ophthalmology
1088 Budapest, Vas u. 17., room 20
Phone: +(36-1)486-5855
Head of the Department: Dr. Illés Kovács M.D., Ph.D.

Department of Imaging and Medical Instrumentation
1088 Budapest, Vas u. 17., room 348
Phone: +(36-1)486-5960
Head of the Department: Attila Doros M.D., Ph.D.

Department of Applied Psychology
1088 Budapest, Vas u. 17., room 343/A
Phone: +(36-1)486-4919
Acting Head of the Department: István Vingender Ph.D.
Department of Addictology
1088 Budapest, Vas u. 17., room 312
Phone: +(36-1)486-4919
Head of the Department: József Rácz MD, Ph.D., DSc.

Department of Morphology and Physiology
1088 Budapest, Vas u. 17., room 345
Phone: +(36-1)486-4940
Head of the Department: Gabriella Dörnyei Ph.D.

Department of Social Sciences
1088 Budapest, Vas u. 17., room 312
Phone: +(36-1)486-4910
Head of the Department: Helga Feith Ph.D.

Division of Foreign Languages and Communication – Faculty of Health Sciences
H-1088 Budapest, Vas u. 17., room 130
Phone: +(36-1) 486-4960
Alexandra Bakó
Head of the Division: Ms. Katalin Zöldi Kovács Ph.D.

Departments of Loránd Eötvös University of Natural Sciences

Department of Analytical Chemistry
1117 Budapest XI., Pázmány Péter sétány 1/A
Phone: 372-2548; 372-2500 ext 1241, 6426 Dr. Kurin-Csörgei,
Dr. Béni 439-1500/53062 ext
Fax: 372-2592
Head of the Department: Dr. István Szalai

Department of Biology, Plant Anatomy
1117 Budapest XI., Pázmány Péter sétány 1/A
Phone: 381-2179 Dr. Kovács
Head of the Department: Dr. Gábor M. Kovács

Department of Physical Chemistry
1117 Budapest XI., Pázmány Péter sétány 1/A
Phone: 372-2548 ext 1209 Dr. Turányi, 1201 Dr. Turi
Fax: 372-2592
Head of the Department: Dr. Gáspár Győző Láng

National Ambulance Service
1134 Budapest XIII., Róbert Károly krt. 77.
Phone: 350-3737, Dr. Gorove, Dr. Hornyák, Dr. Schönborn;
350-6931,
Dr. Engelbrecht; 311-9850/ ext 113
Director-General: Dr. Gábor Göbl M. D.

Division of Foreign Languages and Communication – Faculty of Health Sciences
1088 Budapest, Vas u. 17.
Phone: +(36-1) 486-4960
Head of the Division: Katalin Zöldi Kovács Ph.D.

Language Communication Center
1094 Budapest, Ferenc tér 15.
Phone/Fax: +(36-1) 215-9338; ext 53814
Director: Dr. Éva Kovács Ph.D.

EMBASSIES

To find the contact information of your Embassy in Hungary, please visit:
http://www.embassypages.com/hungary
Academic Staff

Faculty of Medicine

Department of Anatomy, Histology and Embryology

1094 Budapest, Tűzoltó utca 58.
☎: 215-6920 Fax.: 215-3064

Head of Department Prof. Dr. Alán Alpár M.D., Ph.D., D.Sc.
Full Professor

Full Professor Prof. Dr. Mihály Kálmán, Prof. Dr. Miklós Réthelyi, Prof. Dr. Ágoston Szél
Dr. Anna L. Kiss (Deputy Head, Teaching)

Professor Emeritus Prof. Dr. Imre Oláh, Prof. Dr. Miklós Palkovits, Prof. Dr. András Csillag

Associate Professor Dr. Károly Altdorfer, Dr. Ágnes Csáki
Dr. Gábor Gerber (Dean of the Dental Faculty, General Deputy Head of Department),
Dr. Andrea D. Székely (Course Director of the English Programme)

Adjunct Professor Dr. Krisztina Herberth-Minkó, Dr. Katalin Kocsis, Dr. Márk Kozsurek,
Dr. Dávid Lendvai, Dr. Ákos Lukáts, Dr. Viktória Vereczki

Assistant Professor Dr. Ildikó Bódi, Dr. Dávid Dóra, Dr. János Hanics, Dr. Sándor Katz (tutor),
Nóra Pecsenye-Fejszák, Dr. András Szuák

Advisor (retired) Dr. Katalin Gallatz, Dr. Árpád Kiss, Prof. Dr. Katalin Köves, Dr. Judith Molnár,
Dr. Ágnes Nemeskéri, Dr. György Somogyi, Dr. Géza Tótpál, Prof. Dr. Tibor Wenger

Senior Scientist Dr. Árpád Dobolyi, Dr. Zita Puskár, Dr. Zsuzsanna Tóth

Senior Research Fellow Dr. Ágota Ádám, Dr. János Barna, Dr. Szilvia Mezey, Dr. Anna Németh

Departmental fellow Mr. Tamás Balázs, Ms. Vanda Dr. Halász, Dr. Mónika Vincze

Teaching fellow Dr. András Horváth

PhD scholarship Dr. Csilla Barad, Mr. Bulcsú Dékány, Ms. Viktória Zsiros

Institute of Biophysics and Radiation Biology

1094 Budapest IX., Tűzoltó u. 37-47.
☎: 267-6261

Head of the Department: Prof. Dr. Miklós Kellermayer M.D., Ph.D., D.Sc.
Professor Emerita: Prof. Dr. Judit Fidy
Associate professor: Dr. Andrea Fekete, Dr. Katalin Blaskó, Dr. Gabriella Csík, Dr. Levente Herényi,
Dr. Károly Módos (tutor), Dr. István Voszka (tutor), Dr. Erika Balog
Assistant professor: Dr. Irén Nagy, Dr. Szabolcs Osváth
Department of Genetics, Cell- and Immunobiology

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2940, 210-2929

Head of the Department: Prof. Dr. Edit Buzás M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. András Falus, Prof. Dr. Csaba Szalai
Professor Emeritus: Prof. Dr. György Csaba
Associate professor: Dr. Zsuzsanna Darvas, Dr. András K.Fülöp, Dr. László Kőhidai, Dr. György Nagy, Dr. Erna Pap, Dr. Éva Pállinger, Dr. Sára Tóth
Assistant professor: Dr. Marianna Holub (tutor of Immunology), Dr. Orsolya Láng (tutor of Biology and Medical Biology- Cell Biology), Dr. Zoltán Pós, Dr. Viola Tamási, Dr. Zoltán Wiener
Assistant lecturer: Dr. F. Ágnes Semsei (tutor of Genetics and genomics), Dr. Katalin Szabó-Taylor
Research fellow: Dr. Eszter Lajkó, Dr. Barbara Molnár-Érsek, V. Krisztina Vukman
Research assistant: András Gézsi,iko Lupsa, Xabier Osteikoetxea

Department of Pharmacology and Pharmacotherapy

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-2930, 210-4416

Head of the Department: Prof. Dr. Péter Ferdinandy M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. Sándor Kerpel-Fronius
Professor Emerita: Prof. Dr. Zsuzsanna Fürst, Prof. Dr. Valéria Kecskeméti, Prof. Dr. Klára Gyires
Associate professor: Dr. Júlia Tímár, Dr. László Köles, Dr. Pál Riba (tutor)
Assistant professor: Dr. Zsuzsanna Gyarmati, Dr. András Rónai, Dr. Erzsébet Kató (tutor)
Assistant lecturer: Dr. Andrea Szebeni

Department of Forensic Medicine

1091 Budapest, IX. Úllói út 93.
☎: 218-0437, 215-7300

Head of the Department: Dr. Klára Törő Ph.D.
Full professor: Prof. Dr. Éva Keller
Assistant lecturer: Dr. János Bokor
Forensic Medical Specialist: Dr. Zsófia Almádi (tutor)
Department of Biochemistry

1094 Budapest, IX. Tűzoltó u. 37-47.
☎ +36-1-2662773 +36-1-459-1500/60010 +36-1-4591500#60010
http://semmelweis.hu/biokemia/en/

Head of the department: Prof. Dr. László Csanády M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. László Tretter M.D., Ph.D., D.Sc.
Prof. Dr. Kraszimir Kolev M.D., Ph.D., D.Sc.
Professor Emerita: Prof. Dr. Veronika Ádám M.D., Ph.D., D.Sc.
Member of the Hungarian Academy of Sciences
Associate professor: Dr. Christos Chinopoulos (tutor), Dr. Attila Ambrus
Consultant: Dr. Pál Bauer, Prof. Raymund Machovich M.D., Ph.D., D.Sc., Dr. György Szabados
Senior lecturer: Dr. Judit Bak, Dr. Erzsébet Komorowicz, Dr. Beáta Törőcsik
Assistant lecturer: Dr. Katalin Bartha
Research fellow: Dr. Judit Dóczi
Assistant research fellow: Dr. Em Ben Sorum
Pharmacist: Dr. Erzsébet Tóth (course coordinator of the first year dentistry students
and of pharmacy students)

Department of Molecular Biology

1094 Budapest IX., Tűzoltó u. 37-47.
☎: 266-2615

Head of the department: Prof. Dr. Miklós Csala M.D., Ph.D., D.S.
Deputy Head of the Department: Dr. Zsolt Rónai
Full professor: Prof. Dr. László Buday, Prof. Dr. Péter Csermely
Professor Emeritus: Prof. Dr. József Mandl
Associate professor: Dr. Csaba Barta, Dr. Tamás Kardon, Dr. Éva Kereszturi, Dr. Gergely Keszler,
Dr. Zoltán Kukor, Dr. Orsolya Mészáros-Kapuy, Dr. Mamás Mészáros,
Dr. Szabolcs Sipeki, Dr. Csaba Söti, Dr. Viola Tamsi
Department of Physiology
1094 Budapest IX., Tűzoltó u. 37-47.
☎ 266-9180

Head of the Department: Prof. Dr. László Hunyady M.D, Ph.D., D.Sc.
Full professor: Prof. Dr. Péter Enyedi, Prof. Dr. Péter Vármai (course director),
Prof. Dr. Attila Mócsai, Prof. Dr. Miklós Geiszt
Professor Emerita: Prof. Dr. Erzsébet Ligeti
Professor Emeritus: Prof. Dr. András Spät, Prof. Dr. Attila Fonyó, Prof. Dr. Márk Kollai
Associate professor: Dr. Gábor Czirják, Dr. András Eke, Dr. György Nádasy, Dr. András Balla (tutor),
Dr. Zoltán Jakus
Assistant professor: Dr. Eszter Horváth, Dr. Dávid Győri, Dr. Csaba Tímár, Dr. Krisztina Futosi,
Dr. Rita Benkő, Dr. Roland Csépányi-Kőmi, Dr. Levente Kiss
Assistant lecturer: Dr. Dániel Csete, Dr. Hajnal Kovács, Dr. Gergő Szanda, Dr. Péter Mukli,
Dr. Domonkos Cseh

Department of Translational Medicine
1094 Budapest, IX. Tűzoltó u. 37-47.
☎ 210-0306, 459-1500/60300

Head of the Department: Prof. Dr. Zoltán Benyó M.D, Ph.D., D.Sc.
Full professor: Prof. Dr. Péter Sándor,
Professor Emeritus: Prof. Dr. Márk Kollai
Associate professor: Dr. András Eke, Dr. György Nádasy, Dr. Tamás Ivanics, Dr. Zsuzsanna Miklós (tutor)
Assistant professor: Dr. Kornélia Ikrényi
Assistant lecturer: Dr. Levente Kiss, Dr. Eszter Mária Horváth,
Dr. Tamás Horváth

Net division:

Full professor: Dr. Péter Hamar
Professor Emeritus: Prof. Dr. Lajos Szollár, Prof. Dr. László Rosivall, Prof. Dr. Ákos Koller
Associate professor: Dr. Miklós Molnár (tutor), Dr. Miklós Mózes
Assistant professor: Dr. László Tornóci
Assistant lecturer: Dr. Tünde Kriston
Institute of Public Health

1089 Budapest, VIII. Nagyvárad tér 4.
📞: 210-2930
Homepage: www.kozegeszseg.sote.hu

Head of the Department: **Prof. Dr. Zoltán István Ungvári** M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. Tamás Simon, Prof. Dr. Anna Tompa
Professor Emeritus: Prof. Dr. Károly Cseh
Associate professor: Dr. Judit Forrai, Dr. Péter Jakabfi, Dr. József Ongrády, Dr. György Purebl
Assistant professor: Dr. Eleonóra Leffelholcz, Dr. Miklós Lelkes
Assistant lecturer: Dr. Katalin Antmann, Dr. András Terebessy, Dr. Bence Komáromi T., Dr. Ferenc Horváth (tutor)

Institute of Behavioral Sciences

1089 Budapest, VIII. Nagyvárad tér 4.
📞: 210-2930; 210-2953 Fax: 210-2955

Head of the Department: **Dr. György Purebl** M.D., Ph.D.
Full professor: Prof. Dr. Ferenc Túry, Deputy Director, Prof. Dr. József Kovács
Associate professor: Dr. Adrienne Stauder, Dr. Zsuzsa Szántó (tutor), Dr. Imre Szebik, Dr. János Kollár
Assistant professor: Dr. Bernadett Babusa, Dr. Jenő Lőrincz, Dr. Gyöngyvér Salavec, Dr. Orsolya Péter, Dr. Péter Ujma
Assistant lecturer: Ágnes Mezei, Dr. László Lajtai, Tamás Szalai, Dr Mónika Tóth
Head of Secretariat: Jozefa Barreto (tutor)

Institute of Medical Microbiology

1089 Budapest, VIII. Nagyvárad tér 4.
📞: 210-2959, 210-2930, 210-2940

Head of the Department: **Prof. Dr. Dóra Szabó** M.D., Ph.D.
Full professor: Prof. Dr. Károly Nagy, Prof. Dr. Ferenc Rozgonyi
Professor Emerita: Prof. Dr. Piroska Anderlik, Prof. Dr. Éva Ádám
Associate professor: Dr. Miklós Füzi, Dr. Csaba Jeney
Clinical chief doctor: Dr. Zsuzsanna Berek
Scientific advisor: Dr. Zsuzsanna Csukás, Dr. Zsuzsanna Bános
Assistant professor: Dr. Orsolya Dobay (tutor for Pharmacy)
Assistant professor: Dr. Csaba Maródi, Dr. Irén Budai, Dr. Katalin Kristóf
Assistant lecturer: Dr. Ágoston Ghidán (tutor for Medicine and Dentistry)
I. Department of Pathology and Experimental Cancer Research
1085 Budapest, VIII. Úllői út 26.
☎: 459-1500, 266-1638

Head of the Department: Prof. Dr. András Matolcsy M.D., Ph.D, D.Sc.
Full professor: Prof. Dr. Ilona Kovalszky, Prof. Dr. Péter Nagy, Prof. Dr. Zoltán Sápi
Professor Emeritus: Prof. Dr. Károly Lapis, Prof. Dr. Béla Szende, Prof. Dr. András Jeney, Prof. Dr. László Kopper
Associate professor: Dr. Attila Zalatnai, Dr. Judit Pápay, Dr. Lilla Reiniger, Dr. Gergely Rácz (tutor)
Assistant professor: Dr. Ágota Szepesi, Dr. Beáta Hargitai, Dr. Botond Tímár
Assistant lecturer: Dr. Anita Mohos, Dr. Balázs Csernus, Dr. Eszter Tutányi, Dr. László Fónyad
Resident: Dr. Beáta Nagy (tutor)

II. Department of Pathology
1091 Budapest, IX. Úllői út 93.
☎: 215-7300

Head of the Department: Prof. Dr. András Kiss M.D., Ph.D., D.Sc.
Full Professor: Prof. Dr. Janina Kulka
Professor Emeritus: Prof. Dr. József Tímár
Professor Emerita: Prof. Dr. Anna Kádár, Prof. Dr. Zsuzsa Schaff
Scientific advisor: Prof. Dr. Tibor Kerényi, Dr. Margit Kovács
Associate professor: Dr. György Illyés, Dr. Tibor Glasz
Assistant professor: Dr. Balázs Járay, Dr. Eszter Székely, Dr. István Kenessey (tutor), Dr. Lilla Madaras
Assistant lecturer: Dr. Hajnalka Györfy, Dr. Magdolna Kardos,

Department of Anesthesiology and Intensive Therapy
1082 Budapest, VIII. Úllői út 78. B-part of the building, 4th floor
☎: 355-6565, 325-1100

Head of the Department: Prof. Dr. János Gál M.D., Ph.D., D.Sc.
Associate professor: Dr. Balázs Hauser, Dr. Csaba Hermann, Dr. Krisztina Madách
Assistant professor: Dr. Gábor Élö, Dr. András Lorx
Assistant lecturer: Dr. András Kállai (tutor)
Clinical specialist: Dr. Melinda Kis-Tamás
Resident: Dr. Ádám Gyöngyösi (Tutor)
Clinical chief doctor: Dr. Péter Vass (tutor of Oxyology at the Division of Emergency Medicine and Oxyology)
Education coordinator: Borbála Kozma
Department of Internal Medicine and Oncology (BOK)

1083 Budapest, VIII. Korányi S. utca 2/A.
☎: 459-1500 ext 51526

Head of the Department: **Prof. Dr. István Takács** M.D., Ph.D.
Professor Emeritus: Prof. Dr. Ferenc Szalay, Prof. Dr. László Gerő
Full professor: Prof. Dr. János Papp, Prof. Dr. Gyula Tamás, Prof. Dr. Péter Kempler, Prof. Dr. Judit Demeter, Prof. Dr. Csaba Horváth, Prof. Dr. Miklós Szathmári
Associate professor: Dr. Margit Abonyi, Dr. István Barna, Dr.andrás Tisler, Dr. Péter Lakatos, Dr. Ádám Gy. Tabák
Assistant professor: Dr. Gabriella Győri, Dr. Erika Márton, Dr. Fatima Varga, Dr. András Váradi
Assistant lecturer: Dr. Péter Studinger (tutor), Dr. Zsolt Hermányi, Dr. Péter Fuszek, Dr. Katalin Keresztes, Dr. Zsolt Nagy, Dr. Gábor Speer

Department of Internal Medicine and Hematology (BHK)

1088 Budapest, VIII. Szentkirályi u. 46.
☎: 375-4364

Head of the Department: **Prof. Dr. Tamás Masszi** M.D., M.Sc., Ph.D., D.Sc.
Full professor: Prof. Dr. Miklós Tóth
Professor Emerita, Professor Emeritus: Prof. Dr. Edit Gláz, Prof. Dr. Zsolt Tulassy, Prof. Dr. Anikó Somogyi, Dr. Pál Géher, Dr. István Karádi, Dr. Pál Pánczél
Associate professor: Dr. László Kónya, Dr. Györgyi Műzes, Dr. László Herszényi, Dr. Katalin Keltai (tutor), Dr. Gábor Békési, Dr. Gabriella Lengyel
Assistant professor: Dr. Márk Juhász, Dr. Pál Miheller

Department of Dermatology, Dermatooncology and Venerology

1085 Budapest, VIII. Mária u. 41.
☎: 266-0465

Head of the Department: **Prof. Dr. M.D., Ph.D., Péter Holló**
Deputy Head of the Department: Dr. M.D., Ph.D. Bernadett Hidvégi (tutor)
Full professor: Prof. Dr. Gyöngyvér Soós, Prof. Dr. Márta Marschalkó, Prof. Dr. Norbert Wikonkál, Prof. Dr. Miklós Sárdy
Professor Emerita: Prof. Dr. Sarolta Kárpáti
Professor Emeritus: Prof. Dr. Attila Horváth
Associate professor: Dr. Györgyi Pónyai, Dr. Márta Medvecz, Dr. Bernadett Hidvégi
Assistant professor: Dr. Krisztina Becker, Dr. Kende Lőrincz (tutor), Dr. Klaudia Preisz, Dr. Veronika Tóth, Dr. András Bánvölgyi, Dr. Anna Görög, Dr. Adrienn Poór, Dr. Béla Tóth, Dr. Béla Tamási
Assistant lecturer: Dr. Melinda Fábián, Dr. Alexandra Brunner, Dr. Nóra Gyöngyösi, Dr. Norbert Kiss, Dr. Daniella Kuzmanovszki, Dr. Adrea Lukács, Dr. Nardainé Dr. Eleonóra Imrédi, Dr. Pálma Silló

Clinical chief doctor: Dr. Gyula Bottlik, Dr. Judit Hársing, Dr. József Szakonyi, Dr. Klára Szalai, Dr. Ágnes Szigeti

Clinical doctor: Dr. Kincső Blága, Dr. Dóra Faluhelyi, Dr. Hunor Gergely, Dr. Tünde Kerner, Dr. Anikó Kovács, Dr. Noémi Mihalik, Dr. Klára Szalai

Department of Family Medicine

1085 Budapest, VIII. Stáhly Ignác u. 9. floor 5.

Head of the Department: **Dr. Péter Torzsa** M.D., Ph.D.
Assistant professor: Dr. Ádám Becze (tutor)

Department of Oncology – National Institute of Oncology

1122 Budapest, XII. Ráth György u. 7-9.

Head of the Department: **Prof. Dr. Csaba Polgár** M.D., Ph.D., M.Sc.
Assistant professor: Dr. Péter Ágoston (tutor)

Department of Otorhinolaryngology, Head and Neck Surgery

1083 Budapest, VIII. Szigony u.36.

Head of the Department: **Prof. Dr. László Tamás** M.D., Ph.D
Full professor: Prof. Dr. Gábor Répássy
Associate professor: Dr. Marianna Küstel, Dr. Ágnes Szirmai, Dr. Gábor Polony
Assistant professor: Dr. Zoltán Fent, Dr. Beáta Bencsik (tutor), Dr. Magdolna Szőnyi, Dr. Balázs Szabó, Dr. Helga Kraxner, Dr. Anita Gáborján
I. Department of Pediatrics

1083 Budapest, VIII. Bókay János u. 53–54.
☎: +36-1-313-8212

training coordinator: Dr. Dóra Krikovszky, Dr. Ádám Balogh
Study administration: education.ped1@med.semmelweis-univ.hu, ☎: 52656
Office hours: Monday, Wednesday, 10 am-12 am, Tuesday, Thursday, 1 pm-3 pm, Friday: closed

Head of the Department: Prof. Dr. Attila Szabó M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. András Arató, Prof. Dr. Reusz György
Professor Emeritus: Prof. Dr. Tamás Machay, Prof. Dr. Tivadar Tulassay,
Prof. Dr. Tibor Verebély
Associate professor: Dr. Anna Körner, Dr. Antal Dezsőfi, Dr. Zita Halász, Dr. Bea Pászthy,
Dr. Miklós Szabó, Dr. Andrea Luczay, Dr. Péter Tóth-Heyn,
Dr. Lídia Balogh, Dr. Andrea Fekete, Dr. Kálmán Tory
Assistant professor: Dr. Zsuzsanna Antal, Dr. János Bókay, Dr. Géza Miklós Bokodi,
Dr. Áron Cseh, Dr. Ágnes Jermendy, Dr. Attila Kálmán, Dr. Péter Sallay,
Dr. Dóra Krikovszky (tutor), Dr. Csaba Lódi, Dr. István Mátyus,
Dr. Lilla Szeifert, Dr. Ádám Balogh (tutor), Dr. Péter Balázs Vörös,
Dr. Petra Zsidegh

II. Department of Pediatrics

1094 Budapest, IX. Tűzoltó u. 7-9.
☎: 218-6844, 215-1380

Head of the Department: Prof. Dr. Gábor Kovács M.D., Ph.D.
Full professor: Prof. Dr. Rozália Kálmánchey, Prof. Dr. János Sólyom
Professor Emeritus: Prof. Dr. Dezső Schuler, Prof. Dr. György Fekete
Associate professor: Dr. Tamás Szamosi, Dr. Erika Tomsits, Dr. Miklós Garami, Dr. Mónika Csóka,
Dr. Péter Hauser, Dr. Judit Müller (tutor), Dr. Dániel Erdélyi (tutor),
Assistant professor: Dr. Mária Ablonczy, Dr. Zita Halász, Dr. Margit Pataki, Dr. Veronika Kovács
Assistant lecturer: Dr. Noémi Csoszánszki, Dr. Gabriella Filiczki, Dr. Zoltán Jenővári,
Dr. László Jókúti, Dr. Zoltán Karádi, Dr. Andrea Luczay, Dr. Gergely Sárközi,
Dr. Edit Varga, Dr. Andrea Tölgyesi, Dr. Tamás Bense, Dr. András Kelecsényi,
Dr. Boglárka Bánsági (tutor)
Clinical Specialist: Dr. Zsófia Gács (tutor of Dentistry)
Heart and Vascular Centre
Városmajor Street Building

1122 Budapest, XII. Városmajor u. 68.
☎: +36-1-458-6847; +36-1-458-6810 Fax: +36-1-458-6818
E-mail: cvc.oktatas@gmail.com

<table>
<thead>
<tr>
<th>Head of the Department:</th>
<th>Prof. Dr. Béla Merkely M.D., Ph.D., D.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Emeritus:</td>
<td>Károly Lozsádi M.D., Dr. Mátyás Keltai M.D., Ph.D.</td>
</tr>
<tr>
<td>Full professor:</td>
<td>Ferenc Horkay M.D., Ph.D., D.Sc., István Préda M.D., Ph.D., László Gellér M.D., Ph.D.</td>
</tr>
<tr>
<td>Associate professor:</td>
<td>Dr. Dávid Becker, Endre Zima M.D., Ph.D., Orsolya Kiss M.D., Ph.D., Andrea Szűcs M.D., Ph.D.</td>
</tr>
<tr>
<td>Assistant professor:</td>
<td>Margit György M.D.</td>
</tr>
<tr>
<td>Assistant lecturer:</td>
<td>Astrid Apor M.D., György Bárcz M.D. (tutor), Gábor Fülöp M.D., Zoltán Jambrik M.D., Levente Molnár M.D., Dóra Paprika M.D., György Szabó M.D.</td>
</tr>
<tr>
<td>Clinical fellow:</td>
<td>Elektra Bartha M.D. (consultant), Krisztina Hosszú M.D., Ibolya Marozsán M.D. (consultant), Andrea Nagy M.D., Attila Róka M.D., Pál Soós M.D., Ph.D., Boglárka Szabó M.D., Zsolt Szélid M.D., Szabolcs Szilágyi M.D., Gábor Szűcs M.D., Hajnalka Vágó M.D., Ph.D., Vince Wagner M.D.</td>
</tr>
<tr>
<td>Scientific advisor:</td>
<td>Miklós Tóth M.D., Ph.D., D.Sc., Péter Vargha</td>
</tr>
<tr>
<td>PhD students:</td>
<td>Balázs Berta M.D., Pál Maurovich Horvat M.D., Valentina Kutyiha M.D., Gabriella Veress M.D.</td>
</tr>
</tbody>
</table>

Department of Neurology

1083 Budapest, VIII. Balassa u. 6.
☎: 210-0330, 210-0337

<table>
<thead>
<tr>
<th>Head of the Department:</th>
<th>Prof. Dr. Dániel Bereczki M.D., Ph.D., D.Sc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full professor:</td>
<td>Prof. Dr. Anita Kamondi, Prof. Dr. Mária Judit Molnár, Dr. Zsuzsanna Arányi</td>
</tr>
<tr>
<td>Professor Emeritus:</td>
<td>Prof. Dr. Mátyás Papp</td>
</tr>
<tr>
<td>Associate professor:</td>
<td>Dr. Tibor Kovács, Dr. Csaba Ertsey</td>
</tr>
<tr>
<td>Assistant professor:</td>
<td>Dr. Róbert Debreczeni (tutor)</td>
</tr>
<tr>
<td>Assistant lecturer:</td>
<td>Dr. Sándor Ilnczky, Dr. Magdolna Simó, Dr. Ildikó Vastagh, Dr. Erika Scheidl (tutor)</td>
</tr>
</tbody>
</table>
Department of Neurosurgery

1145 Budapest, XIV. Amerikai út 57.
📞: +36 1 467 9325, +36 1 251 2999/325,
📧: +36 1 220 6471
E-mail: idegsebeszet@med.semmelweis-univ.hu
Web: https://semmelweis.hu/idegsebeszet/english/

Office secretary: Katalin Jankus
E-mail: jankus.katalin@med.semmelweis-univ.hu

Head of the Department: Prof. Péter Banczerowski, M.D., Ph.D.
Teaching staff leader: Prof. Péter Banczerowski M.D., Ph.D.
Professor Emeritus: Prof. István Nyáry M.D., Ph.D.

Background The Department of Neurosurgery was established in 1977 and is operated by the National Institute of Neurosurgery, which is a stand-alone neurosurgical hospital. It has 156 beds in its wards, which includes the only paediatric neurosurgical department in Hungary. The National Institute is the third largest neurosurgical service-provider in Europe.

Profile The Department of Neurosurgery is involved in virtually the entire spectrum of neurosurgical practice. All other specialities needed for modern neurosurgery (e.g. neuroradiology, neuroophthalmology, neurootology, electrophysiology, neuropathology and neurology) are also present, and are organised in a multidisciplinary structure. The biggest neuro-intensive care department, with separate units for paediatric cases, is maintained and operated by the Department.

Education Lectures are given on neurosurgery to medical undergraduates in Hungarian and English. Postgraduate resident training is also provided, in addition to further training courses.

Health Care Annually, around 3500 major operations are performed in five theatres, including endovascular interventions, stereotactic surgery, endoscopic and laser surgery, neuro-implantation, in addition to the so-called classical micro-neurosurgical operations. The outpatient turnover is 50,000. The Department has the highest case mix index in Hungary, indicating the most complicated cases, which makes a unique background for both undergraduate and postgraduate teaching.

Research Multidisciplinary organisations with a high patient turnover are ideal for basic and clinical research. Cerebral vascular malformations, tumours of the base of the skull, pituitary adenomas, functional neurosurgery and interventions, neurooncology, spine surgery as well as intra- and post-operative patient monitoring are the major fields of interest for the Department’s 98 staff members (of which 23 are neurosurgeons, including residents).

Department of Orthopedics

1082 Budapest, VIII. Korányi Sándor u. 2.
📞: 466-6611

Head of the Department: Prof. Dr. György Szóke M.D., Ph.D., D.Sc.
Professor Emeritus: Prof. Dr. György Bender
Full professor: Prof. Dr. Miklós Szendrői
Associate professor: Dr. Anikó Faluhelyi, Dr. József Lakatos, Dr. Ferenc Mády,
Assistant professor: Dr. Imre Antal, Dr. István Böröcz, Dr. László Sólyom, Dr. Sándor Kiss
Assistant lecturer: Dr. Zoltán Bejek, Dr. Tamás Terebessy, Dr. Géza Kordás,
Dr. Gergely Holnapy (tutor)
Department of Psychiatry and Psychotherapy

1083 Budapest, VIII. Balassa u. 6.
☎: 210-0330

Head of the Department: Prof. Dr. János Réthelyi M.D., Ph.D.
Full professor: Prof. Dr., Gábor Faludi, Prof. Dr. Dóra Perczel-Forintos
Professor Emeritus: Prof. Dr. László Tringer, Prof. Dr. István Bitter
Associate professor: Dr Brigitta Baran, Dr. Pál Czobor, Dr. Lajos Simon, Dr. Judit Tolna,
Dr. Zsolt Unoka (tutor for the fourth year),
Dr. Zoltán Hidasi (tutor for dentistry students)
Assistant professor: Dr. Gábor Csukly, Dr. Xénia Gonda, Dr. Éva Jekkel, Dr. Beatrix Mersich,
Dr. Erika Szily (tutor for the sixth year), Dr. Bálint Szuromi
Assistant lecturer: Dr. Judit Benkovits, Dr. Kinga Farkas, Dr. Máté Fullajtár, Dr. Ádám Menus,
Dr. Attila Pulay, Dr. Imola Seres (tutor for the fifth year), Dr. László Tombor
Clinical senior specialist: Dr. Éva Csibri (part time), Dr. Andrea Sárosi
Clinical specialist: Dr. Csilla Bolyós (part time), Dr. Brigitta Blancz, Dr. Péter Döme, Dr. Luca Egerváry,
Dr. Mónika Eleméry, Dr. György Freschl, Dr. Judit Lazáry, Dr. Krisztina Seregi
Clinical doctor: Dr. Lívia Balogh
Residents: Dr. Anna Báthory, Dr. Nóra Brindza, Dr. Bodnár Katalin, Dr. Klára Csizinszky,
Dr. Bálint Hajduska-Dér, Dr. Levente Hermán, Dr. Péter Oczella, Dr. Attila Simor,
Dr. Szilvia Somogyi, Dr. Ádám Ferenc Szabó, Dr. Andrea Szegő, Dr. Péter Szocsics,
Dr. Katalin Szöcs, Dr. Dominika Tóth, Dr. István Vályi-Nagy, Dr. Réka Zsigmond
Psychologist: Gabriella Kamilla Balogh, Gergely Bíró, Tamás Halmai, Eszter Tóth
External teachers with contract in the English program:
Dr. Judit Ágnes Balázs, Dr. Gábor Gazdag

Department of Pulmonology

1125 Budapest, XII. Diósárok u. 1/C.
☎: 355-8682

Head of the Department: Prof. Dr. Veronika Müller M.D., Ph.D.
Full professor: Prof. Dr. Ildikó Horváth, Prof. Dr. Lilla Tamási, Prof. Dr. György Losonczy
Professor Emeritus: Prof. Dr. Imre Hutás, Prof. Dr. Endre Vastag
Associate professor: Dr. Ákos Somoskövi, Dr. Gábor Horváth (tutor), Dr. Gabriella Gálffy,
Dr. Anikó Bohács
Assistant professor: Dr. Zoltán Bártfai, Dr. Zoltán Süttő, Dr. Klára Szondy, Dr. Erika Vajda,
Dr. Katalin Várdi Visy, Dr. András Wollák, Dr. Gabriella Zsámboki
Assistant lecturer: Dr. Judit Füzy, Dr. Ildikó Géczi, Dr. Tamás Komáromi, Dr. Csaba Máthé,
Dr. Gabriella Muraközy, Dr. Andrea Nagy, Dr. Zsuzsanna Orosz
Medical Imaging Centre
Department of Radiology
1082 Budapest, VIII. Ullői út 78/A.
☎: 459-1500 ext. 61628

Head of the Department: Prof. Dr. Viktor Bérczi M.D., Ph.D., D.Sc.
Full Professor: Prof. Dr. Kálmán Hüttl
Associate professor: Dr. Zoltán Vágvári, Dr. Zsolt Tarján, Dr. Magdolna Dank, Dr. Kinga Karlinger,
Dr. Ádám Mester, Dr. László Dávid Tárnoki (tutor), Dr. Ádám Domonkos Tárnoki
Assistant professor: Dr. Zsuzsa Dömötöri, Dr. Katalin Kiss, Dr. Géza Tóth, Dr. Klára Szalai,
Dr. László Duffek, Dr. Béla Kári, Dr. László Torgyik
Clinical chief doctor: Dr. Attila Kollár
Clinical doctor: Dr. Balázs Futácsi
Assistant lecturer: Dr. Erika Borbényi, Dr. Szabolcs Farkas, Dr. Péter Magyar, Dr. Tamás Györke,
Dr. Györgyvér Szentmártoni, Dr. Júlia Szilvási, Dr. Éva Zergényi
Senior resident: Dr. Pál Batta, Dr. Anikó Bőgér, Dr. Gábor Erdei, Dr. Ernő Frank, Dr. Ágnes Stefán,
Dr. Andrea Vágó

Department of Surgery, Transplantation and Gastroenterology
1082 Budapest, VIII. Ullői út 78.
☎: 313-5216

Head of the Department: Prof. Dr. Attila Szijártó M.D., Ph.D.
Full professor: Prof. Dr. Tibor Tihanyi, Prof. Dr. László Harsányi
Professor Emerita, Professor Emeritus: Prof. Dr. Katalin Darvas, Prof. Dr. Lajos Flautner, Prof. Dr. Péter Kupcsulik
Associate professor: Dr. Péter Kokas, Dr. István Pulay, Dr. Mária Tarjányi, Dr. Ambrus Magyar,
Dr. János Horányi, Dr. Ákos Szűcs, Dr. Krisztina Hagymási
Assistant professor: Dr. Krisztina Pinkola, Dr. Marianna Borsodi, Dr. Zsolt Csapó, Dr. Péter Lukovich
Assistant lecturer: Dr. Bálint Hargitai, Dr. András Nagy, Dr. Edina Nagy, Dr. András Papp,
Dr. László Regáli, Dr. Hedvig Sas, Dr. Péter Ónody, Dr. Gábor Telkes (tutor)

Department of Surgical Research and Techniques
1089 Budapest, VIII. Nagyvárad tér 4.
☎: 459-1500/56569 Fax: 459-1500/56574

Head of the Department: Prof. Dr. Andrea Ferencz M.D., Ph.D.
Tutor: Dr. Györgyi Szabó
Department of Vascular and Endovascular Surgery

1122 Budapest, XII. Városmajor u. 68.
☎: 458-6700 Fax: 458-6746
E-mail: titkar@erseb.sote.hu

Head of the Department: Prof. Dr. Péter Sótonyi M.D., Ph.D., D.Sc.
Professor Emeritus: Prof. Dr. László Entz
Tutor: Dr. Zsuzsanna Járányi

Department of Ophthalmology

1085 Budapest, VIII. Mária u. 39.
☎: 266-0513/54500

Head of the Department: Prof. Dr. Zoltán Zsolt Nagy M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. János Németh M.D., Ph.D., D.Sc., Prof. Dr. Gábor Holló
Associate professor: Dr. Zsuzsanna Récsán (Program Director for Dentistry), Dr. András Papp
Assistant professor: Dr. Mária Bausz, Dr. Mónika Ecsedy, Dr. Ágnes Füst, Dr. Krisztina Knézy,
 Dr. Illés Kovács (tutor for Dentistry Dr. Olga Lukáts), Dr. Anna Szamosi,
 Dr. Zsuzsanna Szepessy, Dr. Jeannette Tóth, Dr. Rita Vámos, Dr. Miklós Resch (tutor)
Assistant lecturer: Dr. György Barcsay, Dr. Béla Csákány, Dr. Judit Dohnán, Dr. Zsuzsanna Géhl,
 Dr. Péter Kóthy, Dr. Ákos Kusnyerik, Dr. Erika Maka, Dr. Otto Maneschg,
 Dr. András Schneider, Dr. Irén Szalai, Dr. Antal Szabó

Department of Obstetrics and Gynecology

1088 Budapest, VIII. Baross u. 27.
☎: 266-0473
1082 Budapest, VIII. Üllöi út 78/a.
☎: 313-7856

Head of the Department: Prof. Dr. Nándor Ács M.D., Ph.D.
Full professor: Prof. Dr. János Rigó, Prof. Dr. Attila Pajor, Prof. Dr. Ferenc Bánhidy,
 Prof. Dr. János Urbancsek, Prof. Dr. Attila Molvarec, Prof. Dr. Szabolcs Várbíró
Professor Emeritus: Prof. Dr. Sándor Csömör, Prof. Dr. Zoltán Papp
Associate professor: Dr. Zsolt Meliczer, Dr. Sándor Valent, Dr. Éva Görbe, Dr. Anna Beke,
 Dr. Csaba Papp, Dr. István Szabó, Dr. Ernő Tóth-Pál,
 Dr. Gyula Richárd Nagy (tutor), Dr. Gábor Sobel, Dr. Artúr Beke,
 Dr. Attila Bokor, Dr. Ervin Hruby
Assistant professor: Dr. Péter Somos, Dr. Ágnes Harmath, Dr. Gábor Szabó
Assistant lecturer: Dr. Réka Brubel, Dr. Noémi Csibi, Dr. Ákos Gasparics, Dr. Eszter Kovács,
 Dr. Zsófia Benkő

Department of Transfusion Medicine

1089 Budapest VIII., Nagyvárad tér 4., 16th floor
☎: 459-1500/56157

Appointed Head of the Department: Prof. Dr. Attila Tordai M.D., Ph.D., D.Sc.
Department of Medical Imaging

1082 Budapest VIII., Ullói út 78/A
📞: 210-0307

Head of the Department: Dr. Pál Maurovich-Horvat M.D., Ph.D., M.P.H.
Tutor: Dr. Lajos Kozák

Department of Traumatology

1145 Budapest, XIV., Uzsoki u. 29-41. (2nd floor, room 223)
📞: 06 1 467-3851; 06 20 825 - 8680
E-mail: trauma_office@med.semmelweis-univ.hu

Head of the Department: Prof. Dr. László Hangody M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. András Sárváry, Prof. Dr. Tibor Mózes
Professor Emeritus: Prof. Dr. István Berkes
Assistant professor: Dr. Miklós Szabó, Dr. István Baráth
Lecturer: Dr. Gergely Pánics
Clinical specialist: Dr. Wille Jörg (German coordinator), Dr. Miklós Szabó
Assistant lecturer: Dr. Tamás Gál (English coordinator), Dr. Ágnes Berta (tutor)
Administrator: Klára Seregi

Department of Urology

1082 Budapest, VIII. Üllői út 78/B.
📞: 210-0330

Head of the Department: Prof. Dr. Péter Nyirády M.D., Ph.D.
Full professor: Prof. Dr. Imre Romics, Prof. Dr. Zsolt Kelemen
Associate professor: Dr. Antal Hamvas, Dr. József Pánovics,
Dr. Attila Keszthelyi
Assistant professor: Dr. Sándor Lovász, Dr. Miklós Szűcs, Dr. Krisztina Szabó, Dr. Lajos Joós
Assistant lecturer: Dr. Stelios Mavrogenis, Dr. András Rusz, Dr. Attila Majoros, Dr. Péter Riesz,
Dr. Erzsébet Pénzes, Dr. Gergely Bánfi
Clinical doctor: Dr. András Horváth (tutor)

Department of Laboratory Medicine

1089 Budapest, VIII. Nagyvárad tér 4., floor XIV.
📞: 210-0278 / 56318

Head of the Department: Prof. Dr. Barna Vásárhelyi M.D., Ph.D., D.Sc.
Tutor: Prof. Dr. Antal Szabó Ph.D., D.Sc.
Department of Military-, Disaster- and Order Enforcement Medicine

1134 Budapest, XIII. Róbert Károly krt. 44.
☎: 465-1914; Fax: 465-1896
E-mail: katasztrofa@med.semmelweis-univ.hu

Head of the Department: Prof. Dr. János Gál
Deputy head of Department: Dr. György Orgován associate professor
Academic advisor: Prof. Dr. Péter Sótonyi rector emeritus, Dr. László Svéd
Executive of educational affairs: Dr. László Liptay
Clinical specialist: Dr. Attila Faggyas, Dr. Gábor Orosz
International affairs: Balázs Marczin
Head lecturer: Mrs. Klára Szalay Nagy

The department was founded on July 1st, 1970 (EüM 43/1969) – first under the name of Department of Military Medicine (as part of the Institution of Medical Training), then as the Institution of Military Medicine, and later as the Institution of Military and Disaster-Medicine. From 2001 it was named ÁOK (Faculty of Medicine) Department of Military and Disaster Medicine, Semmelweis University. The name has undergone further changes since July 1st, 2004 as university reorganization affected and integrated a number of sub-divisions (the former Department of Oxyology and the Department Group of Emergency Care Training) into this department. Since March 27th, 2014, by legislation of the senate (40/2014), the present name of the institution is the Department of Military-, Disaster- and Order Enforcement Medicine. It is currently located at the Medical Centre, Hungarian Defence Forces complex, where the functionality of the institution is provided by a series of separate contracts of cooperation.

PROFESSIONAL PROFILE
- Coordination, education and science-related questions regarding military and disaster medicine
- Maintaining an established and widely expanding network of local and international cooperation in the fields of military, disaster, and order enforcement medicine
- Continuing the long-running collaboration between the NATO Centre of Excellence for Military Medicine and Semmelweis University
- Contract-governed scientific collaboration between departments of the National University of Public Services and Semmelweis University
- The observing and analysing of disasters either occurring in the present or that are historically documented throughout the World - and application of the findings under Hungarian circumstances
- Establishing training programmes related to the department’s field and organising such courses for the doctors and professionals, both civilian and military-employed.
- Providing the graduate education course “The Medical Fundamentals of Disaster Resolution” in Hungarian, English and German languages
- The education of trainee specialists at both theoretical and technical levels, coordination of these projects
- Preparation of candidates for the Military-, Disaster and Order Enforcement exam
- Hosting Qualification Examinations and organising the related preparation course
Faculty of Dentistry

Department of Prosthodontics
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011

Head of the Department:
Prof. Dr. Péter Hermann D.M.D., M.Sc., Ph.D.

Associate professor:
Dr. Péter Kivovics, Dr. András Kóbor, Dr. Melinda Madléna,
Dr. Tibor Károly Fábián, Dr. Zsuzsa Szántó, Dr. Judit Borbély (tutor 1st year)

Assistant professor:
Dr. János Gerle, Dr. László Kádár, Dr. Endre Somogyi,
Dr. Katalin Károlyházy (tutor 5th year)

Assistant lecturer:
Dr. Péter Faluhelyi, Dr. Marianna Jahn, Dr. Katalin Kalocsai, Dr. Mercédesz Linninger,
Dr. Krisztina Mikulás, Dr. Zsuzsanna Tóth, Dr. Pál Sajgó, Dr. Katalin Nemes,
Dr. Dénes Palaszkó (tutor 2nd year, 3rd year 2nd semester), Dr. Ildikó Bercze (tutor),
Dr. Alexandra Czigola

Clinical specialist:
Dr. Péter Schmidt, Dr. János König (tutor)

Independent Section of Radiology

1088 Budapest, VIII. Szentkirályi u. 47.
☎: 459-1500 ext 59128

Head of the Department:
Prof. Dr. Csaba Dobó Nagy D. M. D.

Department of Pedodontics and Orthodontics

Head (assigned) of the Department:
Dr. Noémi Katinka Rózsa D.M.D., Ph.D., M.Sc.

Professor Emerita:
Prof. Dr. Ildikó Tarján

Associate professor:
Dr. Katalin Gábris, Dr. Gergely Balaton

Assistant professor:
Dr. Miklós Kaán, Dr. Ibolya Kéri

Assistant lecturer:
Dr. Mária Budai, Dr. Beáta Szádeczky, Dr. Adrienn Barta,
Dr. Attila Soós, Dr. Kinga Deseő
Department of Conservative Dentistry
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011

Head of the Department: Dr. János Vág D.M.D., Ph.D.
Professor Emeritus: Prof. Dr. Árpád Fazekas
Associate professor: Dr. Zsuzsanna Tóth, Dr. Károly Bartha, Dr. Zsolt Lohinai (tutor),
Dr. med. habil. Melinda Madléna
Assistant professor: Dr. Júlia Nemes, Dr. János Vág, Dr. Milán Gyurkovics, Dr. Enikő Szabó
Assistant lecturer: Dr. Anna Herczegh, Dr. Krisztina Árendás, Dr. Réka Fazekas, Dr. Sándor Mikó,
Dr. Andrea Demeter, Dr. Zsolt Nagy, Dr. Sarolta Pozsgay, Dr. Györgyi Szekeres,
Dr. Gergely Pataky, Dr. Edit Tóbiás, Dr. Izabella Nagy, Dr. Eszter Szalay

Department of Oral Biology
1089 Budapest, VIII. Nagyvárad tér 4.
☎: 210-4415

Head of the Department: Dr. Ákos Zsemberi Ph.D.
Full professor: Prof. Dr. Gábor Varga, Prof. Dr. György Simon
Professor Emeritus: Prof. Dr. Tivadar Zelles
Associate professor: Dr. József Blazsek, Dr. Beáta Kerémi (tutor – 2nd semester)
Assistant professor: Dr. Kristóf Kádár (tutor – 1st semester)

Department of Oral Diagnostics
1088 Budapest, VIII. Szentkirályi u. 47.
☎: 459-1500/59161, 317-1044, fax: 459-1500/59165
Email: oral@fok.usn.hu

Head of the Department: Prof. Dr. Csaba Dobó Nagy D.M.D.
Department of Oro-Maxillofacial Surgery and Stomatology
1085 Budapest, VIII. Mária u. 52.
☎: 266-0457, fax: 266-0456
Email: titkarsag.arcallcsont@dent.semmelweis-univ.hu

Head of the Department: **Dr. Zsolt Németh** D.M.D., Ph.D., med. habil.
Tutor: Dr. Attila Szűcs associate professor, Ph.D.
Full professor: Prof. Dr. Zsuzsanna Suba, Prof. Dr. József Lajos Barabás
Professor Emeritus: Prof. Dr. György Szabó, Prof. Dr. Tamás Divinyi
Associate professor: Dr. Árpád Joób-Fancsaly, Dr. Mártat Ujpál
Assistant professor: Dr. Sándor Bogdán, Dr. Tamás Huszár
Associate lecturer: Dr. Ferenc Koppány, Dr. Kinga Körmöczi, Dr. Mihály Vaszilkó
Clinical doctors: Dr. József Béla Barabás, Dr. Péter Barabás, Dr. Kinga Bérczy, Dr. Gergely Csókay,
Dr. Katalin Csurgay, Dr. Iván Decker, Dr. Fanni Sára Kálmán, Dr. György Komlós,
Dr. Zsófia Rónaszegi-Somogyi, Dr. Tatjana Skolnyik, Dr. Ilona Szmirnova,
Dr. Szonja Vingeder

Department of Periodontology
1085 Budapest, VIII. Szentkirályi u. 47.
☎: 318-0011

Head of the Department: **Prof. Dr. Péter Windisch** D.M.D., D.Sc.
Professor Emeritus: Prof. Dr. István Gera
Full professor: Dr. Ferenc Dőri
Associate professor: Dr. Bálint Molnár
Assistant professor: Dr. Attila Horváth
Assistant lecturer: Dr. Pál György Nagy (tutor)

Department of General Dental Preclinical Practice
Budapest 1088, Szentkirályi u. 47.
☎: 459-1472; 459-1500/59112; 59322

Head and tutor of the Department: **Prof. Dr. Krisztina Márton** D.M.D., Ph.D
Assistant lecturer: Dr. Anna Júlia Dézsi (tutor), Dr. Tamás Demeter Ph.D
Clinical specialist: Dr. Csilla Erdei, Dr. Zoltán Kovács,
Resident: Dr. Fanni Andrea Vass, Dr. Zsófia Vincze

Department in Community Dentistry
1085 Budapest, VIII. Mikszáth Kálmán tér 5.
☎: 317-6600, 317-2222; 60749

Head of the Department: **Dr. Orsolya Németh** D.M.D., MDSc., Ph.D.
Faculty of Pharmaceutical Sciences

University Pharmacy, Department of Pharmacy Administration
1092 Budapest, IX. Hőgyes Endre u. 9.
☎: 476-3600

Head of the Department: Prof. Dr. Romána Zelkó dr. pharm., Ph.D., D.Sc.
Full professor: Prof. Dr. Zoltán Vincze Ph.D.
Associate professor: Dr. Lajos Gergó, Dr. Balázs Hankó, Dr. Ágnes Mészáros (tutor)
Assistant professor: Dr. Mária Nikolics, Dr. Andrea Meskó (tutor), Dr. Judit Balogh
Assistant lecturer: Dr. Mónika Hantz

Institute of Pharmacognosy
☎: 266-0120, 317-2979

Head of the Department: Dr. Szabolcs Béni Ph.D.
Full professor: Prof. Dr. Anna Blázovics
Professor Emerita: Prof. Dr. Éva Szőke
Professor honorary: Prof. Dr. Ágnes Kéry
Associate professor: Dr. László Kursinszki
Assistant professor: Dr. Andrea Böszörményi
Assistant lecturer: Dr. Anna Bucsy-Sólyomváry (English coordinator), Dr. András Darcsi
Research fellow: Dr. Eszter Riethmüller

Department of Pharmaceutics
1092 Budapest, IX. Hőgyes Endre u. 7.
☎: Tel/Fax: 217-0914

Head of the Department: Prof. Dr. István Antal Ph.D.
Professor Emeritus: Dr. Imre Klebovich
Associate professor: Dr. Krisztina Ludányi
Assistant professor: Dr. Emese Bertalan-Balogh (tutor of the 3rd, 4th and 5th years),
Dr. Lívia Budai, Dr. Marianna Budai, Dr. Nikolett Kállai-Szabó, Dr. Mária Hajdú
Senior research scientist: Dr. Borbála Dalmadi-Kiss
Assistant lecturer: Dr. Viktor Fülöp, Dr. Miléna Lengyel, Dr. Nóra Mike-Kaszás,
Dr. Noémi Niczinger, Dr. Zsófia Edit Pápay

Department of Pharmaceutical Chemistry
1092 Budapest, IX. Hőgyes Endre u. 7-9.
☎: 217-0891

Head of the Department: Dr. Péter Horváth Ph.D.
Full professor: Prof. Dr. Krisztina Takács-Novák (tutor)
Emeritus Professor: Prof. Dr. Béla Noszál
Associate professor: Dr. Károly Mazák, Dr. Márta Mazák-Kraszni, Dr. László Őrfi,
Dr. Gergely Völgyi (tutor)
Assistant lecturer: Dr. Gergő Tóth
Department of Pharmacodynamics

1089 Budapest, VIII. Nagyvárad tér 4.
☎: 1445 Budapest, Pf. 370.
Secretariat ☎ 459-1500/56217, 210-4411
Email: titkarsag.gyhat@pharma.semmelweis-univ.hu
Website: http://semmelweis.hu/gyogyszerhatastan/en/

Head of Department
Dr. Tamás Tábi Ph.D.
Full Professor
Dr. Éva Szőkő

Dr. György Bagdy
Professor Emeritus
Dr. Tamás Török
Professor Emerita
Dr. Kornélia Tekes
Associate Professor
Dr. László Tóthálusi
Dr. Gabriella Juhász
Assistant Professor
Dr. Péter Petschner
Assistant Lecturer
Szilvia Kalmárné dr. Vas
Junior Research Fellow
 Nóra Eszlári
Dr. Laufer Rudolf
PhD students
Dr. Fruzsina Bagaméry
Dr. Emese Bogáthy
Dr. Andrea Edit Édes
Dr. Orsolya Geda
Dr. Papp Noémi
Dr. István Vincze
Secretary
Katalin Faragóné Szombathelyi
Finance officer
Reményi Krisztina
Technician
Györgyi Divíkiné Gúth
Ágnes Gáborházy
Ágnes Ruzsits

tabi.tamas@pharma.semmelweis-univ.hu
56324 course director
szoko.eva@pharma.semmelweis-univ.hu
459-1495, 56331, 56217
professor bagdy.gyorgy@pharma.semmelweis-univ.hu
56325
torok.tamas@pharma.semmelweis-univ.hu
56108 course director, tutor
tekes.kornelia@pharma.semmelweis-univ.hu
56413
tothalusi.laszlo@pharma.semmelweis-univ.hu
juhasz.gabriella@pharma.semmelweis-univ.hu
56323 tutor
petchner.peter@pharma.semmelweis-univ.hu
56336
vas.szilvia@pharma.semmelweis-univ.hu
56280
eszlari.nora@pharma.semmelweis-univ.hu
56229
lauderudolf@pharma.semmelweis-univ.hu
56219
bagamery.fruzsina@pharma.semmelweis-univ.hu
56336
bogathyemese@pharma.semmelweis-univ.hu
56280
edes.andrea@pharma.semmelweis-univ.hu
56219
56336
papp.noemi@pharma.semmelweis-univ.hu
56455
vincze.istvan@pharma.semmelweis-univ.hu
210-4411, 459-1500, 56217
titkarsag.gyhat@pharma.semmelweis-univ.hu
56170
remenyi.krisztina@semmelweis-univ.hu
56109
guth.gyorgyi@pharma.semmelweis-univ.hu
56109
56336
ruzsits.agnes@pharma.semmelweis-univ.hu
The Department of Pharmacodynamics at the Faculty of Pharmaceutical Sciences was founded in 1979. The Department is responsible for the teaching of three obligatory subjects: the Pharmacology and Toxicology, the Basic Medical Pathophysiology, and the Drug Therapy in the undergraduate pharmacy program. We also teach elective subject and take part in the postgraduate education of pharmacists.

The Department is located on the 8th floor of the Nagyvárad Tér building (NET) of the University, but some of our offices and laboratories can be found on the ground floor, on the 3rd floor and on the 11th floor.

Pharmacology and toxicology

This page contains information for 7th and 8th semester pharmacy students of the English Program about pharmacology and toxicology. The thought in 112 lessons of lectures and 56 lessons of practice over two semesters on the basis of internationally recognized textbooks. The mechanism of action and pharmacokinetic properties of drugs as well as their clinical indications and adverse effects are emphasized. In the toxicology part in addition to the toxic effect of various drugs, environmental toxicology and the most common acute and chronic poisonings are discussed.

Requirements: Weekly 4 lessons of lectures and 2 lessons of practice in both semesters (7th and 8th). Exams: Practical mark (2 credit points) based on 2 midterm written exams in both semesters. Oral semi-final exam (4 credit points) at the end of 7th semester. Oral final exam (4 credit points) at the end of 8th semester.

Education materials published on the MOODLE site!

Basic medical pathophysiology

This page contains information for 7th and 8th semester pharmacy students of the English Program about Basic medical pathophysiology. They are taught in 56 lessons of lectures over 2 semesters. The program is based on the special demands of pharmacy students. Pathophysiologic basis of the common disorders is discussed to help the understanding the principals of (pharmaco)therapy.

Teacher and tutor: Prof. Kornélia Tekes

Requirements: Weekly 2 lessons of lectures in both semesters (7th and 8th).

Exams: Written semi-final exam (2 credit points) at the end of 7th semester. Oral final exam (2 credit points) at the end of 8th semester.

Drug therapy

This page contains information for 9th semester pharmacy students of the English Program about Drug therapy. The subject is taught in 24 lessons and 24 lectures of practices. Evidence based pharmacotherapy of the most common disorders and the adverse effects and interactions of the used drugs are discussed. Information about the over-the-counter medications and treatment of chronic disorders are specially emphasized.

Requirements: Weekly 2 lessons of lectures and 2 lessons of practices in the 9th semester.

Exam: semi-final exam (4 credit points) at the end of 9th semester.
MTA-SE Neuropsychopharmacology and Neurochemistry Research Group

Duration of the project: 07.01.2013-06.30.2018

Link: http://semmelweis.hu/gyogyszerhatastan/mta-se-research-group/

The MTA-SE Neuropsychopharmacology and Neurochemistry Research Group supported by the Hungarian Academy of Sciences examines the different interactions of genetic and environmental factors involved in the development of depression using genomic and imaging methods.

NAP-2-SE New Antidepressant Target Research Group

Duration of the project: 2017.12.01.-2021.11.30.

Link: http://semmelweis.hu/gyogyszerhatastan/nap-2-research-groups/nap-2-se-new-antidepressant-target-research-group/

Supported by the National Research, Development and Innovation Office and as a part of the Hungarian Brain Research Program 2.0 the research group tries to identify new drug targets for the treatment of depression using genome-wide gene-environment interaction analysis (GEWIs).

The project based on the results of the previous NAP-A-SE New Antidepressant Target Research Group.

SE-NAP 2 Genetic Brain Imaging Migraine Research Group

Duration of the project: 12.01.2017. – 11.30.2021.

Supported by the National Research, Development and Innovation Office and as a part of the Hungarian Brain Research Program 2.0. the research group is investigating the neural response (brain activity) and genetics of people with migraine, tension headache and in healthy control subjects to identify biomarkers of migraine and new drug targets.

The project based on the results of the previous MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group.
Department of Organic Chemistry

Hőgyes E. u. 7, Budapest, H-1092, HUNGARY
http://semmelweis.hu/orgchem/
Secretariat phone/fax: (36-1)-2170851

Educational Secretary (English course): (36-1)-476-3600 / extension 53025
Secretary of Students’ Scientific Association: (36-1)-476-3600 / extension 53055

Director
Dr. István Mándity, associate professor, Ph.D. (extension 53055)
 mandity.istvan@pharma.semmelweis-univ.hu

Associate Professor
Dr. Gábor Krajsovszky, Ph.D. (extension 53021, 53055)
 krajsovszky.gabor@pharma.semmelweis-univ.hu
Secretary of Students’ Scientific Association
Educational Secretary (Hungarian and German course)

Vicedirector
Dr. Andrea Czompa, Ph.D. (extension 53035)
 czompa.andrea@pharma.semmelweis-univ.hu
Dr. Balázs Balogh, Ph.D. (extension 53851)
 balogh.balazs@pharma.semmelweis-univ.hu
Dr. Levente Kárpáti, Ph.D. (extension 53085)
 karpati.levente@pharma.semmelweis-univ.hu
Dr. Péter Tétényi, Ph.D. (extension 53025, 53085)
 tetenyi.peter@pharma.semmelweis-univ.hu

Assistant Professors
Dr. Andrea Czompa, Ph.D. (extension 53035)
 czompa.andrea@pharma.semmelweis-univ.hu
Dr. Balázs Balogh, Ph.D. (extension 53851)
 balogh.balazs@pharma.semmelweis-univ.hu
Dr. Levente Kárpáti, Ph.D. (extension 53085)
 karpati.levente@pharma.semmelweis-univ.hu
Dr. Péter Tétényi, Ph.D. (extension 53025, 53085)
 tetenyi.peter@pharma.semmelweis-univ.hu

Assistant Lecturers
Dr. Dóra Bogdán (extension 53018)
 bogdan.dora@pharma.semmelweis-univ.hu
Kata Antal (extension 53035, 53005)
 antal.kata@pharma.semmelweis-univ.hu
Dr. Ruth Deme, Ph.D. (extension 53038, 53005)
 deme.ruth@pharma.semmelweis-univ.hu

Engineer
Róbert Ludmerczki (extension 53028)
 ludmerczki.robert@pharma.semmelweis-univ.hu

Scientific Coworker
Dr. Klára Eszter Herke Ph.D. (extension 53028)
 herke.klara@pharma.semmelweis-univ.hu

The Department of Organic Chemistry was founded in 1957 and its first head was Prof. Ottó Clauder. The infrastructure of the Department (the students’ and tutors’ laboratories, the equipment for preparative work and the library) was gradually built up and finally a spectroscopic unit was established. In 1977, Prof. László Szabó took over as head of the Department and after it, in 1997 Dr. Ákos Kocsis was appointed as acting director. After that from 1997 Prof. Péter Mátyus was the head of the Department. Since 2016 to June 2017 Dr. Gábor Krajsovszky was the acting director. The present head of the Department is Dr. István Mándity.

In the following post the aim and structure of the teaching and research activities are summarized.

The aim of the education in organic chemistry is to create an organic chemical basis for subsequent subjects in the curriculum of students at the Faculty of Pharmaceutical Sciences. To attain this goal, besides the main lectures (112 hours in the 3rd and 4th semesters) and parallel laboratory practicals (110 hours) in organic chemistry, the Department offers a choice of a special
course to its students (Drug Syntheses, and Named Reaction in Organic Chemistry), and meanwhile, continuous enlargement of number of special courses is planned. The available methods based on Computational Chemistry and Molecular Modelling have been involved in the official education material since 1998. The teaching activities at the Department also include the introduction of selected students into research in organic and medicinal chemistry, the direction of diploma work and participation in the postgraduate (Ph.D.) education. The Department takes part in several international research and educational cooperation programmes (such as ERASMUS).

The Department additionally plays an important role in the postgraduate education of pharmacists, as organizer of the Medicinal Chemistry Programme, and offers a two-year post-graduate programme in Drug Research and Development.

The main research fields at the Department were the synthesis and chemical properties of heterocycles, including some natural products. In the last few years, important results have been achieved in the fields of synthesis strategies, including palladium-catalysed cross-coupling reactions of pyridazines and uracils, and mechanistic studies and the synthetic development of certain thermal rearrangement reactions. Another research field was at the Department involves medicinal chemistry with the design and synthesis of antiarrhythmic compounds, ligands of α-adrenoceptors and inhibitors of semicarbazide-sensitive amine-oxidase.

The Department cooperated in both research and education with several academic (e.g. the Semmelweis University Department of Pharmacodynamics, Department of Pharmacology and Phamacotherapy, Department of Ophthalmology, and II. Department of Internal Medicine; Peter Pazmany Catholic University Faculty of Information Technology, the University of Debrecen, Pécs, and Szeged; the Hungarian Academy of Sciences Chemical Research Centre; the University of Vienna, Palermo, Cagliari, Universidad de CEU San Pablo (Madrid), National University Singapore); and industrial (Richter Gedeon, EGIS, Pannonpharma) organizations.

The main research profiles in the Department are involving primarily – preserving the departmental traditions at least partially – heterocyclic syntheses, preparation of compounds with chloride ion transporter effect, peptide chemistry, chemistry of bifunctional compounds, introduction of processes of „green chemistry” (such as use of solvents carbon dioxide neutral, elaboration of organic chemical reactions taking place in water, application of continuous-flow chemical technologies). The research work is facilitated by separation, spectroscopic and computational methods.
Institute of Clinical Experimental Research – Teaches at the Faculty of Pharmaceutical Sciences

1094 Budapest IX., Tűzoltó u. 37-47.
☎: 210-0306

Head of the Department: Prof. Dr. Zoltán Benyó M.D., Ph.D., D.Sc.
Full professor: Prof. Dr. Péter Sándor
Associate professor: Dr. Tamás Ivanics, Dr. Zsuzsanna Miklós (tutor)

Institute of Digital Health Sciences

1094 Budapest, Ferenc tér 15. floor II.

Head of Department: Dr. Miklós Szócska Ph.D.
Professor Emeritus: Dr. habil Elek Dinya Ph.D.
Associate professor: Dr. Zoltán Ádám Tamus Ph.D.
Assistant professor lecturer: Péter Dombai, Dr. Tamás Iváncsy Ph.D., Zoltán Sándor, Tamás Tóth, Dr. Gergely Zajzon
Tutor: Mr. Gergely Marosi

Centre of Physical Education and Sport Sciences

☎: 215-9337, 262-5529, 264-1408, 262-5529

Director: Kornélia Várszegi

Sport establishments: Sports Ground and Gymnastic Hall

Phone/fax: 262-5529, 264-1408

Fencing Hall

Budapest, V. Semmelweis u. 2.
☎: 267-0377

National Ambulance Service

1134 Budapest, XIII. Róbert Károly krt. 77.
☎: 350-3737, 350-0388; 350-6931

Director-General: Dr. Gábor Göbl M. D.
Dr. László Gorove (tutor), Dr. Judit Schönborn (tutor),
Dr. István Hornyák (tutor), Dr. Imre Engelbrecht (tutor)
Division of Foreign Languages and Communication – Faculty of Health Sciences

H-1088 Budapest, Vas u. 17., room 130
☎: +(36-1) 486-4960

Head of the Division: Katalin Zöldi Kovács Ph.D.
Tutor: Alexandra Bakó

Language Communication Center

1094 Budapest, Ferenc tér 15.
☎: +(36-1) 215-9338 Fax: +(36-1) 215-9338; ext 53814

Director: Dr. Éva Kovács Ph.D.

Central Library

1085 Budapest, VIII. Mikszáth Kálmán tér 5.
☎: 317-5030

General Director: Péter Szluka
Science secretary: Zsuzsa Margittai

Directorate for Safety Technology - Department for Disaster Management and Civil Protection

1083 Budapest, VIII. Illés u. 15.
☎: 313-7961; ext 60601, 60579, 60594

Director: István Mészáros
Supervisor: Pál Kocsik M.Sc.
Registrar: Girusné Erzsébet Lovász
FACULTY OF MEDICINE
BASIC MODULE
STUDY PROGRAMME

First year in the 2022/2023 academic year

1st Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Chemistry</td>
<td>3</td>
<td>6</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Cell Science</td>
<td>1</td>
<td>3</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Macroscopic Anatomy and Embryology I.</td>
<td>1</td>
<td>7</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Biophysics I.</td>
<td>1,5</td>
<td>4</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>The Sociology of Healthcare and Medicine (for the 1st half of the class)</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Communication</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Terminology (Latin)</td>
<td>0</td>
<td>2</td>
<td>–</td>
<td>pract. mark</td>
</tr>
<tr>
<td>First Aid</td>
<td>0,5</td>
<td>1</td>
<td>–</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Medical Hungarian I</td>
<td>0</td>
<td>2</td>
<td>–</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Physical Education (PE) I.</td>
<td>0</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Mathematical and Physical Basis of Medical Biophysics (obligatory elective subject)</td>
<td>3,5</td>
<td>1</td>
<td>–</td>
<td>pract. mark</td>
</tr>
</tbody>
</table>
2nd Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Biochemistry I.</td>
<td>3 lecture 2 practice</td>
<td>5</td>
<td>Medical Chemistry</td>
<td>examination</td>
</tr>
<tr>
<td>Macroscopic Anatomy and Embryology II.</td>
<td>3 lecture 6 practice</td>
<td>9</td>
<td>Macroscopic Anatomy I.</td>
<td>final</td>
</tr>
<tr>
<td>Microscopic Anatomy and Embryology I.</td>
<td>1 lecture 4 practice</td>
<td>5</td>
<td>Cell Science</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Biophysics II.</td>
<td>1.5 lecture 2.5 practice</td>
<td>4</td>
<td>Medical Biophysics I.</td>
<td>final</td>
</tr>
<tr>
<td>The Sociology of Healthcare and Medicine (for the 2nd half of the class)*</td>
<td>1 lecture 1 practice</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Introduction to Patient Care</td>
<td>2 lecture 3 practice</td>
<td>2</td>
<td>Medical Communication</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Hungarian II.</td>
<td>0 lecture 4 practice</td>
<td>2</td>
<td>Medical Hungarian I.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>PE II.</td>
<td>0 lecture 1 practice</td>
<td>0</td>
<td>PE I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Medical Informatics (obligatory elective subject)</td>
<td>0 lecture 1 practice</td>
<td>1</td>
<td>–</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Summer Practice - Nursing</td>
<td>1 month</td>
<td>2</td>
<td>Medical Communication</td>
<td>pract. mark</td>
</tr>
</tbody>
</table>

*Simultaneous taking of the courses.

LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:
12. Belák E. Medical Terminology for Beginners (earlier title: Medical Latin), Bp. Semmelweis Kiadó
MACROSCOPIC ANATOMY AND EMBRYOLOGY I.

Department of Anatomy, Histology & Embryology

Head of Department: **Dr. Alpár Alán**

Course Director: **Dr. Andrea D. Székely**

Credit value: 7
Number of lessons per week: 7 lectures: 1 practical course: 6 seminars: 0

Subject type: compulsory course
Subject code: AOKANT853_1A
Name of the course leader: Dr Alpár Alán (full professor)

Objectives of the subject, its place in the medical curriculum:
Demonstration of the macroscopical composition of the human body specifically to provide the future clinicians/medical doctors with a valid body of information with relevance to clinically significant morphological structures. General Embryology describes the intrauterine development of a human embryo/fetus and introduces the development of the locomotor system. Teaching is done in the form of lectures and dissection classes.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the macroscopical composition of the human body together with the position and topographical relation of organs. Clear understanding of structure and function. Ability to perform basic preparatory tasks during dissection. Identification of general directions/landmarks on the cadaver together with the recognition of significant organs/body parts. Acquiring knowledge of surface features and/or sectional anatomy forming basis for clinical diagnostics (palpation, auscultation, etc.) and the use of radiological imaging methods. Clear understanding of the beginning of human development (general embryology) together with the development of the musculoskeletal system.

Course prerequisites:
None (subject is offered in the 1st semester)

Number of students required for the course (minimum, maximum) and method of selecting students:
obligatory for all registered students, on the basis of registration via the NEPTUN system

How to apply for the course:
Via the NEPTUN system.
Detailed curriculum:

List of lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General introduction, terminology</td>
</tr>
<tr>
<td>2.</td>
<td>Joints and movements of the shoulder and shoulder girdle,</td>
</tr>
<tr>
<td>3.</td>
<td>Joints and movements of the elbow and the hand</td>
</tr>
<tr>
<td>4.</td>
<td>Joints and movements of the hip</td>
</tr>
<tr>
<td>5.</td>
<td>Pelvis. Joints and movements of the knee</td>
</tr>
<tr>
<td>6.</td>
<td>Joints and movements of the foot</td>
</tr>
<tr>
<td>7.</td>
<td>Composition of thorax, diaphragm</td>
</tr>
<tr>
<td>8.</td>
<td>Composition of the abdominal wall. Inguinal and femoral canals</td>
</tr>
<tr>
<td>9.</td>
<td>Composition and movements of the vertebral column. Muscles of the nape and back.</td>
</tr>
<tr>
<td>10.</td>
<td>Gametes, fertilization, cleavage</td>
</tr>
<tr>
<td>11.</td>
<td>Implantation, structure of the placenta, placentar circulation. Fetal membranes</td>
</tr>
<tr>
<td>12.</td>
<td>Gastrulation, formation and derivatives of germinal layers</td>
</tr>
<tr>
<td>14.</td>
<td>Development of the skull, vertebral column and limbs</td>
</tr>
</tbody>
</table>

Topics for the dissection classes

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>Bones, joints and muscles of the limbs. Dissection of the limbs.</td>
</tr>
<tr>
<td>7-9</td>
<td>Cadaver dissection. Dissection of the superficial layers of the trunk, inspection of the structure of the body wall on prosected specimens (torso).</td>
</tr>
<tr>
<td>8-12</td>
<td>Inspection of the bony skull together with head and neck projections</td>
</tr>
<tr>
<td>13-14</td>
<td>Embryology consultations, revision</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes: Microscopic Anatomy and Embryology I - II.

Special study work required to successfully complete the course:
All students are required to demonstrate their knowledge and motivated practical work by the completion and demonstration of a dissected specimen or region once during the two semesters of the Academic year.

Requirements for participation in classes and the possibility to make up for absences:
Active participation in practical lessons is obligatory. Students should attend at least 75% of the scheduled hours, absences therefore are limited in 25%. Attendance will be recorded in the dissection room classes.

Methods to assess knowledge acquisition during term time:
During the semester, both practical and theoretical knowledge will regularly be evaluated. Attendance is obligatory at the two mid-term tests (held approximately on weeks 7 and 12). Anatomy mid-terms may be oral or written (computer based) exams. Students absent from the mid-term test should reattend at one of the two further occasions or their semester will not be accepted. The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).
Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student.

Type of examination:
Semifinal (written and oral) examination, topics: subject matter of the semester.
Semifinal examinations consist of written (theoretical) and oral (practical) parts. Examiners are delegated by the Course Director with the consent of the Head of Department.

Requirements of the examination:
During the semifinal examination the knowledge of students will be tested. The examination starts with a written pretest (e-learning module “Moodle”) to be followed by an oral test in Macroscopic Anatomy (identification of structures on true anatomical specimens) including relevent theoretical questions from the subject matter of the semester.

Topic list for the semifinal examination:

Macroscopic Anatomy I.

Musculoskeletal Anatomy
- General osteology, classification of bones
- Continuous connections of bones. Classification of joints; components, movements and mechanisms
- General myology
- Structure of the vertebral column, the gross anatomy of the muscles acting upon it
- Movements and muscles of the head&neck (atlantooccipital and atlantoaxial joints)
- Joints of the shoulder girdle, the gross anatomy of the muscles acting upon them
- Shoulder joint, the gross anatomy of the muscles acting upon it
- Axillary fossa, quadrangular and triangular spaces
- Muscle compartments and cross section of the arm
- Elbow joint, the gross anatomy of the muscles acting upon it. Cubital fossa
- Muscles and cross section of the forearm
- Structure and movements of the radiocarpal joint, gross anatomy of the muscles acting upon it
- Osteofibrous spaces and muscle compartments of the hand, tendinous sheaths
- Carpometacarpal, metacarpophalangeal and interphalangeal joints of the thumb and fingers, the gross anatomy of the muscles concerned with the movements
- Osteofibrous structure of the thoracic cage (bones, joints, ligaments, movements)
- Thoracic muscles
- Diaphragm
- Muscles and spaces of the abdominal wall, rectus sheath
- Composition of the pelvis (bones, ligaments and membranes)
- Muscles of the buttock, the posterior abdominal wall and the pelvis (external and internal muscles of the hip)
- Inguinal canal, femoral canal
- Subinguinal hiatus, vascular and muscular compartments; adductor canal, femoral canal
- Hip joint and the gross anatomy of the muscles concerned with the movements
- Osteofibrous compartments, muscles and cross section of the thigh
- Knee joint and the gross anatomy of the muscles concerned with the movements. Popliteal fossa
- Osteofibrous compartments, muscles and the cross section of the leg
- Ankle joint together with the gross anatomy of the muscles acting upon it
- Subtalar and talocalcaneonavicular joints, the muscles acting upon them
- Osteofibrous compartments and structure of the foot, arches of the foot
- Bones, spaces and connections of the skull, external and internal skull bases
- Neurocranium, components and cavities (anterior, middle and posterior cranial fossae)
- Viscerocranium, components and cavities (walls and connections of the nasal cavity, orbit, oral cavity, pterygopalatine and infratemporal fossae)
- Temporomandibular joint and the gross anatomy of the muscles of mastication
- Superficial muscles of the neck, muscle triangles
- Deep muscles of the neck and the laminae of the cervical fascia
- Muscles of facial expression

Further topics with relevance to the musculoskeletal system
- Lymphatic drainage of the thoracic wall including the mamma
- Dorsal branches of the spinal nerves, intercostal nerves
- Cervical plexus, brachial plexus, lumbar plexus, sacral plexus.
- Innervation of limbs
- Innervation of the trunk
- Cutaneous innervation
- Axillary artery and branches. Arteries and veins of the arm, forearm, and hand
- Arteries and veins of the lower limb
- Lymph nodes and lymphatic drainage of the upper and lower limbs

General Embryology and development of the musculoskeletal system
- Spermatogenesis, spermiogenesis
- Oogenesis
- Fertilization, cleavage of the zygote
- Blastocyst formation; the bilaminar embryonic disc
- Implantation
- Formation of body axes, parts of the early embryo (yolk sac, amnion, chorion, body stalk)
- Gastrulation
- Formation of the intraembryonic mesoderm; the notochord
- Neurulation (neural tube and neural crest)
- Derivatives of ectoderm, endoderm and mesoderm
- Folding of the embryo
- The structure and function of the placenta
- Development of the fetal membranes (chorion and amnion), umbilical cord
- Twin formation
- Membranous and cartilaginous neurocranium and viscerocranium
- Development of the limbs and vertebral column
- Development of the muscular system

Method and type of evaluation:
Semifinal examinations are composed of written theoretical and oral practical parts. Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the semifinal examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination?
Via the NEPTUN system.

Possibilities for exam retake:
According the Study and Examination Policy
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Recommended textbooks

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
MACROSCOPIC ANATOMY AND EMBRYOLOGY II.

Credit value: 9
Number of lessons per week: 9 lecture: 3 practical course: 6 seminar: 0
Type of the course: compulsory course
Subject code: AOKANT853_2A
Name of the course leader: Dr Alpár Alán (full professor)

Objectives of the subject, its place in the medical curriculum:
Demonstration of the macroscopical composition of the human body specifically to provide the future clinicians/medical doctors with a valid body of information with relevance to clinically significant morphological structures. Development of internal organs – this part describes the intrauterine differentiation and growth of internal organs with relevance to the general medical curriculum. Teaching is done in the form of lectures and dissection classes.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the macroscopical composition of the human body together with the position and topographical relation of organs. Clear understanding of structure and function. Ability to perform basic preparatory tasks during dissection. Identification of general directions/landmarks on the cadaver together with the recognition of significant organs/body parts. Acquiring knowledge of surface features and/or sectional anatomy forming basis for clinical diagnostics (palpation, auscultation, etc.) and the use of radiological imaging methods. Understanding of human development in order to draw parallels with macroscopical anatomy.

Course prerequisites:
Macroscopic Anatomy and Embryology I.

Number of students required for the course (minimum, maximum) and method of selecting students:
Obligatory for all registered students, on the basis of registration via the NEPTUN system

How to apply for the course:
Via the NEPTUN system.

Detailed curriculum:
List of lectures

| 1. week: | Nasal cavity, paranasal sinuses
| | Oral cavity, tongue, palate, faucial isthmus
| | Salivary glands |
| 2. week: | Morphology and development of teeth
| | Pharynx, esophagus
| | Larynx |
| 3. week: | Development of the face, malformations
| | Development of the pharyngeal arches, development of the foregut
| | Thoracic cavity, mediastinum. Chambers of the heart, external features. Structure of heart wall, valves, fibrous skeleton. Pericardium |
| 4. week: | Cardiac vessels and nerves, conducting system. Surface projection. Auscultation points.
| | Development of the heart
| | Development of arteries and veins |
| | Development of the respiratory system. Postpartum adaptation of the circulatory system
<p>| | Stomach and small intestines (duodenum, jejunum, ileum) |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Liver, gall bladder, pancreas, spleen. Large intestine, rectum</td>
</tr>
<tr>
<td>10.</td>
<td>Topographical divisions of the central nervous system, developmental units. Meninges, epidural and subarachnoideal spaces, ventricles, choroidal plexus, CSF. Lobes of the cerebral cortex, topographical subdivisions, structure and function of the medial, lateral and basal cortical fields.</td>
</tr>
<tr>
<td>11.</td>
<td>Topography and components of the basal ganglia and the diencephalon (thalamus, hypothalamus), the 3rd ventricle. Topography and components of the brainstem (midbrain, pons and medulla oblongata), the 4th ventricle. Arterious, venous and lymphatic circulation of the brain</td>
</tr>
<tr>
<td>12.</td>
<td>The autonomic nervous system. Sympathetic and parasympathetic nervous system. Cranial nerve nuclei. Trigeminal nerve (CN 5), facial nerve (CN 7)</td>
</tr>
</tbody>
</table>

Topics of dissection classes

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2.</td>
<td>Dissection of the head and neck organs.</td>
</tr>
<tr>
<td>3-6.</td>
<td>Opening of the thoracic and abdominal cavities, dissection of thoracic and abdominal organs</td>
</tr>
<tr>
<td>7-9.</td>
<td>Dissection of the retroperitoneal region and perineum together with organs of the lesser pelvis.</td>
</tr>
<tr>
<td>13-14.</td>
<td>Cranial nerve branches. Cross sections of the trunk. Revision</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes:
Microscopic Anatomy and Embryology I - II..

Special study work required to successfully complete the course:
All students are required to demonstrate their knowledge and motivated practical work by the completion and demonstration of a dissected specimen or region once during the two semesters of the Academic year.
Requirements for participation in classes and the possibility to make up for absences:
Active participation in practical lessons is obligatory. Students should attend at least 75% of the scheduled hours, absences therefore are limited in 25%. Attendance will be recorded in the dissection room classes.

Methods to assess knowledge acquisition during term time:
During the semester, both practical and theoretical knowledge will regularly be evaluated. Attendance is obligatory at the two mid-term tests (held approximately on weeks 7 and 12). Anatomy mid-terms may be oral or written (computer based) exams. Students absent from the mid-term test should reattend at one of the two further occasions or their semester will not be accepted. The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student. Missed practical classes cannot be made up for.

Type of examination:
Final (written and oral) examination, topics: subject matter of the subjects Macroscopic Anatomy and Embryology I-II. Final examinations consist of written (theoretical) and oral (practical) parts.
Examiners are delegated by the Course Director with the consent of the Head of Department.

Requirements of the examination:
During the final examination the knowledge of students will be tested. The examination starts with a written pretest (e-learning module “Moodle”) to be followed by an oral test in Macroscopic Anatomy (identification of structures on true anatomical specimens) including relevent theoretical questions from the subject matter of the semester.

Topic list for the semifinal examination:

Macroscopic Anatomy I.
(see there)

Macroscopic Anatomy II.

Internal organs of the head & neck region (morphology and development)
- Oral cavity (divisions, boundaries)
- Floor of mouth, sulcus lateralis linguae
- Macroscopy of the tongue
- Types and morphology of teeth, blood supply and innervation
- Tooth development
- Salivary glands together with topography
- Fauclial isthmus, palate, Tonsils
- Pharynx and parapharyngeal spaces
- Blood supply and innervation of pharynx
- Pharyngeal muscles
- Nose, nasal cavity (boundaries, nasal meatus, vessels)
- Paranasal sinuses (connections, vessels)
- Larynx (shape, position, muscles, vessels, nerves)
- Skeleton and joints of larynx together with the fibroelastic membranes, mucous membrane
- Common and external carotid arteries and their branches. Maxillary artery and its branches
- Venous drainage of face and neck
- Lymph nodes and lymphatic vessels of the head&neck
- Development of the face, including the development of the oral and nasal cavities
- Development and differentiation of the foregut
- Derivatives of the branchial arches
- Derivatives of the branchial pouches and grooves
• Development of the teeth and tongue

Circulatory system (morphology and development)

• Shape, external features of heart
• Chambers of heart
• Endocardium, ostia, valves of heart
• Skeleton of heart, annuli fibrosi
• Structure of heart wall
• Pulse generating and conducting system of heart
• Pericardium
• Position and surface projections of heart
• Percussion and auscultation (area of cardiac dullness, heart sounds)
• Radiology of heart
• Early circulation (formation of vessels, basis vascular systems of the embryo/fetus)
• Heart development
• Pulmonary circulation
• Ascending aorta, arch of aorta and its branches
• Subclavian artery and its branches
• Thoracic aorta and its branches
• Abdominal aorta and its branches
• Development of arteries (aorta, branchial arterial arches, umbilical arteries)
• Celiac trunk and its branches
• Superior mesenteric artery and its branches
• Inferior mesenteric artery and its branches
• External and internal iliac arteries and their branches
• Internal pudendal artery and its branches
• Superior vena cava and its tributaries
• Inferior vena cava and its tributaries
• Azygos and hemiazygos veins and their tributaries
• Portal vein and its tributaries, portocaval anastomoses
• Development of veins (inferior v. cava, portal v., superior v. cava, azygos and hemiazygos veins)
• Fetal circulations
• Lymphatic drainage of the abdominal and pelvic organs
• Thoracic duct, right lymphatic trunk

Morphology and development of the thoracic, abdominal and pelvic organs

• Trachea and bronchial tree
• Lung (shape, parts, surfaces, hilum)
• Lung (position, topography, vessels, nerves)
• Surface projection of pleura and lung
• Pleura, pleural cavity
• Mediastinum (divisions and content)
• Development of the lower airways including the lung
• Description and topography of the esophagus
• Stomach (shape, position, parts, blood supply and innervation). Peritoneal relations
• Duodenum (shape, position, divisions, vessels)
• Jejunum-ileum (shape, position, vessels)
• Large intestine (shape, position, vessels)
• Rectum, anal canal (shape, position, vessels)
• Liver (shape, position, peritoneal relations, vessels)
• Gall bladder and biliary passages (anatomy)
• Pancreas (shape, position, vessels)
• Peritoneum, greater and lesser omentum, mesentery, omental bursa
• Formation and differentiation of the midgut
• Formation and differentiation of the hindgut
• Development of liver and pancreas
• Development of the peritoneum
• Formation of body cavities, development of the diaphragm
• Kidney (shape, position, hilum, sinus, capsules, vascular architecture)
• Renal pelvis and calyces. Ureter
• Urinary bladder (shape, position, muscles, vessels)
• Female urethra
• Male urethra, bulbourethral gland
• Development of kidneys
• Development of urinary passages
• Testis (shape, position, vessels). Scrotum, coats of testis
• Epididymis, vas (ductus) deferens, spermatic cord
• Seminal vesicle, prostate
• Penis (shape, position, mechanism of erection, vessels, nerves)
• Pelvic floor, male perineum (connective tissue spaces)
• Hernia canals (inguinal and femoral)
• Ovary (shape, position, vessels)
• Uterine tube (shape, position, vessels)
• Uterus (shape, parts, position, supporting structures, vessels) Broad ligament
• Vagina, female perineum (connective tissue spaces)
• External female genital organs (mons pubis, labia, vestibule of vagina, greater vestibular gland, vessels)
• Development of gonads, formation and migration of primordial germ cells
• Development of male genital system
• Development of female genital system
• Development of the external genital organs

Macroscopy of the nervous system
• Intracranial topography Dura mater, dural sinuses
• Arachnoid mater, pia mater, cisterns, CSF circulation
• Description and meninges of the spinal cord
• Brain stem (medulla oblongata, pons, midbrain)
• Cerebellum
• Diencephalon (parts, blood supply). Thalamus, hypothalamus
• Lateral ventricles, III. ventricle, IV. ventricle
• Hemispheres
• Internal carotid artery (course, parts and branches)
• Vertebral artery (course and branches)
• Circle of Willis
• Veins of the brain
• Cranial nerve nuclei, macroscopy of cranial nerves together with the brain, dural and skull exits
• Branches of cranial nerves (CN 3, CN 4, CN 5, CN 6, CN 7, CN 9, CN 10, CN 11, CN 12)
• General composition of the autonomic nervous system
• Sympathetic nervous system (cranial, cervical, thoracic and lumbar parts)
• Sympathetic trunk
• Parasympathetic system (cranial and sacral parts)
• Topography of the orbit. Extraocular muscles. Eye movements.
• Eyelids, conjunctiva, fasciae of the orbit, lacrimal apparatus
Method and type of evaluation:
Final examinations are composed of written theoretical and oral practical parts. The written theoretical examination is done using an e-learning module while the practical examination is conducted in the dissection room on real prospected cadaver specimen.
Examiners are delegated by the Course Director with the consent of the Head of Department.
Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the final examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination?
Via the NEPTUN system.

Possibilities for exam retake:
According the Study and Examination Policy

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Recommended textbooks
eBook ISBN: 9780323312899 014

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
MICROSCOPIC ANATOMY AND EMBRYOLOGY I.

Department of Anatomy, Histology & Embryology

Head of Department: Dr. Alán Alpár

Course Director: Dr. Andrea D. Székely

Credit value: 5
Number of lessons per week: 5 lectures: 1 practical course: 4 seminars: 0

Type of the course: compulsory course
Subject code: AOKANT854_1A
Name of the course leader Dr Alpár Alán (full professor)

Objectives of the subject, its place in the medical curriculum:
Demonstration of the fine structure of cells and tissues composing the organs of the human body specifically to provide the future clinicians/medical doctors with a valid body of information describing the microscopical elements of clinically significant morphological structures (including cell biology, general histology and the histology of organs).
Teaching is done in the form of lectures and histology laboratory classes

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the microscopical composition of the human body together with the understanding of human development in order to draw parallels with macroscopical anatomy. Clear understanding of histological structure and function. Ability to identify basic structural elements within the tissue specimen. Identification of general directions/landmarks within digitized tissue slides.

Course prerequisites:
Cell science

Number of students required for the course (minimum, maximum) and method of selecting students:
Obligatory for all registered students, on the basis of registration via the NEPTUN system
How to apply for the course:
Via the NEPTUN system.
Detailed curriculum:

List of lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. week</td>
<td>Epithelial tissues, cell contacts, intercellular connections</td>
</tr>
<tr>
<td></td>
<td>Glandular epithelium</td>
</tr>
<tr>
<td>2. week</td>
<td>Connective tissue cells and fibres. Extracellular matrix</td>
</tr>
<tr>
<td>3. week</td>
<td>Supporting tissues (cartilage, bone)</td>
</tr>
<tr>
<td>4. week</td>
<td>Ossification, bone remodelling. Blood, erythropoiesis, leukopoiesis</td>
</tr>
<tr>
<td>5. week</td>
<td>Muscle tissues</td>
</tr>
<tr>
<td>6. week</td>
<td>Histology of vessels</td>
</tr>
<tr>
<td>7. week</td>
<td>Histology of the tongue and teeth. Histology of the esophagus</td>
</tr>
<tr>
<td>8. week</td>
<td>Histology of the stomach. Microscopical anatomy of the small and large intestines</td>
</tr>
<tr>
<td>9. week</td>
<td>Histology of the liver and pancreas</td>
</tr>
<tr>
<td>10. week</td>
<td>Histology of the airways</td>
</tr>
<tr>
<td>11. week</td>
<td>Microscopical anatomy of urinary organs</td>
</tr>
<tr>
<td>12. week</td>
<td>Histology of the male genital systems</td>
</tr>
<tr>
<td>13. week</td>
<td>Histology of the female genital system I</td>
</tr>
<tr>
<td>14. week</td>
<td>Histology of the female genital system II. Placenta, mammary gland</td>
</tr>
</tbody>
</table>

Histology laboratories

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. week</td>
<td>Introduction, epithelial tissues</td>
</tr>
<tr>
<td>2. week</td>
<td>Connective tissue cells and fibres</td>
</tr>
<tr>
<td>3. week</td>
<td>Blood, Cartilage, bone</td>
</tr>
<tr>
<td>4. week</td>
<td>Bone formation. Nerve tissue</td>
</tr>
<tr>
<td>5. week</td>
<td>Smooth, skeletal and cardiac muscle types</td>
</tr>
<tr>
<td>6. week</td>
<td>Histology of vessels. Tooth bud</td>
</tr>
<tr>
<td>7. week</td>
<td>Lip, tongue, lingual papillae</td>
</tr>
<tr>
<td>8. week</td>
<td>Esophagus, stomach. Duodenum, jejunum, ileum, colon</td>
</tr>
<tr>
<td>9. week</td>
<td>Liver, gall bladder, pancreas</td>
</tr>
<tr>
<td>10. week</td>
<td>Larynx, trachea, lung</td>
</tr>
<tr>
<td>11. week</td>
<td>Urinary system</td>
</tr>
<tr>
<td>12. week</td>
<td>Male genital system</td>
</tr>
<tr>
<td>13. week</td>
<td>Female genital system</td>
</tr>
<tr>
<td>14. week</td>
<td>Placenta, revision</td>
</tr>
</tbody>
</table>
Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes:
- Macroscopic Anatomy and Embryology I - II.
- Cell sciences, cell biology
- Certain chapters of Biochemistry and/or Physiology

Special study work required to successfully complete the course:
none

Requirements for participation in classes and the possibility to make up for absences:
Active participation in histology laboratory classes is obligatory for every student. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the histology laboratory classes.

Methods to assess knowledge acquisition during term time:
The knowledge of students will be checked in midterm tests (held prospectively in weeks 5 and 11), written (electronic) test. Attendance is obligatory at the two midterm tests. Students absent from the tests should reattend at one of the offered retakes. Histology and Embryology midterms are written (Moodle) examinations organised as e-learning type examination where a valid SeKa account (including user name&password) is required.
The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student.

Type of examination:
Semifinal (written and oral) examination, topics: subject matter of the semester (Microscopic Anatomy and Embryology I.). Semifinal examinations consist of written theoretical and oral practical parts.
1. Written pretest (e-learning module)
2. Microscopic Anatomy - identification of structures on digitized tissue slides - including relevent theoretical questions from the subject matter of the semester

Requirements of the examination:
During the semifinal examination the knowledge of students will be tested. Semifinal examinations are composed of written (theoretical) and oral (practical) parts with the latter being conducted with the use of digitized histological tissue slides.

Topic list for the semifinal examination:

Microscopic Anatomy and Embryology I.

General Histology
- Concept of basic tissues
- Definition and classification of epithelial tissue
- Simple epithelia
- Stratified epithelia
- Membrane specializations of epithelia
- Glandular epithelia
- Pigment epithelium, sensory neuroepithelium
- Cells of connective tissue
- Ground substance and fibres of connective tissue
- Types of connective tissue
- Blood and the corpuscular elements of blood
- Histology of the bone marrow, maturation of erythrocytes and platelets
- Differentiation of granulocytes, lymphocytes and monocytes
- Histology of cartilage
- Histology of the bone tissue
- Intramembranous ossification
- Endochondral ossification
- Growth and remodeling of bone
- Smooth muscle and myoepithelial cells
- Skeletal muscle tissue
- Cardiac muscle tissue
- Nervous tissue

Histology of organs
- Histological structure of arteries and arterioles
- Composition of capillaries and veins
- Wall structure of hollow organs
- Histology of the lip, tongue and teeth
- Structure of the esophagus
- Histology of the airways (epiglottis, larynx, trachea, lung)
- Histology of the stomach
- Structure of the small and large intestines
- Histology of the liver and biliary passages including the gall bladder
- Histology of the pancreas
- Histology of the kidney and the urinary passages (ureter, urinary bladder)
- Histology of the testicles together with the epididymis
- Histology of the prostate, seminal vesicle, spermatic cord
- Histology of the penis
- Histology of the ovary, uterine tube; corpus luteum
- Histology of the uterus
- Histology of the vagina
- Placenta, umbilical cord

Method and type of evaluation:
Semifinal examinations are composed of written theoretical and oral practical parts. The written theoretical examination is done using an e-learning module while the practical examination is conducted with the help of digitized histological tissue slides.

Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the semifinal examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination?
Via the NEPTUN system

Possibilities for exam retake:
According the Study and Examination Policy
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
List of textbooks

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
ANATOMIC DISSECTION IN THE PRACTICE – optional course

Department of Anatomy, Histology and Embryology

Credit: 2
1×90 min practical course
Course prerequisites: Macroscopic Anatomy and Embryology I.
Held in both semesters.

Objectives of the subject, its place in the medical curriculum:
The technique of anatomical dissection dates back many centuries. Dissecting of fixed specimens gives students the opportunity to acquire practical knowledge that is essential, especially for those who are planning to choose a manual field. Fine dissection of small structures requires extra time and appropriate infrastructural conditions. Our practical course creates this unique opportunity under the guidance of expert instructors. The specimens will get into the high quality demonstration specimen pool to be used in the education.

Successful completion of the subject results in the acquisition of the following competencies:
By completing the course, students will master the technique of fine anatomical dissection. Working with fine quality instrumental tools gives the opportunity to get to know better anatomical layers and structures in more details. This type of work gives a good base of knowledge what can be developed further in manual fields.

Detailed curriculum:
Practices:
11. Dissection of cutaneous nerves and superficial veins I. (demonstration and practice)
12. Dissection of cutaneous nerves and superficial veins II. (demonstration and practice)
13. Dissection of muscles I. (demonstration and practice)
14. Dissection of muscles II. (demonstration and practice)
15. Dissection of arteries and nerves I. (demonstration and practice)
16. Dissection of arteries and nerves II. (demonstration and practice)
17. Dissection of the viscera I. (demonstration and practice)
18. Dissection of the viscera II. (demonstration and practice)
19. Working with bone I. (demonstration and practice)
20. Working with bone II. (demonstration and practice)
21. Dissection of the brain I. (demonstration and practice)
22. Dissection of the brain II. (demonstration and practice)
23. Exam and demonstration of the dissected specimens.

Teachers (depending on the number of the registered students):
Dr. Alán Alpár professor – professional tutor
Dr. Tamás Ruttkay senior lecturer – lecturer, practice leader
Dr. Emese Pálfi senior lecturer – practice leader

Special study work required to successfully complete the course:
Anatomical dissection on the practices.

Requirements for participation in classes and the possibility to make up for absences:
Participation in the practices is verified by signing an attendance sheet. Absence up to 25% of the classes is allowed within a semester. Due to the nature of the course, it is not possible to make up for absences.
Methods to assess knowledge acquisition during term time:
There is no mid-term check. Requirements for signature: Attendance at least 75% of the classes.

Type of examination:
The semester ends with a practical exam, during which the student presents and hands over the specimen dissected by him/her to the practice leader.

Requirements of the examination:
During the last practice of the semester, the student summarizes the topic of the dissected specimen and displays it. The practice leader evaluates the semester preparatory work based on the criteria detailed below.

Method and type of evaluation:
The finished specimen is evaluated according to the following criteria: 1. The degree of preparation of the topic recorded at the beginning of the course. 2. Quality of the prepared anatomical structures. 3. Presentation of the specimen in a practical exam (theoretical, regional anatomical presentation).
The student’s knowledge will be evaluated using a scale of 1 to 5 mark.

Possibilities for exam retake:
It is not possible to replace an unfinished specimen. In case of justified absence from the practical exam, the presentation of the dissected specimen and the formation of the grade will take place at an additional time.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
CELL SCIENCE

Department of Genetics, Cell- and Immunobiology

Address: NET Building, H-1089 Budapest, Nagyvárad tér 4.
Course director: Edit Buzás MD, DSc
Course coordinator: Orsolya Láng MD, PhD
Office hours are given on the Departement website (http://gsi.semmelweis.hu/index.php/en/education/information
Credit: 3

Aim of the course:
Course Cell Science is developed for medical students as a part of the Basic Module. The Course presents the most important aspects of cell-morphology and cell function. Cell Science Course provides a detailed discussion of compartmentalization in the eukaryotic cell as well as describes the most significant characteristics of the basic cellular functions (migration, endocytosis, cell-cell communication, division, stem cell differentiation, ageing and cell death). The practices introduce the students to the microscopic techniques used for cell morphological studies. The purpose of the course is to demonstrate the complexity of cell structure and function relationships as well as to present basic methods of in vitro cell culturing and their potential medical applications.

Location of the course:
Selye János Lecture Hall and Lab rooms L13-L16 are located on the first floor of the NET building (1089 Budapest, Nagyvárad tér 4.)

Lecturers: Prof Edit Buzás, Dr. András Kristóf Fülöp, Dr. Hargita Hegyesi, Dr László Kőhidai, Dr. Eszter Lajkó, Dr. Orsolya Láng

Lectures (1 hours per week):
1. Cell theory. Model cells in Medicine
2. Cell membrane
3. Structure and function of nucleus
4. Endoplasmic reticulum
5. Golgi complex, vesicular transport and secretion
6. Endocytosis. Autophagy
7. Cell adhesion and cell junctions
8. Cytoskeleton
9. Cellular movement
10. Structure and function of mitochondria and peroxisomes
12. Cell cycle and mitosis
13. Stem cells and differentiation
14. Cellular aging and cell death

Practices (2 hours per week):
1. The light microscope
2. The general cell structure. Light microscopic microtechnique
3. The electron microscope. Cell membrane
4. The interphase nucleus. Cyto(histo)chemistry
5. Immunohistochemistry. Super-resolution microscopy
6. Cell and tissue culture
7. Endoplasmic reticulum
8. Golgi complex and secretion
9. Endocytosis and lysosomes
10. Cell surface differentiation, enzyme-histochemistry
12. Mitosis
13. Meiosis
14. Cell death (necrosis and apoptosis)

The order of topics may vary

Course requirements: Students must participate at least 75% of the classes. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
Midterms: During the semester two Moodle exam will be organized at week 6th and 12th. Based on the total performance maximum 3 bonus points can be obtained. These extra scores will be added to the exams scores as bonus scores. No opportunity to improve the bonus scores.

Exam: The course ends with a written exam. It contains multiple choice, essays, drawings, etc. covering both theoretical and practical part of the subject. The written exam score should achieve 50% of the total scores for passing. At 13th week of the semester, a competition will be organized. Those who achieve the good or excellent level get the exam grade. Further details will be announced at the website of the department (http://gsi.semmelweis.hu) and in the Moodle.

Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
MEDICAL BIOPHYSICS I.

Tutor: Dr. István Voszka

First Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiations (basic concepts)</td>
<td>Telemedicine</td>
</tr>
<tr>
<td>2</td>
<td>Properties of electromagnetic radiations; wave and corpuscular nature</td>
<td>Fundamentals of biomathematics</td>
</tr>
<tr>
<td>3</td>
<td>Attenuation of radiation</td>
<td>Emission spectroscopy. Light sources</td>
</tr>
<tr>
<td>4</td>
<td>Luminescence and its applications</td>
<td>Spectrophotometry</td>
</tr>
<tr>
<td>5</td>
<td>Lasers and their medical applications</td>
<td>Optical lenses; light microscope</td>
</tr>
<tr>
<td>6</td>
<td>Thermal radiation, thermography. Biological effects of light</td>
<td>Detection of nuclear radiations</td>
</tr>
<tr>
<td>7</td>
<td>Production and spectrum of X-radiation Cyclotron; Linear accelerator;</td>
<td>Amplifier</td>
</tr>
<tr>
<td>8</td>
<td>Attenuation of X-radiation, interactions</td>
<td>Special light microscopes Resonance</td>
</tr>
<tr>
<td>9</td>
<td>Atomic structure; Radioactive decay law Gamma-radiation and its detection</td>
<td>Optics of the eye</td>
</tr>
<tr>
<td>10</td>
<td>Radiotherapy, radiosurgery; Isotope diagnostics</td>
<td>Polarimeter</td>
</tr>
<tr>
<td>11</td>
<td>SPECT, PET Beta-radiation, beta-decay</td>
<td>The attenuation of gamma-radiation</td>
</tr>
<tr>
<td>12</td>
<td>Alpha-radiation, alpha-decay Interaction with matter</td>
<td>Dosimetry</td>
</tr>
<tr>
<td>13</td>
<td>Dosimetry</td>
<td>Concentration determination with refractometer</td>
</tr>
<tr>
<td>14</td>
<td>Radiation protection; estimation of risk</td>
<td>Repetition</td>
</tr>
</tbody>
</table>
MEDICAL BIOPHYSICS II.

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bonds and their significance in macromolecular structure; Boltzmann distribution, examples</td>
<td>Coulter counter</td>
</tr>
<tr>
<td>2</td>
<td>Liquid crystals, membranes</td>
<td>Determination of skin-impedance</td>
</tr>
<tr>
<td>3</td>
<td>Electronic properties of condensed materials (solids, macromolecules)</td>
<td>X-ray diagnostics</td>
</tr>
<tr>
<td>4</td>
<td>Ultrasound properties, generation of ultrasound</td>
<td>Gamma energy determination</td>
</tr>
<tr>
<td>5</td>
<td>Ultrasonography, Doppler methods</td>
<td>Pulse generators (e.g. pacemaker, defibrillator)</td>
</tr>
<tr>
<td>6</td>
<td>Methods for structure examination</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>7</td>
<td>Basic concepts of Thermodynamics, First law</td>
<td>Audiometry</td>
</tr>
<tr>
<td>8</td>
<td>General description of transport phenomena, Onsager’s equation, examples</td>
<td>Isotope diagnostics</td>
</tr>
<tr>
<td>9</td>
<td>Diffusion; transport across membrane</td>
<td>Densitography (CT)</td>
</tr>
<tr>
<td>10</td>
<td>Resting potential and its local changes</td>
<td>Flow of fluids.</td>
</tr>
<tr>
<td>11</td>
<td>Action potential, properties, interpretation</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>12</td>
<td>General characteristics of sensory function, hearing, vision</td>
<td>Diffusion</td>
</tr>
<tr>
<td>13</td>
<td>Biophysics of muscle function</td>
<td>Sensory function</td>
</tr>
<tr>
<td>14</td>
<td>Motor proteins</td>
<td>Repetition</td>
</tr>
</tbody>
</table>
MATHEMATICAL AND PHYSICAL BASES OF MEDICAL BIOPHYSICS

First Semester

Tutor: Dr. István Voszka

Altogether 14 hours lecture during the first four weeks of the semester

Credit 1

Topics of lectures:
1. Mathematics, necessary for the understanding of biophysical laws
2. Physical quantities and units
3. Kinematics – motions
4. Statics – changes of shape, forces, mechanical stress, pressure
5. Dynamics – work, energy
6. Oscillations, waves
7. Fluid mechanics
8. Thermodynamics
9. Electricity – charges in rest and in motion
10. Magnetism, magnetic induction
MEDICAL CHEMISTRY

Institute of Biochemistry and Molecular Biology
Department of Molecular Biology
EOK Building, H-1094 Budapest, Tűzoltó u. 37-47.

Lecturer of the course: Miklós Csala MD, DSc (csala.miklos@med.semmelweis-univ.hu)
Course coordinator: Gergely Keszler MD, PhD (keszler.gergely@med.semmelweis-univ.hu)
Credit: 6
Number of lessons per week: lectures: 3; practicals: 3
Subject code: AOKMBT829_1A

The principal aim of the course is to prepare students for the understanding of the subjects of Biochemistry, Molecular cell biology, Physiology and Pharmacology. This requires a firm knowledge of the foundations of general, organic and inorganic chemistry.

Lectures:
General chemistry
1. Atomic structure; the periodic table of elements
2. Chemical bonds, hybrid states
3. Secondary bonds and interactions
4. Chemical equilibria
5. Acid-base theories, pH
6. pH of strong or weak acids and bases
7. The theory of buffers
8. Buffers of physiological importance, cation and anion hydrolysis, pH of salt solutions
9. Solubility of salts and bases, the solubility product
10. Laws of dilute solutions, Specific and equivalent conductivity
11. Thermodynamics 1 – Enthalpy
12. Thermodynamics 2 – Entropy
13. Thermodynamics 3 – Direction of reactions
14. Electrochemistry 1
15. Electrochemistry 2
16. Electrochemistry 3
17. Reaction kinetics
18. Complex compounds, reactive oxygen species

Organic chemistry
1. Principles of organic chemistry
2. Nomenclature of organic compounds, constitution of organic compounds
3. Configuration and conformation of organic compounds
4. Saturated and unsaturated hydrocarbons
5. Reactions of alkyl halides and aromatic compounds
6. Classification and reactions of hydroxyl compounds
7. Classification and reactions of oxo compounds
8. Structure, function and reactions of organic acids
9. Nitrogen-containing organic compounds
10. Sulphur or phosphorus-containing organic compounds
Practicals:
1. Introduction, acid-base titration 1 (titration of strong acids) (4×45 min)
2. Concentration, pH, problems (2×45 min)
3. Acid-base titration 2 (titration of weak acids). Relationship between conductivity and dissociation (4×45 min)
4. Salts (2×45 min)
5. Titration curves, consultation (buffers) (4×45 min)
6. Physiological buffer systems (2×45 min)
7. Electrochemistry, consultation (4×45 min)
8. Thermochemistry, thermodynamics (2×45 min)
9. Permanganometry (4×45 min)
10. Electrochemistry (2×45 min)
11. Determination of the ionization constant of phenol red by photometry (4×45 min)
12. Structure of organic compounds (2×45 min)
13. Complexometry. Precipitation titration (4×45 min)
14. Isomers, molecule models (2×45 min)

Lectures and practical lessons
Two lectures are held every week; practical lab lessons (duration: 4×45 min) and seminars (2×45 min) are held in alternating weeks. For detailed schedules see the Moodle website of the subject.

Prerequisites for acknowledging the semester
Attendance of at least 75% of the practical lessons is obligatory. Students not attending (i) more than 2 labs or (ii) more than 5 seminars or (iii) more than 1 lab and 3 seminars are not going to be allowed to sit for the semifinal exam. Missed practicals and seminars can only be made up in the same week with another group; certificate of participation issued by the host teacher needs to be presented by the student to his/her own teacher.

Midterm examination
An optional written midterm test (30 min) is held in week 13 about the laboratory experiments performed during the semester. Performance at the laboratory work during the whole semester is also taken into account at the evaluation.

Examination and grading system
The oral and written exam is based on the topic list announced in the beginning of the semester, and it takes place before a two-member committee (examiner and co-examiner). The exam can be passed if all these topics are sufficiently answered. Students pick 3 questions (general chemistry, organic chemistry, practice) and a calculation problem to be solved in writing. Students, who achieve at least 12 points at the practical midterm and at the labs during the semester, get exempted from picking the practical question. The bonus is valid during the whole exam period (in case of an unsuccessful exam).

Exemption from attending the course
Students who learned general, and organic chemistry at university levels prior to the commencement of their studies at Semmelweis University might be exempted from attending the Medical Chemistry course. Students are kindly asked to present their official documents (academic transcripts and a detailed syllabus on the courses they have completed) to the tutor (Gergely Keszler).

Topic list
1. General chemistry
2. The periodic table of the elements, quantum numbers
3. The covalent bond, the molecular geometry of inorganic molecules (e.g. carbon monoxide, carbon dioxide, ammonia). Ionization energy, electron affinity, electronegativity. The ionic bond, hydroxylapatite and fluoroapatite
4. The structures of polyatomic ions, the complexes
5. The secondary bonds and interactions between molecules
6. Laws of dilute solutions: vapor pressure, freezing point depression, boiling point elevation
7. The phenomenon of osmosis, its biological significance, isotonic, hypotonic and hypertonic solutions
8. Chemical equilibria, the equilibrium constant and the degree of dissociation, their correlation. The Le Châtelier principle (example: formation, properties, salts, practical use of hypochlorous acid.)
9. Gas mixtures: partial pressure, volume %. The composition of the air. Dissolution of gases in liquids, Henry's law, the decompression sickness
10. The structure and dissociation of water. Acid-base theories. The pH and pOH concept, calculation of the pH of strong acids or bases, and their titration curves. Acid-base indicators
11. The dissociation of weak acids and bases, the concept of specific and equivalent conductivity, their correlations with the dissociation. Titration curves of weak acids
12. Types of salts and their reactions with water. pH of salt solutions
13. The buffers: principle, mechanism of action, calculation of the pH. The titration curves of polyprotic acids (phosphoric acid)
14. Buffers of physiological importance
15. The solution equilibria of solid substances, the solubility product
16. The first law of thermodynamics. Heat of reaction, combustion heat, heat of formation. Hess' law
17. The second law of thermodynamics. The direction of the chemical reactions, Gibbs free energy
18. Oxidation, reduction, oxidation number, standard reduction potential
19. The galvanic cells; arrangement, reactions, calculation of the electromotive force
20. Types of electrodes, redox systems of biological importance
21. The concentration cells, the principle of measuring the pH
22. Reaction rate, order and molecularity, factors influencing the reaction rate

II. Organic chemistry
1. The electronic structure of the carbon atom, its hybrid states, the spatial structures of organic compounds
2. The concept of isomerism, types of structural isomerism, nomenclature of organic compounds
3. Geometric isomerism in unsaturated and cyclic compounds
4. Stereoisomerism, chiral compounds, optical activity, D–L and R–S nomenclature
5. Conformations of organic compounds, examples with open chain and cyclic molecules
6. Reaction types and mechanism in organic chemistry
7. Properties and reactions of alkanes
8. Properties and reactions of alkenes
9. Characteristics, reactions and biological roles of aromatic compounds
10. Alcohols, enols, phenols
11. Oxo compounds: aldehydes and ketones. Their chemical reactions, the mechanism of the nucleophilic addition. Oxo-enol tautomerism
12. Properties and reactions of compounds containing a carboxyl group
13. Substituted carboxylic acids (Halogenated, oxo-, hydroxy-; aromatic; mono-, di- and tricarboxylic acids)
14. Organic compounds containing sulfur or phosphorus
15. Nitrogen-containing organic compounds: classification and properties of amines
16. Carboamides, amides of the carbonic acid, imines

III. Laboratory
1. Principle of concentration determination by volume measurement: titrations
2. Titration of strong acids and bases
3. Titration of weak acids and bases
4. Conductivity measurement, determination of weak acid dissociation
5. Titration of gastric juice
6. Titration curves of mono- and polyprotic acids
7. Titration based on redox reaction: permanganometry
8. Complexometry: determination of copper concentration
9. Electrochemical measurements: the Daniell cell, concentration cell, redox and non-polarizable electrodes
10. Principle of spectrophotometry, areas of application: determination of the K_d value of the phenol red indicator
11. Precipitation titration
MEDICAL BIOCHEMISTRY I.

Department of Medical Biochemistry

Credits: 5
Total number of hours: 70; lectures (hours): 42; practices (hours): 28
Type of the course: obligatory
Academic year: 2021/2022

Code of the course
Name of Head of the Department: Professor László Csanády M.D. Ph.D. D.Sc.
Contact details: H-1094 Budapest, Tűzoltó u. 37-47. tel: +36-1-459-1500#60010 e-mail: csanady.laszlo@med.semmelweis-univ.hu
Position: Temporary Head of Department
Date of Habilitation: 2013 Its number: 341

Objectives of the subject, its place in the medical curriculum:
The aim of this course is to examine biologically important molecules - namely amino acids, carbohydrates, lipids and nucleotides - identify their contributions to metabolic processes emphasized from a medical point of view, examine the structure and function of proteins, and address mechanisms of catalysis performed by enzymes. Furthermore, three basic biochemistry modules are outlined: The enzymology module, encompassing general principles of enzyme kinetics and how enzymes influence efficiency and controllability of chemical processes in biological systems, as well as how they affect structure and regulation of metabolic pathways; the bioenergetics module, addressing the relationships between mass-energy conversions in the human body emphasizing nutritional aspects, also elaborating on thermodynamic aspects of metabolism; and the ‘first’ intermediary metabolism module, presenting the salient features of carbohydrate and lipid metabolism which are essential for understanding physiological and pathological processes of the human body. During practices, students apply the theoretical knowledge acquired at lectures as part of case-oriented discussions in an effort to interpret - from a molecular point of view - medically relevant conditions.

Location of the course (lecture hall, practice room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Successful completion of the subject results in the acquisition of the following competencies:
The knowledge of the structure, interactions and reactions of biological molecules and the interactions between organs of the higher integrated regulatory functions of the human body, is of paramount importance from a medical point of view and is essential for understanding physiological and pathological processes and, as a consequence, for making informed medical decisions.

Prerequisite(s) for admission to the course:
Medical Chemistry

Number of students required for the course (minimum, maximum) and method of selecting students:
Not applicable for compulsory subjects

How to apply for the course:
Application is through the Neptun online system

Detailed curriculum:
Lectures: weekly 2×70 min (3 hours)
Lecturers: Prof. Csanády László (CSL), Prof. Kolev Kraszimir (KK), Dr. Christos Chinopoulos (CC), Dr. Komorowicz Erzsébet (KE), Dr. Kardon Tamás (KT), Dr. Töröcsik Beáta (TB), Prof. Tretter László (TL)
Practices (P): 2 hours every week
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Practices (P): 2 hours every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The chemical structure of the amino acids that make up proteins. Formation of peptide bonds and their spatial structure. Primary structure of proteins. (CSL) Hierarchical structure of proteins, secondary and tertiary structure. Process of unfolding of proteins, protein denaturation. (CSL)</td>
<td>Structural and chemical characteristics of amino acids from the point of view of physiological functions (pH and temperature dependent properties).</td>
</tr>
<tr>
<td>7</td>
<td>Carbohydrates in food, their digestion, absorption of carbohydrates in the intestinal tract. Membrane transporters in general. Glucose transporters, their tissue localization, regulation. (TB) The process and regulation of glycolysis. (TB)</td>
<td>Experimental determination of P/O ratio (practice)</td>
</tr>
<tr>
<td>9</td>
<td>Regulation of blood glucose I. Glycogen mobilisation in liver and muscle. Phosphorylation cascade. Enzymes regulated by glucagon. Lactose synthesis (TB) Regulation of blood glucose II. Hyperglycaemia. Insulin secretion, its receptor and its effects on the organs (TB)</td>
<td>Structures and bioenergetic functions of the main lipids in the body and in foodstuffs</td>
</tr>
<tr>
<td>10</td>
<td>The biochemistry of diabetes. Type 1 and type 2 diabetes (TB) Dietary lipids, their digestion, absorption, metabolism of kilomicrons. Essential fatty acids (TL)</td>
<td>Measurement of blood glucose levels according to the oral glucose tolerance test. Non-enzymatic glycation of haemoglobin.</td>
</tr>
<tr>
<td>Week</td>
<td>Lectures</td>
<td>Practices (P): 2 hours every week</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>13</td>
<td>Cholesterol metabolism, cholesterol transport in the circulation (KK) Synthesis, metabolism and role of bile acids in the digestion of fats. Cholesterol deposition and uptake in cells (KK)</td>
<td>Determination of cholesterol and triglycerides (medical implications of plasma cholesterol levels)</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: none

Special study work required to successfully complete the course: None.

Requirements for participation in classes and the possibility to make up for absences:
Practices and seminars are mandatory. It is not possible to make up for missed practices/seminars. In case of absences amounting to more than 3 occasions, the semester is not acknowledged. Arriving to a practice/seminar with a delay of more than 10 minutes is considered an absence.

Methods to assess knowledge acquisition during term time:

Practice/seminar participation performance will be evaluated by the tutor: as such, maximum 10 points per semester can be obtained that may count towards the examination grade, see under “Grading system”.

Midterms: A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm). It is not obligatory to pass a midterm in order to be allowed to sit for the exam. However, the midterm points will be added as “points” to the result of the exam, as detailed in “Grading system”.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the exam, as detailed in “Grading system”.

Competition: The competition is held on the last week and consists of 70 multiple choice questions (MCQs). Only students who amass 14 or more points from the midterms may participate in the competition. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners may be exempted from the exam.

Requirements for signature: No credit will be given for absences exceeding 6 hours (3 occasions).

Type of examination: Form: written and oral test based on material of the official textbooks, lectures and practices/seminars published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/). See under “Grading system” for further details.

Requirements of the examination:
The material covered in the exam is the material of the lectures and practices/seminars in the topic, with the corresponding textbook chapters.
Method and type of evaluation:

Grading system: The grade of the exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, and v) in an oral exam following the written MCQ exam. The written MCQ exam and the oral exam will take place on the same day of the examination period.

The grading system is as follows:

(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.
Total points from (i) and (ii) cannot exceed 20 points.
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).
If the score of the MCQ exam is 49 or below, then the grade of the exam is ‘fail’.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the written part of the exam from the total points (MCQ+semester):

- 95–140: grade 5 (excellent)
- 85–94: grade 4 (good)
- 70–84: grade 3 (satisfactory)
- 55–69: grade 2 (pass)

Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. During the oral exam, the examiner will pick three questions from those MCQs that were correctly answered by the student. The student will have to elaborate properly on these questions. The final grade will be given based on the written and the oral part of the exam.

How to register for the examination?: The exam dates are announced on the 12th week of the semester. We provide at least one exam date each week. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Possibilities for exam retake: an exam can be re-taken only after two calendar days.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Harper’s Biochemistry (30th edition, or latest)

Online material published in the department’s website (http://semmelweis.hu/biokemia/en/)
THE SOCIOLOGY OF HEALTHCARE AND MEDICINE

Semester: half class in the first semester and half class in the second semester

Institute of Behavioural Sciences

Type of the course: compulsory

code: AOKMAG425_1A

credit: 2

Course leader: Dr. György Purebl

Groups 1-8 in the first semester, groups 9-16 in the second semester

Course objectives:
By the mid to late 20th century, the biomedical model in medicine was replaced by the biopsychosocial model. There are biological, psychological and social factors in the background of illness. This is the approach we take in this course in looking at various aspects of health, illness and medical work. Our aim is to introduce future medical doctors to the social factors they must be familiar with in working with patients. Topics include social stratification and health inequalities, the principles of health care systems, medicalisation and the changing medical profession, illness behaviour, intercultural issues in health care as well as the challenges of digital health.

Course Syllabus:
1. Introduction to medical sociology, basic concepts and principles. (lecture)
2. Health and illness in society, a historical transformation of mortality and morbidity patterns. (lecture)
3. Social stratification, social inequalities and health (lecture)
4. Intercultural healthcare (lecture)
5. The challenges of digital health (lecture)
6. Healthcare systems (Lecture)
7. Sociology and COVID 19- a revision class (Lecture)
8. Preparation for project work and for health care system workshop (practical)
9. Health care systems workshop (practical)
10. Global poverty and inequalities, Inequalities and health- social class (practical)
11. Inequalities and health: age, ethnicity and gender (practical)
12. The doctor- patient relationship in the 21st century (practical)
13. Illness behaviour (practical)
14. The challenges of health care professionals- coping with stress (practical)

Participation and making up for absences:
No less than 75% of all practices must be attended. One practical absence can be made up by undertaking an extra task set by the practical leader or by participating in the practical with another group.

Justification of the absence in the lectures and examinations:
Medical certificate

Checks during the semester (reports, written checks):
Students will be given topic related tasks during the practicals which they will have to complete in groups in order the get the signature. The tasks will involve finding topic related data in class, interpreting it and presenting it to the group, relating the topics discussed in class to the students’ own countries and experiences and sharing it with others, reading articles and summarising them and participating in games and activities. More information will be provided separately. The project work is not graded, but it is a requirement for the signature.
Requirements for the signature at the end of the semester:
Participating in 75% of the practices.
Doing the project work

Method of the calculation of marks:
The written examination is 100% of the final grade
Grades:
0-50 points – 1
51- 60 points -2
61-74 points -3
75-84 points -4
85 points and over 5

Type of the exam:
Written final exam to be held during the examination period consisting of multiple choice questions, true or false questions and an essay type case analysis based on lecture materials and the textbook. This is 100% of the final grade.

Requirements for the exam:
The material needed to study will be made available on Moodle.

Application for the exam: Neptun

Changing the application for the exam:
Neptun

Justification of the absence from the exam:
Medical certificate

Course and recommended text books:
Graham Scrambler (ed) Sociology as Applied to Health and Medicine, Palgrave Macmillan 2018- selected chapters only.
MEDICAL COMMUNICATION

Institute of Behavioural Sciences

Name of the course director: Prof. Dr. József Kovács
Name of the course leader: Dr. János Pilling

Credit value: 2 credits
Total number of hours: 28 lectures: 14 practices: 14 seminars: 0
Subject type: compulsory course
Subject code: AOKMAG670_1A

Objectives of the subject, its place in the medical curriculum:

Proper communication is an essential element of effective healing. Good communication helps to form a trusting relationship between the physician and the patient, it allows the doctor to gather effectively the information that underpins the diagnosis, and it improves the patient’s cooperation and adherence with treatments. The aim of education is partly to teach communication techniques that can make the daily tasks of doctors more effective: listening to, interviewing, informing and promoting cooperation of the patients. The subjects of education are also elements of the everyday doctor-patient relationship, which have recently come to the fore, such as e.g shared decision making, suggestive effects of medical communication, communication aspects of patient safety.

In addition to describing the general regularities of medical communication, the course also presents the specialities of communication in various areas of the health care. Thus, we deal with the peculiarities of communication with children or the elderly, discussion about sexual topics and the cultural competence of the doctor. In our education, we place great emphasis on the difficult issues of the doctor-patient relationship, so we deal with the communication of bad news and the prevention and management of aggression.

The main goal of the course is to teach special communication knowledge to medical students that can help them create proper doctor-patient relationship and improve their effectiveness in medical practice.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
SU NET and EOK buildings

Successful completion of the subject results in the acquisition of the following competencies:

Upon successful completion of the subject, the students will be able to
- effectively gather information to make a diagnosis by using appropriate questioning techniques;
- use communication techniques that facilitate the understanding and remembering during patient information;
- know and apply specific communication techniques to express their attention and empathy;
- use several communication techniques to improve the patient’s therapeutic cooperation;
- inform the patient about the possible risks of the treatments in accordance with the legal regulation, in an objective, yet non-alarming way;
- can activate the patient in order to become a partner in his own treatment as much as possible, and empower the patient himself to contribute as much as possible to his own recovery or improvement of his condition;
- have effective methods to facilitate lifestyle change;
- be aware of the suggestive effects that doctor’s communication can have; be able to use communication methods that put the positive effects of the doctor’s words at the service of cooperation and healing;
- be able to communicate in a way that suits the individual characteristics of the patient (age, different social and cultural backgrounds, different levels of health understanding, possible mental disorders or disabilities);
- be able to communicate on intimate issues without embarassment;
- know and be able to use communication methods to manage tensions and conflicts;
- breaking bad news in a compassionate way (eg news of incurable disease, news of death, news of congenital malformation);
- can effectively use modern technology for the purposes of medical communication;
- know and be able to use communication tools that increase patient safety.
Course prerequisites:
There are no prerequisites.

Number of students required for the course (minimum, maximum) and method of selecting students:
The completion of the course is compulsory for all students. Course is taught only in the first semester of the academic year, all students can register for the course. The recommended maximum number of students for practice is 15 students per group.

How to apply for the course:
Through the Neptun system.

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)

LECTURES: Week 1-7

Week 1	Introduction. Communication difficulties and possible solutions in the everyday medical practice.
Week 2	Promoting behavior change. The development of the patient-physician collaboration.
Week 3	Communication about functional complaints.
Week 4	The specialties of age in medical communication.
Week 5	Suggestive communication in medical practice.
Week 6	Breaking bad news. Disclosing medical errors.
Week 7	E-health: use of technological tools in health communication.

Practice: Week 8-14 (see times, venues and teachers to be announced)

Week 8	Seminar. Communication in everyday life and in the medical practice.
Week 9	Seminar. The active listening. Communication aspects in empathy.
Week 10	Patient information, patient education.
Week 11	Seminar. Promoting lifestyle change. suggestive communication techniques, motivational interview, shared decision-making.
Week 13	Seminar. Communication with tense, hostile patients, strategies to prevent violence. Communicating about intimate issues.
Week 14	Seminar. The cultural competence of the doctor. Communicating about complementary and alternative therapies.

Lecturers: Dr. Stauder Adrienne, Dr. Kollár János, Dr. Tóth Mónika Ditta, who are employees of Semmelweis University

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
- The Sociology of Healthcare and Medicine (possible overlap: the impact of modern technology on medical communication)
- Medical Psychology, Psychiatry (possible overlap: relationship and communication with people with mental disorders.)
- Bioethics (possible overlap: medical communication deals with the implementation in everyday practice of principles described in bioethics.)

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)
no special study work required
Requirements for participation in classes and the possibility to make up for absences:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature. It is possible to make up for ONE absence by participating in another seminar group the same week (only once in a semester, upon agreement with both teachers!)

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
There is no assessment during the term time.

Requirements for signature:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature.

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)

Exam topics list A:
1. The significance of medical communication. Misconceptions and facts about medical communication.
2. Doctor-patient consultation.
3. Promoting lifestyle change: the 5A and 5R methods; the transtheoretical model of behavior change.
5. Communication options for developing health literacy.
6. Communicating risks of treatments.
7. Shared decision making.
8. Suggestive communication in medical practice.
11. Cultural competence of the physician.

Exam topics list „B”
12. Communication about functional symptoms
13. Communication with patients using complementary and alternative treatments.
15. Communication with tense, hostile people.
17. Communication with patients having anxiety symptoms or addictions.
20. Communication with people living with disabilities.
21. Communication with the victims of abuse.
22. E-health: use of technological tools in health communication.
Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)

Final mark is based on an oral exam. Two topics – one from A list and one from B list should be reported on, at least at satisfactory (2) level. The average of the marks given for each topic gives the final mark.

How to register for the examination:
Through the Neptun system.

Possibilities for exam retake:
Through the Neptun system.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The oral exam is based on the course text book and the lecture handouts posted in Moodle.

Course text book:

Recommended text books:
McCorry, L.K. & Mason, J. (2011): Communication skills for the healthcare professionals. Lippincott Williams & Wilkins, Baltimore
Tamparo, C.D & Lindh, W.Q (2017): Therapeutic communication for health care professionals. Cengage Learning, Boston
INTRODUCTION TO MEDICAL INFORMATICS

Name of the educational organizational unit: SE EKK

Type of the subject: 1 practice / week
code: AOVINF244_1A
credit value: 1
Name of the lecturer of the subject:
Dr. Miklós Szócska

Teachers:
Dr. Tamás Iváncsy (PhD, lecturer)
Dr. Ádám Zoltán Tamus (PhD, associate professor)
Tamás Tóth (assistant lecturer)
Zoltán Sándor (PhD, senior lecturer)
Zoltán Tóth (PhD, senior lecturer)

Administrator: Ms Petra Rácz

Term: spring
The exercise of the subject in the in the realization of the aim of the education:
To introduce the students to the medical application of informatics, the characteristics of modern, integrated information systems with respect to quantitative aspects and to decision demands of the modern sciences. The medical informatics leans on methods of mathematics, statistics and computer sciences and it also includes from the different engineering, management and informatics procedures.
Select the desired course in Neptun when registering to the subject! Changing topics/groups is possible only according to the rules of the registration in Neptun! You must attend the course you have selected in Neptun!

OPTIONAL courses:

I. SCIENTIFIC COMMUNICATION COURSE
The course gives an introduction to the paper based and oral publications and presentations. The students have to find a medical problem (a topic) to work out during the course.
2. Structure of a scientific publication. The importance and meaning of the sections of the paper. Structure of an oral presentation.
3. Scientific publication in practice: finding and evaluating information and creating paper and presentation on the selected topic.

II. DATABASES COURSE
The course gives an introduction to structuring and retrieving data using databases. The students perform practical examples of data management and query using a current software solution.
1. Introduction to database theory and data modelling principles (the application, logical and physical models, basic concepts and objects).
2. Data handling in practice: planning a relational database, managing tables and fields
3. Information retrieval from databases: the role and structure of queries, performing basic queries
4. Data management via user interfaces – basic concepts and principles
III. BIOMEDICAL SIGNAL PROCESSING COURSE
The students learn about the basics of biomedical signals, their acquisition, digital storage and processing. They perform practical analysis of selected signal examples.
1. Introduction to biomedical signal processing, objectives of signal analysis, Components of human-instrument system
2. Examples of biomedical signals (electrical and mechanical signals), and transducers.
3. The basics of signal processing, the digitalizing (sampling, Shannon-theory, quantization).

IV. PRESENTATION TOOLS
The course provides an overview of visual representation of medical information for various audience. The students learn the use of several related tools, and work up a selected topic.
1. Introduction to presentation techniques: How to make a good presentation? – technical and non-technical skills, best practices
2. Types of medical information, online information sources
3. Visual representation of information: word cloud, infographic etc.
4. Online tools for creating and sharing presentations

Requirements of participation of the lessons and the possibility of substitution of the absence:
According to rules of the Studies and Exam Code. Attendance on at least 3 of the 4 practices is mandatory.

The mode of the certificate in case of absence from the lessons:
According to rules of the Studies and Exam Code. No certificate accepted.

The requirements of signature at the end of the term (including also the number and the type of the students’ exercises which are solved individual by them)
Attendance on at least 3 of the 4 practices is mandatory
The mode of acquisition of the mark:
Practical exercise

List of lecture notes, course books, study-aids and literature which can be used to acquisition of the syllabus:
The educational materials are available at http://dei-cloud.semmelweis.hu
Username and password is announced at the first practice.
INTRODUCTION TO PATIENT CARE

Institute: Department of Family Medicine
Lecturer: Dr. Péter Torzsa MD PhD
Tutor: Dr. Krisztián Vörös

lectures: 6×2 hours, practices: 6×3 hours/semester
Credit: 2

Second Semester

Thematic:
- An overview of medical profession.
- Formation of the consciousness of profession, personal careers.
- The attitude of the medical doctor. Communication with colleagues and the members of the medical staff.
- An overview of different levels of health care.
- The organization, function activity of the clinical department and general medicine praxis.
- Characteristics of the clinical work.
- Overview of the scientific activity of the clinical department. Raising interest on joining to it.
FIRST AID

Tutor: Dr. István Hornyák

Topics

- BLS (Basic Life Support)
- BLS
- AED (Automated External Defibrillator). PAD (Public Access Defibrillation)
- BLS + AED (management of situations)
- BLS + AED (Management of situations)
- Fractures, dislocation, sprain. Slings.
- Poisoning. Drugs. Drunkenness.
- BLS

Note: Participation at 75% of practices is necessary. Compensation of absences is possible in subsequent practices. Development in learning skills will be controlled all the time during the practices in the semester. Mode of certifying absences: oral – referring to practices. Requirements: The student should be able to recognize emergencies, and call for help start with BLS + AED provide airway management in unconscious patients provide first aid for patients complaining for chest-pain, shortness of breath, signs for hypoglycaemia and having suffered from fainting, shock condition, convulsion, injuries.

The performance of the above mentioned requirements at the last practice will be evaluated with “accepted” or “not accepted”.

MEDICAL TERMINOLOGY (Latin)

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi, associate professor, Director

90 minutes/week

Assessment: 3 written tests

Role of subject in fulfilling the aim of training:
Students get familiarized with the Latin and Greek terminology of medicine in order to facilitate the acquisition of other subjects. Special focus is dedicated to anatomy, physiology, pathology and pharmaceutics. Furthermore, the course provides an introduction into general scientific terminology.

Brief description of subject:
The main aim of the subject is:
1. to acquire a knowledge of about 500-600 Latin words and phrases as a minimum vocabulary (basic vocabulary of medical and scientific language),
2. the correct application of
 a) anatomical names,
 b) names of diseases
 c) names of drugs,
3. to understand diagnoses and prescriptions;
4. to learn about abbreviations used in prescriptions.
5. to be able to make a clear distinction between medical terms of English and Latin/Greek.

Course content of practical lessons:
1. Grammar:
 Nouns: the 5 Declensions
 Adjectives - construction of the most important attributive structures with the vocabulary of anatomy, clinical subjects and of pharmaceutics.
 Prepositions (in anatomical, clinical and pharmaceutical phrases)
 Numerals: Usage on prescriptions.
2. Texts containing:
 a) anatomical names;
 b) clinical and patho-anatomical diagnoses;
 c) prescriptions
3. Vocabulary

Latin and bilingual (Greek-Latin) nouns, adjectives, numerals and prepositions used in anatomy, the clinical subjects and pharmaceutics;

Course material, recommended text book(s), professional literature and supplementary reading(s)
Belák E. Medical Terminology for Beginners (earlier title: Medical Latin), Budapest: Semmelweis Kiadó.
Bakó A. Medical Terminology. Course material provided by the Institute in pdf.
MEDICAL HUNGARIAN I.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi, associate professor, Director

4 lessons per week, 2 credits,
Assessment: 2 oral tests (on weeks 7 and 14)

The aim of the subject:
The role of this subject is to help students acquire the Hungarian language skills that enable them to take anamnesis, ask the patient about medical history and present complaints and to develop strategies that help understanding Hungarian patients in their clinical practice. Students learn how to communicate with the patient during the examination of the thoracic organs, circulation, abdomen, locomotor and nervous systems. Furthermore, they get familiarised with basic medical documentation (e.g., patient’s chart). They develop the vocabulary necessary in their clinical practice, such as the names of symptoms and conditions.

Course content of practical lessons:

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduce yourself in Hungarian</td>
</tr>
<tr>
<td>2</td>
<td>What can I do for you? What languages do you speak? Where are you from? (Conjugation of verbs I.)</td>
</tr>
<tr>
<td>3</td>
<td>What do you do in Budapest? (Conjugation of verbs II)</td>
</tr>
<tr>
<td>4</td>
<td>Where do you live? (numbers, conjugation of verbs with „-ik”)</td>
</tr>
<tr>
<td>5</td>
<td>Roleplay exercises I</td>
</tr>
<tr>
<td>6</td>
<td>Roleplay exercises II</td>
</tr>
<tr>
<td>7</td>
<td>Oral interview (first midterm)</td>
</tr>
<tr>
<td>8</td>
<td>The human body, bodyparts</td>
</tr>
<tr>
<td>9</td>
<td>At the pharmacy</td>
</tr>
<tr>
<td>10</td>
<td>What is your complaint?</td>
</tr>
<tr>
<td>11</td>
<td>Talking about pain (location, duration)</td>
</tr>
<tr>
<td>12</td>
<td>At the clinics: patient’s data</td>
</tr>
<tr>
<td>13</td>
<td>Basics of history taking in Hungarian</td>
</tr>
<tr>
<td>14</td>
<td>Oral interview</td>
</tr>
</tbody>
</table>

Course material provided by the Department of Languages for Specific Purposes
MEDICAL HUNGARIAN II.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi, associate professor, Director
4 lessons per week, 2 credits,
Assessment: 2 oral tests (on weeks 8 and 14)

The aim of the subject:
The role of this subject is to help students acquire the Hungarian language skills that enable them to take anamnesis, ask the patient about medical history and present complaints and to develop strategies that help understanding Hungarian patients in their clinical practice. Students learn how to communicate with the patient during the examination of the thoracic organs, circulation, abdomen, locomotor and nervous systems. Furthermore, they get familiarised with basic medical documentation (e.g., patient’s chart). They develop the vocabulary necessary in their clinical practice, such as the names of symptoms and conditions.

Course content of practical lessons:

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revision – At the clinics: patient’s data</td>
</tr>
<tr>
<td>2</td>
<td>Family history; lifestyle, habits</td>
</tr>
<tr>
<td>3</td>
<td>Medical history – previous illnesses and surgeries</td>
</tr>
<tr>
<td>4</td>
<td>Medications, allergies, transfusion</td>
</tr>
<tr>
<td>5</td>
<td>Pain and fever</td>
</tr>
<tr>
<td>6</td>
<td>Present complaints I (heart, lungs)</td>
</tr>
<tr>
<td>7</td>
<td>Present complaints II (gastrointestinal)</td>
</tr>
<tr>
<td>8</td>
<td>Revision, oral interview (first midterm)</td>
</tr>
<tr>
<td>9</td>
<td>Present complaints III (faeces, urine)</td>
</tr>
<tr>
<td>10</td>
<td>Present complaints IV (swollen legs)</td>
</tr>
<tr>
<td>11</td>
<td>Present complaints V (dizziness, headaches)</td>
</tr>
<tr>
<td>12</td>
<td>Present complaints VI (neurological symptoms)</td>
</tr>
<tr>
<td>13</td>
<td>Revision, roleplay exercises</td>
</tr>
<tr>
<td>14</td>
<td>Oral interview</td>
</tr>
</tbody>
</table>

Course material provided by the Department of Languages for Specific Purposes
PHYSICAL EDUCATION I.

Department of Physical Education

Type of Subject: Compulsory
Code of Subject: AOKTSI009_1A
Credit: 0

Name of the Lecturer: Várszegi Kornélia

His/her workplace, phone number: 1107 Budapest, Zágrábi utca 14. +36-1/264-1408
Position: director

Objectives of the subject, its place in the medical curriculum:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behaviour.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Testnevelési és Sportközpont (Gymnasium) 1107 Budapest Zágrábi utca 14.

Successful completion of the subject results in the acquisition of the following competencies:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Number of students required for the course (minimum, maximum) and method of selecting students:
According to the Neptun admission system (20 – 60 students)

How to apply for the course:
via Neptun system

Detailed curriculum:

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Week</td>
<td>General information</td>
<td>Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra – curricular activities. Heart rate measurements, Ruffier test and evaluation of the results.</td>
</tr>
<tr>
<td>2nd Week</td>
<td>Athletic</td>
<td>Exercises to improve stamina. Preferably outdoors, on grass ground running, with the aim of developing good running and breathing techniques.</td>
</tr>
<tr>
<td>3rd Week</td>
<td>Flying disc</td>
<td>Introduction the basic of frisbee rules and practicing the basic technical elements in pairs and game situation.</td>
</tr>
<tr>
<td>4th Week</td>
<td>Tennis</td>
<td>Introducing the basis technical elements of tennis (forehand and backhand shot), improving hand-eye coordination.</td>
</tr>
<tr>
<td>5th Week</td>
<td>Agility ladder</td>
<td>Introducing different running, skipping techniques using agility ladder.</td>
</tr>
<tr>
<td>6th Week</td>
<td>Football</td>
<td>Introducing the basic technical elements of football. Single exercises and exercises in pairs to improve the ball skill development.</td>
</tr>
<tr>
<td>7th Week</td>
<td>Badminton</td>
<td>Introducing the basic technical and tactical elements of badminton. Introducing the basic rules and game.</td>
</tr>
<tr>
<td>8th Week</td>
<td>Circuit training</td>
<td>Bodyweight exercises and exercises with basic equipment to learn the correct functional movement pattern.</td>
</tr>
<tr>
<td>9th Week</td>
<td>Ruffier test and ball skill developing exercises</td>
<td>Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention.</td>
</tr>
</tbody>
</table>
10th Week: Meta
Introducing the game and the basic rules. Aim to improve the ball skill development, improve reaction time, speed and explosiveness.

11th Week: Obstacle course
To complete a built up obstacle course using different creeping, climbing, hovering, pulling, skipping, throwing techniques for general skill development.

12th Week: Core training
Postural correction exercises using the own bodyweight especially to strengthen the core muscles to prevent the health of the vertebrae.

13th Week:Skipping rope
Endurance and coordination developing exercises at different levels using skipping rope.

14th Week: Dumbbell exercises
Strengthening exercises with dumbbells.

P.E. Teachers:
Doharné Buczkó Anikó, Farkas Dominika, Kalmus Dánuel, Lehel Zsolt, Sótonyiné Hrehuss Nóra, Várszegi Kornélia, Weisz Miklós

Requirements for participation in classes and the possibility to make up for absences:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Methods to assess knowledge acquisition during term time:
There is no mandatory control during the term.

Requirements for signature:
Active participation in practice classes 10 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, or
2. does sports regularly and submits a certificate of association and federation.
PHYSICAL EDUCATION II.

Type of Subject: Compulsory
Code of Subject: AOKTSI009_2A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

His/her workplace, phone number: 1107 Budapest, Zágrábi utca 14. +36-1/264-1408
Position: director

Objectives of the subject, its place in the medical curriculum:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behaviour.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Testnevelési és Sportközpont (Gymnasium) 1107 Budapest Zágrábi utca 14.

Successful completion of the subject results in the acquisition of the following competencies:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Number of students required for the course (minimum, maximum) and method of selecting students:
According to the Neptun admission system (20 – 60 students)

How to apply for the course:
via Neptun system

Detailed curriculum:

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>General information</td>
<td>Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.</td>
</tr>
<tr>
<td>2nd</td>
<td>Basketball</td>
<td>Dribbling, passing and shooting drills in order to improve fine motor skills.</td>
</tr>
<tr>
<td>3rd</td>
<td>Bench exercises</td>
<td>Using the dimensions of the sport bench by running, skipping, jumping, lifting etc. exercises.</td>
</tr>
<tr>
<td>4th</td>
<td>Rubber band exercises</td>
<td>Strength and coordination training by taking advantage of the elastic features of the object.</td>
</tr>
<tr>
<td>5th</td>
<td>Floorball</td>
<td>Introducing the sport to the Students by exposing the major rules, proper technique of stick handling. Passing and shooting drills.</td>
</tr>
<tr>
<td>6th</td>
<td>„Double-trouble”</td>
<td>Strength and stretch training in pairs by applying different starting positions. Functional movements executed in pairs.</td>
</tr>
<tr>
<td>7th</td>
<td>Volleyball</td>
<td>Introducing the fundamental elements of the game (serves, hits, digs etc.) Exposing the major rules and techniques.</td>
</tr>
<tr>
<td>8th</td>
<td>Frisbee</td>
<td>Taking the next step into the game by applying tactical elements in match situations. Passing and catching drills in different moving forms.</td>
</tr>
<tr>
<td>9th</td>
<td>Ruffier test and ball skill developing exercises</td>
<td>Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention. Sport games on the side (Dodge-ball, King of the court etc.)</td>
</tr>
<tr>
<td>10th</td>
<td>Circuit training</td>
<td>General strengthening drills at each stations. Applying different intensity level, regarding the various conditions of the Students.</td>
</tr>
<tr>
<td>11th</td>
<td>Tennis</td>
<td>Involving the new strokes into the learning process: form of serves, the volleys, the smash etc.</td>
</tr>
</tbody>
</table>
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheerleader, men’s football, handball, basketball, volleyball)

P.E. Teachers:
Doharné Buczkó Anikó, Farkas Dominika, Kalmus Dániel, Lehel Zsolt, Sótonyiné Hrehuss Nóra, Várszegi Kornélia, Weisz Miklós

Requirements for participation in classes and the possibility to make up for absences:
The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.
Methods to assess knowledge acquisition during term time:
There is no mandatory control during the term.

Requirements for signature:
Active participation in practice classes 10 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, or
2. does sports regularly and submits a certificate of association and federation.
COMPULSORY SUMMER PRACTICE

SUMMER (NURSING) PRACTICE

Credit point: 2
Total hours: 160 practice
Type of course: compulsory
Course code: AOKNSG676_1M

Aim of the course, its position in the medical curriculum:
Introduction of the structure of the clinic/hospital and the operating of the given ward. Learning the process of patient care and nursing through practical training. Learning basic skills of everyday nursing tasks, which will be used during further medical practice and after completion of the medical training.

Acquired competences after successfully completing the course:
- Ability to assess basic nursing needs of the patient.
- Ability to detect, observe, and document patient’s vital signs (pulse, blood pressure, respiration, temperature).
- Ability to administer subcutaneous and intramuscular injection, collect blood, place venous cannula under supervision, recognise minor complications.
- Knowledge of basic skills of resuscitation.

Student enrolment requirements (minimum, maximum), method of student selection:
Number of attending students as given by the practical site. Valid Occupational Medical Examination certificate, certificate of occupational, fire, and environment protection training.

How to apply for course:
After applying on the NEPTUN site, contact clinical head nurse of the practical site/in case of a hospital contact hospital nursing board, regarding the beginning of the practice.

Detailed syllabus:
1st week: Introduction to the operating of the ward. Observing nursing activities, assessment and documentation of nursing needs, and patient’s environment. Actively taking part in everyday nursing care of patients with the support of nurses. Observing and acquiring communication skills with patients. Observing laboratory and other examination procedures, as well as preparation of patient for surgery/examination. Learning the use of personal protective equipment, as well as hygienic and antiseptic hand washing. Learning basic skills, protocol, and ward devices for resuscitation.

3rd week: Blood collection, administering injection, placement of venous cannula under supervision of nurse. Continuous practice of knowledge acquired during the first two weeks.

4th week: Continuous practice of knowledge acquired during the first three weeks.
Requirements for participation in classes and opportunities to make up for absences:
Two classes may be missed, further absences cannot be made up.

The criteria for end-of-term signatures:
Regular attendance of the practical. According to the Studies and Exams Code, the criteria for obtaining signature is at least 75% participation in the practical.

Type of exam:
practical

Exam requirements:
Student chooses one task from the list of given tasks, and performs the given task in practice. In connection with the task the student assesses the patient’s nursing care needs, and detects, observes, and documents vital signs (pulse, blood pressure, temperature, respiration).

Method and type of class marks:
Criteria for obtaining a signature is regular attendance of the practical, for the performance of the chosen item a mark is given: passed with excellence (5) – passed (3) – not passed (1).

How to apply for the exam:
The practical exam takes place on the last day of the practice.

Opportunity to repeat the exam:
The practical exam can be repeated two times.

The list of printed, electronic and online notes, textbooks, study aids and literature to be used to learn the curriculum (in case of online sources, html address):

Recommended literature:
Bokor, Nándor: Általános ápolástan és gondozástan (Medicina 2013.)

EXAMINATION ITEMS
1. Describe and demonstrate the process of hygienic hand disinfection.
2. Describe the daily routine of the ward, and the content of the nursing documentation.
3. After the patient left, tidy up the bed and its environment.
4. Describe possibilities of positioning patient in bed. Perform positioning taking patient’s comfort and safety needs into consideration.
5. Prepare for and perform tidying up patient’s bed, and bathe patient. Describe patient’s hygiene, comfort and safety needs, and inform patient about the nursing procedure.
6. Prepare for a non-independent patient’s need to defecate, and perform the necessary nursing procedure. Describe aspects of observation regarding the quality and quantity of the exudates.
7. Describe possible nutrition and fluid intake needs of the patient. Describe nursing tasks of enteral nutrition and sufficient hydration of the patient. Demonstrate leading a fluid chart.
8. Describe disinfection methods of the instruments and devices of the ward; explain asepsis and antisepsis.
9. A new patient is admitted to the ward. Assign patient to a hospital room, take nursing history, and fill out patient admission chart.
10. Measure weight, height, temperature, and respiratory rate of newly admitted patient, and indicate these values on patient’s chart and nursing documentation.
11. Prepare for and perform blood pressure measurement. Take the pulse. Indicate these values on patient’s chart and nursing documentation.
13. Prepare subcutaneous injection for administration. Describe procedure and possible complications of administration. Perform administration under supervision of nurse, fill out necessary documentation.
14. Prepare intramuscular injection for administration. Describe procedure and possible complications of administration. Perform administration under supervision of nurse, fill out necessary documentation.
15. Prepare blood pressure measurement and perform procedure under supervision of nurse. Describe possible complications of taking blood pressure.
17. Prepare for placing and intravenous drip administered for patient. Set up the infusion. Perform documentation regarding the infusion therapy.
19. Prepare for and perform bedside blood glucose measurement. Explain what the device indicates in case of high or low blood glucose levels. Indicate these values on patient’s chart and nursing documentation.
24. During medical rounds an elastic bandage was ordered for the patient’s lower limb. Apply elastic bandage and document procedure.
25. Describe nursing tasks regarding medication (distributing and administering medication). Perform identification of patient, administration of medication, and necessary documentation.
26. Describe possibilities and procedures of special medication administration forms (drip, inhalant, rectal, vaginal).
27. Describe personal protective equipment used at ward, and their application. Possible methods for prevention of nosocomial infections.
28. Describe general and specialist diagnostic methods of the ward, and the preparations necessary for the examinations.
29. A patient in shock is admitted to the ward during night shift. Describe symptoms of circulatory and respiratory failure, and their recognition. Prepare for initiation of basic resuscitation, and describe procedure.
BASIC MODULE
STUDY PROGRAMME

Second year in the 2022/2023 academic year

3rd Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscopic Anatomy and Embryology II.</td>
<td>2</td>
<td>2</td>
<td>4 Microscopic Anatomy and Embryology I., Macroscopic Anatomy and Embryology II., Cell Science</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Physiology I.</td>
<td>5,5</td>
<td>5</td>
<td>10 Macroscopic Anatomy II. Medical Biophysics II., Medical Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Biochemistry II.</td>
<td>3</td>
<td>2</td>
<td>5 Medical Biochemistry I.</td>
<td>final</td>
</tr>
<tr>
<td>Molecular Cell Biology I.</td>
<td>2</td>
<td>2</td>
<td>4 Medical Chemistry Medical Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Hungarian Medical Terminology III.</td>
<td>0</td>
<td>4</td>
<td>2 Hungarian Medical Terminology II.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>PE III.</td>
<td>0</td>
<td>1</td>
<td>0 PE II.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Clinical Medicine</td>
<td>0</td>
<td>12×2,5</td>
<td>2 Introduction to Patient Care</td>
<td>pract. mark</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Microbiology I.</td>
<td>2</td>
<td>2</td>
<td>4 Medical Biochemistry I., Cell Science</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Physiology II.</td>
<td>5,5</td>
<td>4,5</td>
<td>10 Medical Physiology I. Macroscopic Anatomy and Embryology II.</td>
<td>final</td>
</tr>
<tr>
<td>Molecular Cell Biology II.</td>
<td>3</td>
<td>2</td>
<td>5 Molecular Cell Biology I. Medical Biochemistry II</td>
<td>final</td>
</tr>
<tr>
<td>Immunology</td>
<td>2</td>
<td>1,5</td>
<td>3 Molecular Cell Biology I., Medical Biochemistry II</td>
<td>examination</td>
</tr>
<tr>
<td>Genetics and Genomics</td>
<td>2</td>
<td>1,5</td>
<td>3 Molecular Cell Biology I., Medical Biochemistry II</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Psychology</td>
<td>1</td>
<td>2,5</td>
<td>4 Medical Sociology – Health Care, Medical Communication</td>
<td>examination</td>
</tr>
<tr>
<td>Hungarian Medical Terminology IV.</td>
<td>0</td>
<td>4</td>
<td>2 Hungarian Medical Terminology III.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>PE IV.</td>
<td>0</td>
<td>1</td>
<td>0 PE III.</td>
<td>signature</td>
</tr>
</tbody>
</table>
LIST OF TEXTBOOKS (The list may change!)

6 Immunology seminars (e-book): http://gsi.semmelweis.hu
8 Medical Genetics and Genomics (e-book)

Recommended textbooks:

MEDICAL PHYSIOLOGY I.

Department of Physiology

Name of subject: Medical Physiology I.
Type of subject: Compulsory subject
Subject code: AOKELT792_1A
Credit Points: 10

Head of the Department: Dr. Attila Mócsai, Full Professor
Course Director: Dr. Péter Várnai, Full Professor
Tutor: Dr. András Balla

Aim of Medical Physiology course:
The goal of Medical Physiology course is to give the students the understanding of the concepts and principles of medical physiology. The lectures provide the information base while the seminars and practices provide the student with an opportunity to assimilate and integrate the material. Appropriate clinical perspectives are presented throughout the course.

Schedule of the subject:

Lectures:
1. Introduction, body fluids. Functions of cellular membranes, transport across membranes. Transepithelial transports.
3. Ion channels and resting membrane potential. Action potential. Physiology of nerve cells, synaptic transmission in the central nervous system.
5. Physiology of the blood.
6. Physiology of the heart I.: origin and spread of cardiac excitation Cardiac cycle. Regulation of cardiac output.

Practices:
- Blood cell counting, determination of hemoglobin concentration and hematocrit, measurement of erythrocyte sedimentation rate
- Leukocyte differential count on peripheral blood smear
- Typing of Blood Groups, Blood Coagulation Test
- Measurement of transport rate on red blood cells. Hemolysis
- Investigation of cardiac functions in situ
- Blood pressure measurement in humans
- Echocardiography
- Computer simulation: Neuromuscular junction
- Electromyography (EMG), nerve conduction velocity
- Recording and analyzing the human ECG
• Computer simulation: Skeletal and smooth muscle
• Effects of vagal nerve stimulation on cardiac functions
• Respiratory physiology calculations
• Evaluation of acid-base parameters with the Siggaard-Andersen nomogram

Attendance at classes: The lecture hours per week are 5.5; the practice hours per week are 5. The attendance of a minimum of 75% of practices is necessary for the end-term signature.

Absences:
No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. There are no extra practices.

Requirements for signature:
The attendance in minimum 75% of practices (including seminars) is necessary for the end-term signature. Students must write a lab report for each practice using the Practical Book. The Practical Book should be signed by the teacher not later than one week after the practice. Participation in the practices is compulsory. No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited.

Requirements of the examination:
Requirements of the exam: material of the Medical Physiology I.
The exam is oral exam. The students need to bring ID card and the laboratory report book to participate in the exam. The oral exam consists of two theoretical questions (I-II). The overall result of the oral exam is based on the two theoretical grades; a failed (1) theoretical question results in an overall failed (1) exam.

Lists of the theoretical questions can be found in the webpage of the Department of Physiology. The following rules will be enforced during the exams: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the exam place; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Registration for the exam:
Registration for the exam must be recorded through the NEPTUN system. Modification in the registration must be recorded through the NEPTUN system.

Absences from the exams:
Failing to certify absence or denying it cause registering “absence” = “nem jelent meg” in the lecture book and/or in the NEPTUN system.

List of textbooks:
MEDICAL PHYSIOLOGY II.

Type of subject: Compulsory subject
Subject code: AOKELT792_2A
Credit Points: 10

Head of the Department: Dr. Attila Mócsai, Full Professor
Course Director: Dr. Péter Várnaí, Full Professor
Tutor: Dr. András Balla

Prerequisite: Medical Physiology I. (subject to change by introducing the new curriculum), Microscopic Anatomy and Embryology II.

Aim of Medical Physiology course:
The goal of Medical Physiology course is to give the students the understanding of the concepts and principles of medical physiology. The lectures provide the information base while the seminars and practices provide the student with an opportunity to assimilate and integrate the material. Appropriate clinical perspectives are presented throughout the course.

Schedule of the subject:

Lectures:
2. Secretory functions of the gastrointestinal tract. Digestion and absorption of food.
3. Endocrine regulations. The hypothalamo-adenohypophyseal system; growth hormone, somatomedins.
5. Hormonal regulation of intermediary metabolism.
7. Function of the reproductive system: male sexual function; female sexual function; endocrinology of pregnancy, parturition, and lactation.
8. Introduction to neurophysiology. Physiology of nerve & glia cells.
9. Sensory functions.
10. Physiology of hearing and equilibrium.
11. Physiology of vision.
12. Motor functions.
13. Integration of autonomic responses.
14. Electroencephalogram (EEG); sleep phenomena. Learning and memory. Regulation of behavioural mechanisms, motivation; emotion.

Practices:
- Studies on circulatory reactions of a virtual rat
- Circulatory and respiratory reflexes in rabbit (Demonstration, Practice)
- Smooth muscle of rabbit small intestine
- Human pulmonary function tests – Spirometry
- Measurement of cardiac output in rat
- Pulse wave in human
- Oral glucose tolerance test (OGTT)
- Human pulmonary function tests – Body plethysmography
- Electrooculography (EOG) and investigation of the vestibular system
- Spiroergometry
- Human visual physiology
- Investigation of reflexes
- Practice for lab exam. Lab exam
Attendance at classes:
The lecture hours per week are 5.5; the practice hours per week are 4.5. The attendance of a minimum of 75% of practices is necessary for the end-term signature.

Absences:
No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. There are no extra practices.

Methods to assess knowledge acquisition during term time:
The knowledge of the students is tested in a written form on a weekly base. The written short tests cover the material of lectures of the previous week.

Requirements for signature:
The attendance in minimum 75% of practices (including seminars) is necessary for the end-term signature. Students must write a lab report for each practice using the Practical Book. The Practical Book should be signed by the teacher not later than one week after the practice. Participation in the practices is compulsory. No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited.

Final exams
In the examination period the students have to give final exam in the second semester.

Requirements of the examination:
Requirements of the final exam: material of the Medical Physiology I. and Medical Physiology II.
The final exam consists of practical, written and oral parts. The students need to bring student identity card and the laboratory report book to participate in the exam. The practical part (lab exam) takes place in the last week of the second semester. Passing the lab exam is not a prerequisite to participate on the other parts of the final exam. A failed or missed lab exam is taken into account in grading the final exam as fail (1) partial grade (a successful lab exam does not result in any grade). The written and oral part of the final exam is held on the same day. The topics of the final exam can be found in the webpage of the Department of Physiology (http://semmelweis.hu/elettan/teaching/second-semester). The following rules will be enforced during the exams: electronic devices must be kept in the baggage; baggage and overcoats should be placed next to the wall of the exam rooms; any form of communication is disallowed; students not complying with these rules will be disqualified immediately

Registration for the exam:
Registration for the exam must be recorded through the NEPTUN system.
Modification in the registration must be recorded through the NEPTUN system.

Absences from the exams:
Failing to certify absence or denying it cause registering “absence” = “nem jelent meg” in the lecture book and/or in the NEPTUN system.

List of textbooks:
MEDICAL BIOCHEMISTRY II.

Department of Medical Biochemistry Molecular Biology

Credits: 5
Number of lessons per week 70; lectures 42; practical course/seminar: 28
Type of the course: obligatory
Academic year: 2021/2022
Code of the course AOKBMT794_2A
Name of Head of the Department: Professor László Csanády M.D. Ph.D. D.Sc.
Contact details: H-1094 Budapest, Tűzoltó u. 37-47. Phone: +36-1-459-1500#60010 e-mail: csanady.laszlo@med.semmelweis-univ.hu
Position: Temporary Head of Department
Date of Habilitation: 2013 Its number: 341

Objectives of the subject, its place in the medical curriculum:
The aim of this course is to provide a comprehensive description of the metabolic processes in the human body, with particular emphasis on the medical aspects of these processes. The main focus of the semester is on intermediate metabolism, i.e. the amino acid and nucleotide metabolism following carbohydrate and lipid metabolism as described in Medical Biochemistry I and the integration of these processes in the individual organs and the human body as a whole. Furthermore, the course aims to develop the skills of medical students to understand the complex physiological processes in the human body at the molecular level. Medical students will learn clinical biochemical methods in case-oriented studies, and in addition, particularly promising and rapidly developing areas („medicine of tomorrow”) will be addressed. The medical biochemistry orientation of the course is the molecular basis of diseases that are of major public health concern (cardiovascular, neurodegenerative, cancer), with particular emphasis on potential molecular targets for therapy.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Successful completion of the subject results in the acquisition of the following competencies:
The knowledge of the structure, interactions and reactions of biological molecules and the interactions between organs of the higher integrated regulatory functions of the human body, is of paramount importance from a medical point of view and is essential for understanding physiological and pathological processes and, as a consequence, for making informed medical decisions.

Prerequisite (s) for admission to the course: Medical Biochemistry I.

Number of students required for the course (minimum, maximum) and method of selecting students:
Not applicable to compulsory subjects

How to apply for the course: Application is through the Neptun online system.

Detailed curriculum:
Lectures: 2x70 minutes per week (3 hours)
Lecturers: Prof. Csanády László (CSL), Prof. Kolev Kraszimir (KK), Dr. Komorowicz Erzsébet (KE), Dr. Törőcsik Beáta (TB), Prof. Tretter László (TL)
Practices (P): 2 hours each week
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Practices: 2 hours every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Nucleotide structure/functions. Fate of nucleotides of nutrient origin. Formation and elimination of uric acid, its biological role in the human body. Molecular background of gout (KK). Synthesis and degradation of purine and pyrimidine nucleotides. Effects of cytostatic drugs on nucleotide metabolism. (KK)</td>
<td>Metabolic role and medical significance of vitamin B12 and tetrahydrofolic acid</td>
</tr>
<tr>
<td>10</td>
<td>General overview of blood clot formation and dissolution. Fibrinogen and fibrin. Regulation of thrombin. Activation of prothrombin. Initiation of coagulation and amplification of the initiation signal. (KK) The coagulation inhibitor system and negative feedback mechanisms. (KK)</td>
<td>Molecular background of congenital thrombophilia. APTI, PTI tests</td>
</tr>
</tbody>
</table>
Week | Lectures | Practices: 2 hours every week
---|---|---
14 | Central molecules and drug targets of proliferation, differentiation, survival, angiogenesis, metastasis I (TB) Focal molecules and drug targets of proliferation, differentiation, survival, angiogenesis, metastasis II (TB) | Molecular basis of energy expenditure and its dysregulation in metabolic syndrome

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: None.

Special study work required to successfully complete the course: None.

Requirements for participation in classes and the possibility to make up for absences:
Practices and seminars are mandatory. It is not possible to make up for missed practices/seminars. In case of absences amounting to more than 3 occasions, the semester is not acknowledged. Arriving to a practice /seminar with a delay of more than 10 minutes is considered an absence

Methods to assess knowledge acquisition during term time:
Practice/seminar participation performance will be evaluated by the tutor: as such, maximum 10 points per semester can be obtained that may count towards the final grade, see under “Grading system”.

Midterms: A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm).
It is not obligatory to pass a midterm in order to be allowed to sit for the final exam. However, the midterm points will be added as “points” to the result of the final exam, as detailed in “Grading system”.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the final exam, as detailed in “Grading system”.

Competition: The competition is held on the last week and consists of 70 multiple choice questions (MCQs). Only students who amass 14 or more points from the midterms may participate in the competition. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners will be exempted from the final exam.

Requirements for signature: No credit will be given for absences exceeding 6 hours (3 occasions).

Type of examination: final; Form: written and oral test based on material of the official textbooks, lectures and practices/seminars published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/). See under “Grading system” for further details.

Requirements of the examination: The material covered in the exam is the material of the lectures and practices/seminars in the topic, with the corresponding textbook chapters.
Method and type of evaluation:
Grading system: The grade of the final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, and v) in an oral exam following the written MCQ exam. The written MCQ exam and the oral exam will take place on the same day of the examination period.

The grading system is as follows:
(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.

Total points from (i) and (ii) cannot exceed 20 points.
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).

If the score of the MCQ exam is 49 or below, then the grade of the final exam is 'fail'.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the written part of the final exam from the total points (MCQ+semester):
95- 140: grade 5 (excellent)
85- 94: grade 4 (good)
70- 84: grade 3 (satisfactory)
55- 69: grade 2 (pass)

Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. During the oral exam, the examiner will pick three questions from those MCQs that were correctly answered by the student. The student will have to elaborate properly on these questions. The final grade will be given based on the written and oral part of the exam.

How to register for the examination?: The exam dates are announced on the 12th week of the semester. At least one exam date per week will be provided. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Possibilities for exam retake: An exam can be retaken after two calendar days.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material: Harper’s Biochemistry (30th edition, or latest)

Online material published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/)
MOLECULAR CELL BIOLOGY I

Institute of Biochemistry and Molecular Biology
Department of Molecular Biology
EOK Building, H-1094 Budapest, Tűzoltó u. 37-47.

Lecturer of the course: Miklós Csala MD, DSc (csala.miklos@med.semmelweis-univ.hu)
Course coordinator: Gergely Keszler MD, PhD (keszler.gergely@med.semmelweis-univ.hu)
Credit: 4
Number of lessons per week: lectures: 2; practicals: 2
Subject code: AOKMBT795_1A

The subject provides the foundations of modern molecular medicine, emphasizing points of interest for diagnostics, intervention and therapeutic applications. It serves as a base for several fields in medicine, such as molecular pathology, molecular diagnostics, pharmacology, gene therapy and medical biotechnology.

Prerequisites for subject registration:
Successful exams in Medical Chemistry as well as in Medical Biochemistry I.

Lectures:
1. Introduction to molecular cell biology
2. Structure and function of nucleotides and nucleic acids. Packaging of DNA into chromatin
3. DNA packaging in pro- and eukaryotic cells; the role of topoisomerases
4. Structure of the human genome 1
5. Structure of the human genome 2
6. Principles of DNA replication. Replication in prokaryotes
7. Replication in eukaryotes
8. DNA repair
9. Transcription in prokaryotes 1
10. Transcription in prokaryotes 2
11. Transcription in eukaryotes, mRNA processing
12. Regulation of transcription
13. Alternative ways to regulate eukaryotic gene expression
14. Nuclear receptors. Transcriptional factors, DNA-binding domains
15. MicroRNAs
16. Epigenetics
17. The genetic code, translation 1
18. The genetic code, translation 2
19. The genetic code, translation 3
20. Posttranslational modification of proteins
21. Protein folding
22. Quality control
23. Protein targeting into metabolic compartments 1
24. Protein targeting into metabolic compartments 2
25. Proteostasis, the ubiquitin–proteasome system
26. Mechanisms of autophagy
27. Molecular biology of viruses 1
28. Molecular biology of viruses 2
Practicals: (4x45 min every other week):
1. Introduction, Biuret test, Ellmann's reaction, consultation
2. Cell fractions I
3. Cell fractions II
4. Consultation
5. Regulation of beta-galactosidase expression
6. Purification of a bacterially expressed protein by affinity chromatography
7. SDS-PAGE and western blot

Acknowledgment of the semester:
Attendance of at least 75% of the practical lessons is prerequisite of acknowledging the semester. In case of more than two missed labs the semester cannot be acknowledged and the student is not going to be allowed to sit for the terminal exam. Missed practicals can be made up only in the same week with another group; certificate of participation issued by the host teacher has to be presented by the student to his/her own teacher. Students can collect “practical points” during the labs. These points are taken into account at the Molecular cell biology II. final exam at the end of the academic year.

Examination and grading system:
The oral exam is based on the topic list announced in the beginning of the semester, and it takes place before a committee of two (examiner and co-examiner). Students pick three random questions from the DNA, RNA and Protein group of the following topic list. The exam can be passed if all three topics are sufficiently answered.

Topic list:

I. DNA
1. Chemical structure of nucleotides; primary and secondary structures of nucleic acids (DNA and various RNAs)
2. Condensation levels of DNA in the eukaryotic cells; the role of topoisomerases and chromatin proteins
3. Structure of the human genome: coding and gene regulatory sequences; non-coding genomic sequences: introns, pseudogenes, repetitive sequences
4. Principles of the semiconservative DNA replication; replication fork, leading and lagging strand
5. DNA replication in the pro- and eukaryotic cells; comparison of the enzymes, proteins involved
6. The telomere; function and significance of the telomerase
7. Common types of DNA damage and repair mechanisms; DNA lesions versus mutations
8. Repair of DNA deamination
9. Formation and repair of thymine dimers
10. Formation and repair of DNA mismatch
11. Formation of spontaneous point mutations; DNA polymorphism; possible effects of point mutations on the encoded proteins

II. RNA
12. Structure and function of RNA polymerase of *E. coli*; initiation of transcription in prokaryotes; the prokaryotic transcription unit
13. Termination of transcription in prokaryotes; post-transcriptional RNA modifications in prokaryotic cells
14. Regulation of transcription in prokaryotes
15. The eukaryotic transcription unit; initiation and termination of transcription in the eukaryotic cells
16. Regulation of transcription in eukaryotes
17. Maturation of mRNA
18. Regulation of the eukaryotic gene expression by proteins binding to UTR segments of mRNA
19. Formation and regulatory functions of microRNAs in eukaryotic cells
20. Significance of DNA methylation and histone modifications
21. Modulation of eukaryotic mRNA maturation, and subsequent sequence modifications in mRNA – their roles in the control of gene expression
22. DNA-binding proteins and their characteristic structural motifs with examples
23. Structure and function of nuclear receptors; steroid-thyroid receptors and the aryl hydrocarbon receptor
III. Proteins
24. The genetic code; codon-anticodon interaction; function and role of aminoacyl-tRNA synthetases
25. Structure and function of the ribosome; the ribosome cycle; role of tRNA in translation
26. Initiation of translation in pro- and eukaryotic cells
27. Regulation of eukaryotic translation; the role of eIF2α phosphorylation
28. Elongation and termination of translation in pro- and eukaryotic cells; pharmacological inhibitors of translation
29. Post-translational modifications of proteins, characteristic modifications in the endoplasmic reticulum
30. Maturation and quality control of proteins; ERAD
31. Protein targeting within the secretory pathway; targeting to peroxisome or mitochondrion; entry of lysosomal proteins and substrates to be degraded into the lysosome
32. The concept of proteostasis; possible modes of intracellular protein degradation
33. Structure, function and inhibition of the proteasome; TAP
34. Different types of autophagy; role of the lysosomes
35. The lytic replication cycle of bacteriophages; strategies of bacteria and phages to distinguish foreign DNA from their own
36. The lysogenic cycle of bacteriophages; regulation of gene expression in the prophage; phage induction
37. Classification of animal viruses according to their replication mechanism; structure and replication of retroviruses

Recommended textbook
1. Lodish: Molecular Cell Biology (8th edition)
MOLECULAR CELL BIOLOGY II.

Institute of Biochemistry and Molecular Biology
Department of Molecular Biology
EOK Building, H-1094 Budapest, Tűzoltó u. 37-47.

Lecturer of the course: Miklós Csala MD, DSc (csala.miklos@med.semmelweis-univ.hu)

Course coordinator: Gergely Keszler MD, PhD (keszler.gergely@med.semmelweis-univ.hu)

Credit: 5

Number of lessons per week: lectures: 3; practicals: 2

Subject code: AOKMBT795_2A

The subject provides the foundations of modern molecular medicine, emphasizing points of interest for diagnostics, intervention and therapeu- tic applications. It serves as a base for several fields in medicine, such as molecular pathology, molecular diagnostics, pharmacology, gene therapy and medical biotechnology.

Prerequisites for subject registration:
Successful exams in Molecular Cell Biology I and Medical Biochemistry II

Lectures:

1. Control of the cell cycle 1
2. Control of the cell cycle 2
3. Control of the cell cycle 3
4. Control of the cell cycle 4
5. Programmed cell death – apoptosis 1
6. Programmed cell death – apoptosis 2
7. Molecular basis of tumorigenesis
8. Types of non-apoptotic programmed cell death
12. Methods in molecular biology 4: DNA cloning
15. COVID-19 – molecular biological aspects
16. Signal transduction 1
17. Signal transduction 2
18. Signal transduction 3
19. Signal transduction 4
20. Intracellular signals: mTOR, AMP kinase, hypoxia
21. Mechanisms of ageing
22. Components of the cytoskeleton. Molecular motor proteins
24. Formation of the metabolome of cellular compartments
25. Signaling in organelle stress
26. Extracellular matrix, tissue architecture, adhesion molecules
27. Methods in cell biology (cell cultures, cell fractionation, in vivo microscopy)
Practicals: (4x45 min every other week):

1. Genotyping of a taste receptor SNP by PCR-RFLP 1: *in silico* design
2. Genotyping of a taste receptor SNP by PCR-RFLP 2: DNA isolation and PCR
3. Genotyping of a taste receptor SNP by PCR-RFLP 3: restriction digestion and electrophoresis
4. Molecular cloning and *in vitro* protein synthesis 1: recombinant DNA construction, bacterial transformation
7. Lab midterm exam, consultation

Acknowledgment of the semester:
Attendance of at least 75% of the practical lessons is prerequisite of acknowledging the semester. Students can collect “practical points” during the labs. An optional, written practical midterm test can be taken during the last practical lesson (topics: practicals of the whole subject, i.e. both semesters). Performance at the laboratory activity during the whole semester is also taken into account at the evaluation. Students, who achieve a minimal score of 25 are exempt from taking a laboratory question in the final exam. This bonus is valid throughout the entire exam period of the semester.

Examination and grading system:
The oral exam is based on the topic list announced in the beginning of the semester, and it takes place before a committee of two (examiner and co-examiner). Students pick five random questions from each group of the following topic list. The exam can be passed if all five topics are sufficiently answered.

Topic list

I. DNA and RNA
1. Chemical structure of nucleotides; primary and secondary structure of nucleic acids (DNA and different types of RNA)
2. Condensation of the genetic material in pro- and eukaryotic cells; the role of topoisomerases and chromatin proteins
3. Structure of the human genome: coding and regulatory sequences; noncoding genomic sequences: introns, pseudogenes, repetitive sequences
4. The role of genetic variations in the pathogenesis of diseases; methods to study genetic factors
5. Principles of the semiconservative DNA replication; replication fork, leading and lagging strand synthesis
6. Comparison of DNA-replication in pro- and eukaryotes
7. Telomeric repeat sequences: replication of the telomeric regions of eukaryotic chromosomes; functions and importance of the telomerase
8. The most important types of DNA damage; repair of base deamination
9. Formation and repair of thymine dimers; mismatch repair
10. Types of point mutations; mechanisms of their development; possible effects of DNA sequence variations on the corresponding protein
11. Structure and function of the RNA-polymerase of *E. coli*; initiation and termination of transcription in prokaryotes
12. Characterization, role and synthesis of different types of RNA
13. Regulation of transcription in prokaryotes, definition of operon; positive and negative regulation
14. Structure of the eukaryotic genes, initiation and termination of transcription in eukaryotes
15. Regulation of the transcription in eukaryotes
16. Processing of the eukaryotic mRNA
17. Function and application of PCR and real-time PCR
18. Methods for the investigation of genetic mutations and polymorphisms (RFLP, allele-specific PCR, DNA-sequencing and primer extension)
19. Generation and application of recombinant DNA, reporter- and expression vectors
II. Post-transcription
20. Regulation of eukaryotic gene expression at post-transcriptional level (alternative splicing, RNA editing, regulation of RNA stability, RNA quality control)
21. Regulation of eukaryotic gene expression by RNA interference (miRNA, siRNA)
22. Epigenetic regulation of eukaryotic transcription: the role of DNA methylation and histone modifications
23. The genetic code; structure and function of tRNAs; aminoacyl-tRNA synthetases; codon-anticodon connections
24. The structure of prokaryotic and eukaryotic ribosomes; the ribosome cycle; binding of tRNA to ribosomes
25. Initiation of the translation in pro- and eukaryotes; regulation of eukaryotic translation; the role of phosphorylation of eIF2α
26. Elongation and termination of pro- and eukaryotic translation; pharmacological inhibitors of translation
27. Post-translational modifications of proteins
28. Types, structure and synthesis of collagen
29. Investigation of gene expression by real-time PCR and DNA-microarray methodology
30. Definition of proteostasis; types of intracellular protein degradation
31. Structure and function of the proteasome; role of immune-proteasome and TAP
32. Types, mechanism and role of autophagy
33. Lytic and lysogenic replication cycles of bacteriophages
34. Classification of animal viruses; structure and replication of retroviruses
35. Principles of human gene therapy (in vivo vs. ex vivo methods, gene augmentation, CRISPR/Cas9 system)
36. Biomedical application of genetic engineering processes (transgenic animals; knock-out, knock-in and knock-down techniques; cloning)

III. Signal transduction and cell cycle
37. Nuclear receptors: steroid, thyroid, retinoid and Ah receptors
38. Classification and function of membrane receptors
39. Types and functions of GTP-binding proteins in signaling
40. Activation mechanisms of serine / threonine protein-kinases with examples
41. cAMP signaling pathway; regulation of gene expression by cAMP
42. Phosphatidylinositol signaling pathways
43. NFκB and TGFβ signaling
44. Structure and function of tyrosine kinase receptors, the Erk1 / Erk2 MAP kinase cascade
45. Insulin signaling
46. Integrating role of mTOR, and its effects on translation
47. Role of AMPK in the regulation of the metabolism and autophagy
48. Mechanisms of cellular oxygen sensing; adaption to hypoxia
49. Regulation of the cell cycle in the G1 phase, transition to S phase
50. Regulation of the cell cycle in the G2 and M phases
51. Molecular sensors detecting DNA damage and completion of DNA replication during the cell cycle
52. Molecular background of tumor generation
53. Structure and function of the apoptosome, DISC and PIDDosome complexes
54. Members of the Bcl-2 superfamily and their roles in various apoptotic pathways, the „survival signal”
55. Function and activation of apoptotic caspases, role of granzyme B
56. Types of non-apoptotic programmed cell death
57. Regulation of p53 levels and activity; role of p53 in determining the cell’s fate
58. Molecular mechanisms involved in aging
IV. Cell Biology
59. Principles of the organization of the eukaryotic cells; compartmentation; main features of subcellular organelles
60. Structure of cytoskeleton; structure and function of motor proteins
61. The protein secretory pathway; role of the Rab cycle in the regulation of vesicular transport
62. Endo- and exocytosis
63. Formation of the proteome of subcellular organelles; principles and mechanisms of protein sorting
64. Protein targeting in the secretory pathway
65. Protein targeting into mitochondria and peroxisomes; uptake of substrates into lysosomes
66. Nuclear import and export of macromolecules
67. Endoplasmic reticulum stress, connection between the Unfolded Protein Response (UPR) and apoptosis
68. Protein quality control in the endoplasmic reticulum; the fate of misfolded proteins; ERAD
69. Characteristics of the proteome of subcellular organelles; maintenance of the internal milieu of subcellular organelles
70. Role of the extracellular matrix in signal transduction (e.g., integrin receptors), role of the extracellular matrix in the formation of metastasis
71. Methods in cell biology: cell culturing, cell fractionation, in vivo microscopy, flow cytometry, FACS

V. Lab
72. Quantification of proteins by biuret reaction and Ellmann-method
73. Investigation of subcellular cell fractions
74. Investigation of the gene expression in prokaryotes: induction of β-galactosidase in E. coli
75. Purification of a bacterially expressed protein by affinity chromatography
76. SDS-polyacrylamide gel electrophoresis and Western blot
77. In silico tools in molecular biology
78. Genotyping of the TAS2R38 tasting receptor by PCR-RFLP
79. Analysis and generation of a recombinant DNA
80. In vitro transcription and translation
MEDICAL MICROBIOLOGY I.

Institute of Medical Microbiology

Program Director: **Prof. Dr. Dóra Szabó**
Tutor: **Dr. Ágoston Ghidán**

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (2 hours per week)</th>
</tr>
</thead>
</table>
| 1. | Introduction. General information about the tuition.
The place of Medical Microbiology among natural sciences, its significance, sub-fields and short history.
Fundamentals of the morphology, physiology and genetics of bacteria. |
| 2. | Pathogenic nature and virulence of bacteria.
Pathomechanism, molecular pathogenesis, virulence factors. Infection and disease. |
| 3. | Defence mechanisms of the host against infections.
Active and passive immunisation. Vaccines. |
| 4. | Antibacterial drugs:
Modes of action and interactions of antibacterial drugs.
Principles and practice of the antibacterial chemotherapy. Origin, mechanisms, induction, transfer, spreading, elimination and control of resistance of bacteria against antibacterial drugs |
| 5. | Introduction to the classification of medically important bacteria: fundamentals of taxonomic, epidemiological, nosological, as well as pathogenetical classification.
Gram-positive non-spore forming rods: Corynebacterium, Listeria, Erysipelothrix, Lactobacillus
Normal flora of the vagina. |
Normal flora of the skin. |
| 7. | Gram-negative aerobic and microaerophilic cocci and coccobacilli: Neisseriaceae, Pasteurellaceae, Haemophilus genus
Normal flora of the upper respiratory tract. |
| 9. | Gram-negative facultative anaerobic rods
Normal flora of the gastrointestinal tract.
Extraintestinal diseases caused by Gram-negative enteral bacteria.
Pathogens of the gastrointestinal tract I: Vibrio, pathogenic Escherichia coli, Campylobacter, Helicobacter. |
| 10. | Pathogens of the gastrointestinal tract II: Yersinia (yersiniosis), Shigella (shigellosis), Salmonella (salmonellosis). The enteral fever (Salmonella typhi and paratyphi), as well as Yersinia pestis. |
| 11. | Gram positive aerobic and anaerobic spore-forming bacteria: Bacillus and Clostridium genus
Obligate anaerobic bacteria and associated infections:
Gram-positive: Peptostreptococcus, Propionibacterium, Eubacterium, Bifidobacterium, Arachnia,
Gram-negative: Veillonella. Bacteroides, Fusobacterium |
| 12. | Acid-fast bacteria: Mycobacterium, Nocardia. Actinomyces |
| 14. | Rickettsiales, Chlamydiales, Mycoplasmatales |
Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Bacteriology Practicals (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction. Rules and instrumentation of the safe handling of microbes. Safety in the laboratory. Basic microbiological methods I: Microscopic examinations.</td>
</tr>
<tr>
<td>2.</td>
<td>Basic microbiological methods II: Cultivation of bacteria and biochemical activity of bacteria</td>
</tr>
<tr>
<td>3.</td>
<td>Basic microbiological methods III: Sterilisation. Disinfection</td>
</tr>
<tr>
<td>4.</td>
<td>Basic microbiological methods IV: Susceptibility of bacteria to antimicrobial drugs</td>
</tr>
<tr>
<td>5.</td>
<td>Basic microbiological methods V: In vitro immunological reactions</td>
</tr>
<tr>
<td>7.</td>
<td>Systematic bacteriology II: Identification of Gram-positive cocci: Staphylococcus</td>
</tr>
<tr>
<td>8.</td>
<td>Systematic bacteriology III: Identification of Gram-positive cocci: Streptococcus</td>
</tr>
<tr>
<td>9.</td>
<td>Systematic bacteriology IV: Identification of Gram-negative cocci and coccobacilli, and Gram negative aerobic rods</td>
</tr>
<tr>
<td>10.</td>
<td>Systematic bacteriology V: Identification of Gram-negative facultative anaerobic rods</td>
</tr>
<tr>
<td>11.</td>
<td>Systematic bacteriology VI: Identification of the aerobic and anaerobic spore-forming bacteria, as well as the obligate anaerobic and microaerophilic bacteria</td>
</tr>
<tr>
<td>12.</td>
<td>Midterm examination II. and Systematic bacteriology VII: Identification of irregular Gram-positive rods</td>
</tr>
<tr>
<td>13.</td>
<td>Systematic bacteriology VIII: Spirochaetes</td>
</tr>
<tr>
<td>14.</td>
<td>Systematic bacteriology IX: Rickettsiae, Chlamydiales and Mycoplasmatales</td>
</tr>
</tbody>
</table>
MICROSCOPIC ANATOMY AND EMBRYOLOGY II.

Department of Anatomy, Histology & Embryology

Credit value: 4
Number of lessons per week: 4 lectures: 2 practical course: 2 seminar: 0

Type of the course: compulsory course

Subject code: AOKANT674_2A
Name of the course leader: Dr. Alán Alpár, Professor, Head of Department
Contact details: Semmelweis University, Department of Anatomy, Histology and Embryology, +36 1 459 1500 / 53609

Objectives of the subject, its place in the medical curriculum:
Demonstration of the fine structure of cells and tissues composing the organs of the human body specifically to provide the future clinicians/medical doctors with a valid body of information describing the microscopical elements of clinically significant morphological structures (including cell biology, general histology and the histology of organs).
The part covering the microscopy of the CNS provides the students with a basic knowledge concerning the major roles of the brain together with the spinal cord with special reference to function and structure. The development of the nervous systems together with the detailed morphological/histological/developmental description of organs of special senses as well as the endocrine system will also be discussed.
Teaching is done in the form of lectures and histology laboratory classes

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Understanding the microscopical composition of the human body together with the understanding of human development in order to draw parallels with macroscopical anatomy. Clear understanding of histological structure and function. Ability to identify basic structural elements within the tissue specimen. Identification of general directions/landmarks within digitized tissue slides.

Course prerequisites:
Cell science,
Microscopic anatomy and embryology I,
Macroscopic Anatomy and Embryology II.

Number of students required for the course (minimum, maximum) and method of selecting students:
Obligatory for all registered students, on the basis of registration via the NEPTUN system.
How to apply for the course:
Via the NEPTUN system.
Detailed curriculum:

List of lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
</tr>
</thead>
</table>
| 1. week | Cellular components of lymphatic tissue. Thymus, tonsils, MALT
Structure and circulation of lymph nodes and spleen |
| 2. week | Nerve tissue
Development of the neural tube, craniocaudal and dorsoventral differentiation. Divisions of the central nervous system |
| 3. week | Formation and derivatives of the neural crest and placode ectoderm
Fine structure of the spinal cord (spinal reflexes, receptors, effectors) |
| 4. week | Brain tracts, neurotransmitters, neuronal circuits, "connectomics"
Central autonomic nervous system. Monoaminergic and cholinergic neurones and pathways.
"Ascending Reticular Activating System" (ARAS) |
| 5. week | Somatosensory system. Spinal and trigeminal sensory pathways. Thalamus, cortical areas.
Viscerosensory system. Role of the reticular formation, thalamus, insula and the prefrontal cortices in visceral sensory activities |
Neuroanatomy of movements/locomotion I. Motor cortical areas, planning and programming of movements. Motor pathways |
| 7. week | Neuroanatomy of movements/locomotion II. The role of cerebellum and basal ganglia in eliciting movements.
Gait control mechanism.
Visceromotor system. Control of micturition. Spinal motor reflexes. |
| 8. week | External ear. Middle ear
Fine structure of the labyrinth, tracts of the vestibular system. Control of balancing and posture together with the movements of the eye and head. Awareness of spatial position. |
| 10. week | Fibrous and vascular coats of the eyeball. Lens, chambers of the eye, vitreous body, accommodation. Lacrimal gland, lacrimal apparatus.
Inner coat of the eyeball, retina. Development of the eye. |
Endocrine system I. Hypothalamus, the hypothalamo-hypophysial system, epiphysis |
| 12. week | Endocrine system II. Thyroid, parathyroid, adrenal glands.
Energy metabolism, neuroanatomy of food intake, taste sensation and olfaction. Structure and functional significance of the reward system. |
| 13. week | Limbic system. Amygdala, hippocampus.
Circadian rythm, sleep/wake cycle; neuroanatomy of resting state and activation. |
Cognitive functions. Neuroanatomy of determination, planning, alertedness together with learning&memory, personality, consiousness and creativity. |
Histology laboratories

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Lymphatic system I.</td>
</tr>
<tr>
<td>2nd</td>
<td>Lymphatic system II.</td>
</tr>
<tr>
<td>3rd</td>
<td>Histology of the peripheral nervous system</td>
</tr>
<tr>
<td>4th</td>
<td>Microscopy of the CNS – consultation 1.</td>
</tr>
<tr>
<td>5th</td>
<td>Histology of the central nervous system</td>
</tr>
<tr>
<td>6th</td>
<td>Microscopy of the CNS – consultation 2.</td>
</tr>
<tr>
<td>7th</td>
<td>Microscopy of the CNS – consultation 3.</td>
</tr>
<tr>
<td>8th</td>
<td>Midterm test</td>
</tr>
<tr>
<td>9th</td>
<td>Histology of the organ of hearing</td>
</tr>
<tr>
<td>10th</td>
<td>Histology of the organ of vision I.</td>
</tr>
<tr>
<td>11th</td>
<td>Histology of the organ of vision II.</td>
</tr>
<tr>
<td>12th</td>
<td>Skin. Endocrine system 1.</td>
</tr>
<tr>
<td>13th</td>
<td>Midterm</td>
</tr>
<tr>
<td>14th</td>
<td>Endocrine system 2.</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses).

Possible overlaps of themes:
- Macroscopic Anatomy I - II.
- Cell sciences, cell biology
- Certain chapters of Biochemistry. The endocrine and central nervous systems are also discussed in Physiology

Special study work required to successfully complete the course:
None

Requirements for participation in classes and the possibility to make up for absences:
Active participation in histology laboratory classes is obligatory for every student. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the histology laboratory classes.

Methods to assess knowledge acquisition during term time:
The knowledge of students will be checked in written (Moodle) midterm tests (held prospectively in weeks 8 and 13). Attendance is obligatory at the two midterm tests. Students absent from the tests should reattend at one of the offered retakes. The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Requirements for signature:
Active participation in at least 75% of dissection room sessions, including the midterm tests (irrespective of the result) is obligatory for every student.

Type of examination:
Final (written and oral) examination, topics: subject matter of the two semesters (Microscopic Anatomy and Embryology I-II.). Examiners are delegated by the Course Director with the consent of the Head of Department. Final examinations consist of written theoretical and oral practical parts.
Requirements of the examination:
During the final examination the knowledge of students will be tested. Final examinations are composed of written (theoretical) and oral (practical) parts with the latter being conducted with the use of digitized histological tissue slides.
1. Written pretest (e-learning module)
2. Microscopic Anatomy - identification of structures on digitized tissue slides - including relevant theoretical questions from the subject matter of the semester

Topic list for the semifinal examination:

Microscopic Anatomy and Embryology I.
(see there)

Microscopic Anatomy and Embryology II.

Lymphatic organs
- Lymphatic tissues in general, cellular components
- Histological structure of lymph nodes
- Spleen (fine structure and circulation)
- Thymus
- Tonsils, MALT

Development of the nervous system and organs of special senses
- Development and primary differentiation of the neural tube
- Development of brain vesicles
- Development of the peripheral nervous system (neural crest, placodes)
- Development of the organ of vision
- Development of the organ of hearing&equilibrium

Neurohistology
- Histology of the neurons developing from the neural tube
- Glial cells
- Histology of the neurons and supporting cells developing from the neural crest
- Fine structure of peripheral nerves
- Receptors and effectors
- Interneuronal synapses

Microscopy of the central nervous system
- Fine structure (microscopy) of the spinal cord
- Proprioceptive reflexes
- Nociceptive reflexes
- Autonomic reflexes
- Brain tracts, neurotransmitters, neuronal circuits, “connectomics”
- Central autonomic nervous system. Monoaminergic and cholinergic neurons and pathways.
- “Ascending Reticular Activating System” (ARAS)
- Somatosensory system. Spinal and trigeminal sensory pathways. Thalamus, sensory cortical areas.
- Viscerosensory system. Role of the reticular formation, thalamus, insula and the prefrontal cortices in visceral sensory activities.
- Motor cortical areas, planning and programming of movements. Motor pathways.
- The role of cerebellum and basal ganglia in eliciting movements. Gait control mechanism.
- Visceromotor system. Control of micturition. Spinal motor reflexes.
- Energy metabolism, neuroanatomy of food intake, taste sensation and olfaction. Structure and functional significance of the reward system.
- Limbic system. Amygdala, hippocampus.
- Circadian rhythm, sleep/wake cycle; neuroanatomy of resting state and activation.
- Cognitive functions. Neuroanatomy of determination, planning, alertness together with learning & memory, personality, consciousness and creativity.

Endocrine organs
- Microscopical anatomy and development of the pituitary gland. Portal circulation
- Microscopical anatomy of the pineal gland
- Microscopical anatomy and the development of the thyroid gland
- Microscopical anatomy and the development of the parathyroid gland
- Microscopical anatomy and the development of the suprarenal gland
- Histology of the islands of Langerhans

Organs of special senses
- Microscopical structure of the skin and skin appendages
- Coats of the eyeball
- Chambers of the eye, vitreous body
- Lens, accommodation
- External ear, tympanic membrane. Middle ear, auditory tube, hearing ossicles.
- Fine structure of the labyrinth, tracts of the vestibular system. Control of balancing and posture together with the movements of the eye and head. Awareness of spatial position.
- Organs of taste and olfaction.

Method and type of evaluation:
Final examinations are composed of written theoretical and oral practical parts. The written theoretical examination is done using an e-learning module while the practical examination is conducted with the help of digitized histological tissue slides.

Students are given separate marks for each part of the examination. Unsuccessful partial examinations result in the failure of the semifinal examination. When failing at the practical part, the written test will not have to be repeated in case the result was a 4 or a 5 only. Upon the termination of the examination the Chairman of the Examination Committee composes the final mark from the partial marks earned in the written and practical parts.

How to register for the examination? Via the NEPTUN system

Possibilities for exam retake:
According the Study and Examination Policy
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

List of textbooks

Further study aids:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Knowledgebase on the Library homepage: (https://lib.semmelweis.hu/knowledge_base).
GENETICS AND GENOMICS

Department of Genetics, Cell- and Immunobiology

Course director: **Prof. Dr. Edit Buzás**
Course coordinator: **Dr Hargita Hegyesi**
Credit: 3
Number of lessons per week: 3.5 lecture: 2 practical course: 1.5
Academic year: 2021/2022 II. semester
Subject code: AOKGEN738_1A
Name of the course leader: Prof. Edit Buzás
Department of Genetics, Cell- and Immunobiology, +36-1-210-2929 / 56241
Position: Professor and Chairman

Objectives of the subject, its place in the medical curriculum:
Introductory course in classical and molecular genetics and functional genomics, as well as basic course for the clinical module. It addresses the types, general laws of human inheritance, characteristics, organization and structure of the human genome, and the most important methods and / or their application in theoretical and clinical medicine, according to the needs of medical students, and evaluates the results (in practice). It presents the forms of genetic and epigenetic variability, their mechanisms and their consequences for human health. Through selected examples, the pathway from gene to disease is analyzed using a systems biology approach.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Nagyvárad tér 4. Hungary, NET building lecture rooms, L13-L16

Successful completion of the subject results in the acquisition of the following competencies:

Course prerequisites:
Molecular Cell Biology I.,
Medical Biochemistry II.

Number of students required for the course (minimum, maximum) and method of selecting students:
According to Study and Exam Policy

How to apply for the course:
in Neptun system
Detailed curriculum:

Lectures (2 hours per week)*:
1. Introduction to human genetics
2. Genetic variations
3. Chromosomal aberrations
4. Autosomal inheritance I.
5. Autosomal inheritance II.
6. Role of sex in inheritance
7. Epigenetics
8. Genetics of biological processes, oncogenetics
9. Introduction to genomics
10. Methods in genomics, systems biology
11. Genomic approach of complex inheritance Population genetics
12. Genetherapy
13. Pharmaco- and nutrigenomics
14. Genome and environment, Evolution genetics

Practices (1.5 hours per week)**:
1. Genetic aspects of cell cycle and cell division disruptions (Atypical mitosis / meiosis)
2. Cytogenetics I.
3. Cytogenetics II.
4. Introduction to pedigree analysis
5. Autosomal dominant inheritance I.
6. Autosomal dominant inheritance II.
7. Autosomal recessive inheritance I.
8. Autosomal recessive inheritance II.
9. Sex-linked inheritance
10. Complex inheritance I.
11. Complex inheritance II.
12. Gametogenesis, prenatal genetic testing
13. Genetherapy
14. From genes to bedside

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Understanding of Genetics and Genomics is based on the knowledge of molecular biology and molecular genetic techniques studied at Medical Biochemistry I-II. Elective subjects taught by our institute (Sex Genetics, Epigenetics, Genomics) elaborate on some of the subchapters of “Genetics and Genomics”, with overlaps needed for understanding, focusing on topics not covered in the main subject. Understanding the subject of Clinical Genetics is based on the knowledge of Genetics and Genomics.

Requirements for participation in classes and the possibility to make up for absences:
Completion of prerequisite subject.
Practices can only be attended to in an appropriate mental and health condition. Practical absence can be remedied during the current training week, in parallel courses, after prior consultation with the practice instructors.

* The order of the lectures may vary (depending on holidays and workday transfers). Colleagues with senior teaching status may also act as lecturers, if the lecturer on schedule is prevented.

** The order of the practices may vary (depending on holidays and workday transfers). Practice instructors: Colleagues with teaching status at the Institute of Genetics, Cell and Immunobiology
Methods to assess knowledge acquisition during term time:
Bonus lecture scores can be collected at lectures and midterm tests. Written midterm from the topics of taught lectures and practices. We provide an opportunity to retake the midterm, only for students who have proven absence.

Requirements for signature:
According to the Study and Exam Policy the students must visit at least 75% of the lectures and practices.

Type of examination: written (lectures and practices) Moodle test

Requirements of the examination:

1.) Introduction to human genetics and genomics.
MGGe: Chapter 1, pages 9-21; Lecture: Introduction to human genetics
Basic genetic terms, e.g.: genome, genetics, genomics, **homologous chromosomes**, gene, locus, allele, wild type allele, genotype, phenotype, homozygote, heterozygote, hemizygote, dominant, recessive, cytogenetics; Mendel’s laws, Model organisms in genetics; DNA: structure, function, amount, organization (chromatin, chromosome). Replication, transcription, mRNA maturation (splicing, alternative splicing), types of RNA-s, features of genetic code. Translation and posttranslational modifications. Human genome: nuclear and mitochondrial. Structure of eukaryotic gene. Intergenic DNA; Specific sequences of nuclear genome. Repetitive sequences. Human Genome Project, ENCODE Project

2.) Transmission of genetic information from cell to cell in an organism.
MGGe: Chapter 2, pages 22-41, Practice presentation: Atypical mitosis
Features of mitotic phases. Functional parts of chromosomes (telomere, centromere, kinetochore, sister chromatids. Cytokinesis. Changes of DNA amount and chromosome number during cell cycle. Types, causes and consequences of atypical mitosis.

3.) Transmission of genetic information from generation to generation.
MGGe: Chapter 2, pages 41-51; Practice presentation: Typical and atypical meiosis

4.) Pedigree analysis
Practice: Introduction to pedigree analysis
Mendelian or monogenic inheritance, Construction of pedigree: main symbols that are used in pedigrees. Pedigree analysis (characteristics pedigree patterns of monogenic inheritances: AD, AR, XD, XR, Y-linked, mitochondrial). Disease examples for monogenic inheritances (AD, AR, XD, XR, mitochondrial); **Important terms**: gene, genome, locus, allele, multiple allelism, wild type (normal) allele, genotype: homozygote, heterozygote, complex heterozygote, hemizygote, phenotype: dominant, codominant, recessive.

5.) Mendelian Inheritance: autosomal inheritance
MGGe: Chapter 6, pages 102 -121; Lecture: Monogenic inheritance (Autosomal inheritance); Practice: Autosomal dominant inheritance
6.) Role of sex in inheritance

MGGe: Chapter 7, pages 122-131; Lecture: Role of sex in inheritance

Properties and disease examples of Sex-linked inheritance: XR (hemophilia A and B; Duchenne and Becker muscular dystrophy), XD (hypophosphatemia, incontinentia pigmenti, Fragile X). Y-linked inheritance; Sex influenced inheritance (e.g. boldness). Sex limited inheritance (e.g. precocious puberty). Genomic imprinting, X-chromosome inactivation. Mitochondrial inheritance (homoplasy, heteroplasy)

7.) Cytogenetics

Practice: Cytogenetics I

Light microscopic slides: 54, 60, 64

8.) Structural chromosome mutations

MGGe: Chapter 4, pages 69-80; Lecture: Chromosomal aberrations; Practice: Cytogenetics II

9.) Numerical chromosome mutations

MGGe: Chapter 4, pages 80-90; Lecture: Chromosomal aberrations; Practices: Cytogenetics

10.) Mutations and polymorphisms

MGGe: Chapter 3, pages 52-68; Lecture: Genetic variations

11.) Epigenetics

MGGe: Chapter 5, pages 91-101; Lecture: Epigenetics

12.) **Introduction to genomics. Methods in genomics**

MGGe: Chapter 9, pages 148-173; Lecture: Introduction to genomics. Methods in genomics; Practice: Molecular genetic methods and applications in human genetics I-II.

Genomics, Human Genome, DNA sequencing, Participants in the Human Genome Project, Some results of the HGP, Variations in the human genome, Some novel data about gene expression and genetic variability, Junk DNA in the human genome, Comparative genomics, ENCODE project, Genetic markers, GWAS, Principle of molecular genetic methods: hybridization, restriction enzymes, DNA isolation, Visualization of genomical DNA, separation of DNA fragments by gelelectrophoresis, capillary gelelectrophoresis, non-specific staining of DNA (EtBr), Allele-Specific Oligonucleotide (ASO) test, RFLP, microarray, PCR, PCR-RFLP, Multiplex PCR, MLPA, Significance of real-time-PCR. Significance and detection of VNTR. VNTR and trinucleotid diseases. Significance of polymorphism detection in forensic medicine. DNA fingerprint. Foreign DNA (bacterial, viral) detection. Sequencing in genotyping, NGS, RT(reverse transcriptase)-PCR.

13.) **Complex inheritance.**

MGGe: Chapters 10, pages 174-177; Lecture: Complex inheritance, Practice: Complex inheritance

Features of complex inheritance. Environmental factors. Heritability of the complex diseases. Disease examples

14.) **Pharmacogenomics**

MGGe: Chapter 14, pages 266-286; Lecture: Pharmacogenomics and nutrigenomics

Pharmacogenetics and pharmacogenomics. Pharmacokinetics, -dynamics, Drug development Adverse drug response, Genomic background of adverse effects, CYP (cytochrom P-450) gene family, Warfarin, Mercaptopurine, Genes influencing pharmacodynamics, Examples of pharmacogenetic studies, Pharmacogenetics of statins, Clopidogrel, Pharmacotherapy of asthma, MODY, Succinylcholine sensitivity, Thiopurin methyltransferase variations, Role of membrane receptors in drug effects.

15.) **Nutrigenomics**

MGGe: Chapter 13, pages 255-263; Lecture: Pharmacogenomics and nutrigenomics

Genetic variations and food, food and gene expression.

16.) **Gene therapy**

Practice: Gene therapy

17.) **Population genetics**

MGGe: Chapter 12, pages 215-224; Lecture: Population and evolution genetics

18.) **Evolution genetics**

MGGe: Chapter 12, pages 225-236; Lecture: Population and evolution genetics

Gene environmental interactions and the human genome. Natural selection. Role of infections in formation of the genome. Genetic drift, bottleneck effect. Why are some lethal mutations frequent? Examples for effects forming the genome.

19.) **Genome and environment**

MGGe: Chapter 13, pages 238-254; Lecture: Population and evolution genetics

Penetration of the genetic variants; Interactions between highly and low penetrant variations and the environment; smoking-genome interaction, gene-environmental interactions;
20.) Gametogenesis, prenatal genetic testing

Practice: Gametogenesis, prenatal genetic testing

Comparison of spermatogenesis and oogenesis; Genetic aspects of infertility; Genetic aspects of assisted reproduction techniques; CGH; aCGH prenatal genetic testing; Non-invasive prenatal testing

21.) Genetics of biological processes

MGGe: Chapter 8, pages 132-147; Lecture: Genetics of biological processes

Method and type of evaluation:
Final grade will be calculated from the result of the exam scores and bonus scores. Bonus scores are the grade calculated from the scores collected at the midterm, homeworks and lectures. Competition will be organized during the semester.

How to register for the examination?:
In the Neptun system, according to current university and faculty settings.

Possibilities for exam retake: According to the Study and Exam Policy

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Cs. Szalai (Editor): Medical Genetics and Genomics e-book, 2018
Power Point presentations of the lectures and practices; The e-book and presentations available at the homepage: http://gsi.semmelweis.hu/index.php/en/education/
IMMUNOLOGY

Department of Genetics, Cell- and Immunobiology
Course Director: Prof. Edit Buzás

Credit: 3

Aim of the subject and its place in the curriculum:
A pre-clinical course for medical students that introduces the essentials of the immune system, natural and adaptive immune responses. It discusses the structure of the human immune system: organs, cellular and molecular components involved in the immune response; the development of genetic diversity of antigen receptors, and the role of diversity in an efficient immune response. It introduces to the students the processes of immunological regulation in healthy organism, including the immunology of pregnancy. It also discusses the course and alteration of immunological processes in certain pathological conditions, such as infections, tumors, hypersensitivity reactions, autoimmunity, immunodeficiency and transplantation, therefor provides a basis for other subjects. In related practices, students will be introduced to the basic methods required to test the functionality of the immune system, to the immunological assays and immunologically relevant procedures used in current diagnostics and therapy.

Competencies gained upon the successful completion of the subject: Understanding the relationships between immunological processes and the role of the immune system in the prevention, development and course of diseases. Theoretical knowledge of basic immunological diagnostic and therapeutic techniques.

Prerequisite(s) for admission to the subject:
Cell Science, Medical Biochemistry II.

Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Lectures 2×45 minutes/week</th>
<th>Practices 1×70 minutes/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role, processes, organs and cells of the immune system</td>
<td>Basic terms</td>
</tr>
<tr>
<td>2. Principles of natural immunity</td>
<td>The role of the immune system in the lab</td>
</tr>
<tr>
<td>3. The complement system; inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions I. Immunoserology</td>
</tr>
<tr>
<td>4. Antigen, antigen presentation and MHCs</td>
<td>Methods based on antigen-antibody interactions II: immuno-assays</td>
</tr>
<tr>
<td>5. Antigen receptors and their formation</td>
<td>Methods based on antigen-antibody interactions III Flow cytometry</td>
</tr>
<tr>
<td>6. T lymphocytes and cell-mediated immune response</td>
<td>Complement assays</td>
</tr>
<tr>
<td>7. B lymphocytes and humoral immune response</td>
<td>Biological therapies I</td>
</tr>
<tr>
<td>8. Immune response in infections</td>
<td>Biological therapies II</td>
</tr>
<tr>
<td>9. Immunodeficiencies</td>
<td>Immunization and vaccination I</td>
</tr>
<tr>
<td>10. Hypersensitivity reactions</td>
<td>Immunization and vaccination II</td>
</tr>
<tr>
<td>11. Mucosal immunity</td>
<td>Hypersensitivity I.</td>
</tr>
<tr>
<td>12. Immunological tolerance; natural and pathological autoimmunity</td>
<td>Hypersensitivity II-IV.</td>
</tr>
<tr>
<td>13. Antitumor immunity</td>
<td>Screening methods for autoantibodies</td>
</tr>
<tr>
<td>14. Immunology of transplantation and pregnancy immunity</td>
<td>HLA-typing</td>
</tr>
</tbody>
</table>
Policy regarding the attendance and making up absences:
Attendance of a minimum of 75% of the practices is necessary for the end-term signature. The presence at the seminars (practices) are registered weekly, more than three absences from the seminars invalidate the semester as well. The sessions can be attended in an appropriate mental and health condition.

Means of assessing the students’ progress during the semester: Discussing the topics of the lecture under the guidance of the practice teacher to establish diagnostic and therapeutic methods.

Requirement for acknowledging the semester (signature): Attendance of a minimum of 75% of the practices.

Type of the examination: written test

Exam requirements:
The topics are based on the textbooks, the e-book, the lectures’ and practices’ presentations. At the exam, it is not sufficient to repeat memorized topics from the textbook and presentations, but you have to be able to synthesize and integrate your knowledge from different parts of the subject.

Topic list of lectures:

1. The concept of immunity, Principles of the immune response: antigen specificity, sensitivity, memory, clonal selection based operation.
2. Components (primary, secondary immune organs, cells, molecules) of the immune system.
3. Features of innate and adaptive, cell-mediated and humoral, primary and secondary response.
4. The immune homeostasis.
5. Migration of immune cells and adhesion molecules;
6. Cytokines and cytokine receptors.
7. Chemokines and chemokine receptors.
8. Fc-receptors; PAMP, DAMP, Pattern recognition receptors.
10. Role of neutrophils, eosinophils and basophils/mast cells.
11. Types and role of dendritic cells.
12. Inflammasome/ inflammasomopathies.
13. Intra lymphoid cells.
14. The activation pathways and the regulation of the complement system;
15. Complement receptors;
16. Complement genetics;
17. The biological role of complement activation
18. The inflammation and the acute phase response, the provoking factors and mechanisms, periods;
19. The acute phase plasma proteins.
20. The major histocompatibility complex;
21. The ways of antigen processing and presentation.
22. Types and structures of antigen receptors;
23. The immunoglobulin and TCR genes, the sources of antigen receptor diversity;
24. Expression and production of antigen receptors.
25. Differentiation and activation of T cells
26. Types of the T cells
27. The cell mediated immunity.
28. The activation and differentiation of B cells
29. Types of the B-cells
30. The humoral immunity.
31. Antimicrobial immune response.
32. Mucosal Immunity
33. Hypersensitivity reactions: Type I-II-III-IV reactions
34. Immunological background of transplantation and GVH disease
35. The natural autoimmunity.
36. Idiotypic regulation and network.
37. Pathological autoimmunity.
38. Mechanisms of immune tolerance.
39. Primary and acquired immune deficiencies.
40. Tumor antigens.
41. Anti-tumor immunity.
42. Escape strategies of tumor cells.
43. Possibilities of anti-tumor immune-therapy.
44. The immunology of pregnancy
Topic list of practices:

1. The cells and organs of immune system.
2. Communication between the immune cells.
3. Antigen and hapten.
4. Features of diagnostic antibodies.
5. Immunoserological techniques: Detection of antibodies in body fluids, or detection of antigens based on the antibody-antigen reaction.
6. Serum electrophoresis and densitograms.
7. Immune complex and immune precipitates.
8. Turbidity and nephelometry.
10. Clinical application of immunoserology methods.
11. Direct, indirect and passive agglutination, methods based by agglutination, fields of use.
12. Features of diagnostic antibodies.
13. The labelling of diagnostic antibodies.
14. ELISA, Western blot. Immunocyto (histo)chemistry, fields of use.
15. Lateral flow test, fields of use.
17. Identification of cell populations by size and granularity, scatter plot.
18. Immune phenotyping, histogram, dot plot.
20. The ways of activation of complement system.
22. Measuring the complement activation (CH50).
23. Diseases of complement system. HAE disease.
24. HLA nomenclature.
25. HLA typing methods: Microcytotoxicity test and mixed lymphocyte culture test.
26. HLA associated diseases.
27. Definition of targeted molecular therapy and immune modulation.
30. Antibody therapy in transplantation.
32. TNF alpha, T- and B cells as therapeutic targets in RA.
33. IVIG
34. Cytokine therapy
35. Dendritic cell-therapy.
36. The aims and practical implementation of immunization.
37. Adjuvants.
38. Immunodominant epitope.
40. The aim of immune stimulation, active immunization.
41. Passive immunization
42. The features of effective vaccines.
43. Types of vaccines, cell-based vaccination
44. Hypersensitivity reactions I.: Penetration of antigens, types of IgE mediated responses.
45. Release of histamine and its effects.
46. Allergy tests.
47. Immune Anaphylaxis vs. Non-immune anaphylactoid reaction; urticaria vs. angioedema.
48. Food intolerance vs. food allergy.
49. Basics of allergy pharmacotherapy; Desensitization and prevention.
50. Clinical examples for Hypersensitivity reactions II-III-IV.
51. Diagnostic tests used in Hypersensitivity reactions II-III-IV.
52. Types of systemic and organ specific autoantibodies
53. Screening methods of autoantibodies,
54. Detection of autoantibodies.

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):

2. Practice and lecture ppt-s): http://gsi.semmelweis.hu
3. Immunology seminars (e-book): http://gsi.semmelweis.hu
HUNGARIAN MEDICAL TERMINOLOGY III.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi, associate professor, Director

4 lessons per week, 2 credits
Assessment: midterm (oral interview) and endterm (oral interview)

Role of subject in fulfilling the aim of training:
The aim of the subject is to enable students to take patient’s history, ask about medical history and present complaints. We focus on developing skills and strategies necessary to understand Hungarian patients during their clinical practice. Students learn to give instructions during examination and get familiarised with relevant clinical documents (charts, discharge papers, etc.). Vocabulary building is centred around symptoms of common conditions.

Brief description of subject:
This is the third semester of the medical language course. The aim of the course is to enable students to take anamnesis, to learn about previous diseases and present complaints, to have appropriate strategies for understanding the patients during clinical practices. Students learn about the instructions used in patient examination, are able to independently examine patients, are able to give relevant instructions. (e.g. examination of the chest organs, abdomen, musculoskeletal organs, nervous system - based on the chart) Students will learn about the forms of medical documentation as well. Students learn about the symptoms of diseases (based on the list recommended by clinics) in Hungarian, so that they can ask patients relevant questions about their disease.

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hungarian instructions during examination on the following topics</td>
</tr>
<tr>
<td>1</td>
<td>Revision: present complaint</td>
</tr>
<tr>
<td>2</td>
<td>Inspection, palpation, percussion, auscultation</td>
</tr>
<tr>
<td>3</td>
<td>Taking the temperature</td>
</tr>
<tr>
<td>4</td>
<td>Weight and height</td>
</tr>
<tr>
<td>5</td>
<td>Physical examination of the lungs</td>
</tr>
<tr>
<td>6</td>
<td>Physical examination of the heart</td>
</tr>
<tr>
<td>7</td>
<td>Physical examination of blood pressure and pulse Blood-glucose level Oral interview</td>
</tr>
<tr>
<td>8</td>
<td>Physical examination of the abdominal organs; hernia</td>
</tr>
<tr>
<td>9</td>
<td>Physical examination of the „acute abdomen”</td>
</tr>
<tr>
<td>10</td>
<td>Examination of the musculoskeletal system</td>
</tr>
<tr>
<td>11</td>
<td>Physical methods of examination of the hematopoietic system</td>
</tr>
<tr>
<td>12</td>
<td>Examination of lymph nodes</td>
</tr>
<tr>
<td>13</td>
<td>Revision</td>
</tr>
<tr>
<td>14</td>
<td>Oral interview</td>
</tr>
</tbody>
</table>

Course material, recommended text book(s), professional literature and supplementary reading(s)
Coursebook compiled by the instructors of the Department (2022.)
HUNGARIAN MEDICAL TERMINOLOGY IV.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi, associate professor, Director

4 lessons per week, 2 credits

Assessment: midterm (oral interview) and final examination

Role of subject in fulfilling the aim of training:
The aim of the subject is to enable students to take patient’s history, ask about medical history and present complaints. We focus on developing skills and strategies necessary to understand Hungarian patients during their clinical practice. Students learn to give instructions during examination and get familiarised with relevant clinical documents (charts, discharge papers, etc.). Vocabulary building is centred around symptoms of common conditions.

Brief description of subject:
This is the fourth semester of the medical language course. The aim of the course is to enable students to take anamnesis, to learn about previous diseases and present complaints, to have appropriate strategies for understanding the patients during clinical practices. Students learn about the instructions used in patient examination, are able to independently examine patients, are able to give relevant instructions. (e.g. examination of the chest organs, abdomen, musculoskeletal organs, nervous system - based on the chart) Students will learn about the forms of medical documentation as well. Students learn about the symptoms of diseases (based on the list recommended by clinics) in Hungarian, so that they can ask patients relevant questions about their disease.

Brief description of subject:

<table>
<thead>
<tr>
<th>weeks</th>
<th>curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revision: Hungarian instructions during examination on the following topics</td>
</tr>
<tr>
<td>2</td>
<td>Gastroenterology I. \ Reflux \ Ulcerative disease \ Colon cancer</td>
</tr>
<tr>
<td>3</td>
<td>Gastroenterology II. \ Ileus \ Cholelithiasis</td>
</tr>
<tr>
<td>4</td>
<td>Liver diseases \ Cirrhosis</td>
</tr>
<tr>
<td>5</td>
<td>Infectious diseases \ Cystitis \ Renal pelvic inflammation</td>
</tr>
<tr>
<td>weeks</td>
<td>curriculum</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Hungarian instructions during examination on the following topics</td>
</tr>
</tbody>
</table>
| 6 | Endocrine and metabolic diseases
 | Diabetes
 | Osteoporosis
 | Hyperthyroidism |
| 7 | Oral interview |
| 8 | Cardiology I.
 | Atrial fibrillation
 | Heart failure |
| 9 | Cardiology II.
 | Acute coronary heart disease
 | Hypertension |
| 10 | Hematology
 | Anemia
 | Lymphoma |
| 11 | Immunology
 | RA |
| 12 | Pulmonology I.
 | Pneumonia
 | Pulmonary embolism |
| 13 | Pulmonology II.
 | Asthma, COPD, Lung cancer |
| 14 | Mock exam |

Course material, recommended text book(s), professional literature and supplementary reading(s)
Coursebook compiled by the instructors of the Department (2022.)
MEDICAL PSYCHOLOGY

Institute of Behavioral Sciences
Type of the course: compulsory
credit: 4 credits
Presenter of the course: Dr. Tamás Dömötör Szalai
Course leader: Dr. György Purebl

Course objectives: The course is designed to give a broad overview of the field of medical psychology, including concepts, theory, and research.

Learning objectives:
- Develop an understanding of the complex interplay between one’s physical well-being and a variety of biological, psychological, and social factors.
- Learn the nature of the stress response and its impact in the etiology and course of many health problems.
- Understand the approach of bio-psycho-social model and become familiar with some frequent psychosomatic diseases.
- Be able to identify various psychological disorders and key personality traits related to health / disease.

Course Syllabus:

Lectures:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Human Behaviour</td>
</tr>
<tr>
<td>2</td>
<td>Major Schools of Psychology</td>
</tr>
<tr>
<td>3</td>
<td>Stress and illness; behavioral interventions</td>
</tr>
<tr>
<td>4</td>
<td>Conscious states, sleep, dreaming and general anesthesia</td>
</tr>
<tr>
<td>5</td>
<td>Stigmatization and people living with disabilities</td>
</tr>
<tr>
<td>6</td>
<td>Psychological correlates of cardiovascular disorders</td>
</tr>
<tr>
<td>7</td>
<td>Affects, Emotion and Motivation</td>
</tr>
</tbody>
</table>

Seminars:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Developmental psychology, attachment theories</td>
</tr>
<tr>
<td>2</td>
<td>Personality theories</td>
</tr>
<tr>
<td>3</td>
<td>Human sexuality and sexual disorders, psychology of reproduction, psychology of birth</td>
</tr>
<tr>
<td>4</td>
<td>Depression and mood disorders.</td>
</tr>
<tr>
<td>5</td>
<td>Anxiety and medical illnesses.</td>
</tr>
<tr>
<td>6</td>
<td>Eating disorders.</td>
</tr>
<tr>
<td>7</td>
<td>Psychosomatic disorders – case studies; somatization and dissociative disorders</td>
</tr>
<tr>
<td>8</td>
<td>Personality disorders.</td>
</tr>
<tr>
<td>9</td>
<td>Sleep disorders</td>
</tr>
<tr>
<td>10</td>
<td>Addiction, substance use</td>
</tr>
<tr>
<td>11</td>
<td>Suicide, cry for help, crisis intervention</td>
</tr>
<tr>
<td>12</td>
<td>Psychology of death, grief, and dying</td>
</tr>
<tr>
<td>13</td>
<td>Behaviour change and psychotherapy. Stress management in medical practice.</td>
</tr>
</tbody>
</table>
Participation and making up for absences: Students are expected to attend regularly the course and participation list will be recorded at the end of every lecture and every seminar. To participate on at least 75% of the total number of lessons is a prerequisite for getting the signature needed to absolve the course. The maximum number of absences permitted: one absence from the lectures and three absences from the seminars. Content of the lectures may appear in the exams.

Justification of the absence in the lectures and examinations: Absence should be justified for the seminar leading teacher within three working days.

Checks during the semester (reports, written checks): Every student should prepare presentations on the topics designated by the seminar leader teacher. Active participation is expected.

Requirements for the signature at the end of the semester: Active participation on the practices. The teacher has the right for refusing to give signature to the students who didn’t work on the desired level on the seminars.

Method of the calculation of marks: Grades will be based on student’s performances at the final written exam.

Type of the exam: Written final examination taken in the examination period.

Requirements for the exam: The material of the lectures and seminars.

Application for the exam: Through the Neptun system.

Changing the application for the exam: Through the Neptun system.

Justification of the absence from the exam: Absence should be justified for the course leading teacher within three working days.

Course and recommended text books:

Required textbook:

Recommended text books:

Additional readings:
The powerpoint slides and prezi presentations used for the lectures and seminars and also some related papers will be assigned for reading during the course, and they will be made available on the course website.
Introduction to Clinical Medicine

Credit Points: 2
Total number of hours: 30
- lectures: 12 (6*2)
- practices: 18 (6*3)
- seminars: -

Type of the course (mandatory/elective): mandatory
Academic year: 2022/2023
Code of the course: AOKCSA249_1A
Name of the Department: Dr. Péter Torzsa M.D. Ph.D.
Contact details: H- 1085 Budapest, Stáhly u. 7-9. Phone: +36-1-355-8530
Position: Head of Department
Tutor: Dr. Adam Becze – becze.adam@med.semmelweis-univ.hu

Aim of the subject and its place in the curriculum:
- Preventive approach, screening procedures. The importance of disease prevention.
- Holistic patient care, managing complex bio-psycho-social-health problems
- Care of frequent chronic illnesses
- Presenting patients, basic differential diagnostics
- Basic diagnostic tools
- Most frequent diseases in the clinical department and the general practitioner’s office. Case reports.
- Referral of patients. The medical consultation.
- Communication with the patient and his/her relatives.
- The role of the family in the treatment of and care for acute and chronic diseases.
- Effective cooperation with patients. Means to improve compliance.
- Team work in medicine.
- Development of professional consciousness.
- Overview of the research activity at the clinical department. Raising interest in participating.

Location of the course (lecture hall, practice room, etc.):
Family practices, clinics

Prerequisite(s) for admission to the subject:
Only for students in the 2nd year, following completion of the Introduction to Patient Care program

Minimum and maximum number of students registering for the course:
Student selection method in case of oversubscription:
Max. 15 students/group

How to register for the course:
Registration for the course in the ‘Neptun’ system
Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Detailed topic of the subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week: internal medicine, public health, dermatology, urology, pulmonology, neurology lectures</td>
</tr>
<tr>
<td>2nd week: internal medicine, public health, dermatology, urology, pulmonology, neurology lectures</td>
</tr>
<tr>
<td>3rd week: internal medicine, public health, dermatology, urology, pulmonology, neurology lectures</td>
</tr>
<tr>
<td>4th week: internal medicine, public health, dermatology, urology, pulmonology, neurology lectures</td>
</tr>
<tr>
<td>5th week: internal medicine, public health, dermatology, urology, pulmonology, neurology lectures</td>
</tr>
<tr>
<td>6th week: internal medicine, public health, dermatology, urology, pulmonology, neurology lectures</td>
</tr>
<tr>
<td>7th week: internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynaecology, family medicine, orthopaedics-traumatology, cardiology, dermatology, urology, pulmonology, neurology, public health practicals according to the attendance sheet</td>
</tr>
<tr>
<td>8th week: internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynaecology, family medicine, orthopaedics-traumatology, cardiology, dermatology, urology, pulmonology, neurology, public health practicals according to the attendance sheet</td>
</tr>
<tr>
<td>9th week: internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynaecology, family medicine, orthopaedics-traumatology, cardiology, dermatology, urology, pulmonology, neurology, public health practicals according to the attendance sheet</td>
</tr>
<tr>
<td>10th week: internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynaecology, family medicine, orthopaedics-traumatology, cardiology, dermatology, urology, pulmonology, neurology, public health practicals according to the attendance sheet</td>
</tr>
<tr>
<td>11th week: internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynaecology, family medicine, orthopaedics-traumatology, cardiology, dermatology, urology, pulmonology, neurology, public health practicals according to the attendance sheet</td>
</tr>
<tr>
<td>12th week: internal medicine, surgery, paediatrics, psychiatry, obstetrics and gynaecology, family medicine, orthopaedics-traumatology, cardiology, dermatology, urology, pulmonology, neurology, public health practicals according to the attendance sheet</td>
</tr>
<tr>
<td>13th week: Homework: Essay</td>
</tr>
<tr>
<td>14th: week: Exam: Essay</td>
</tr>
</tbody>
</table>

Special training activities required: –
Completed attendance sheet

Policy regarding the attendance and making up absences:
It’s compulsory for the student to attend 75 percent of the training sessions. Students can join another training group to meet the requirements if they have missed a training session in the original group.

Requirement for acknowledging the semester (signature):
It’s compulsory for the student to attend at least 75 percent of the training sessions.

Type of the examination:
Essay

Exam requirements:
Case study (essay, typed, 2000 characters without spaces at minimum length, Times New Roman font, font size 12, single spacing) of a specific patient chosen from the practicals’ experiences highlighting one or more topics of the Aim of the subject part above seen. Deadline for handing in the essay is the 14th week.
Type and method of grading:
Grading is based on the essay according to the following criteria:
Grade 1: failing to hand in the essay on deadline, the number of characters is under 2000, the case study is not original, but plagiarism
Grade 2: absence of a specific case study of a patient, but the other requirements are met
Grade 3: there is a case study, but too general drafting, without any personal experience
Grade 4: there is a case study with not too significant professional/technical mistake
Grade 5: precise and accurate wording in the medical jargon, personal opinion about the patient’s case

How to register for the exam:
Registering for the exam in the ‘Neptun’ system

Opportunities to retake the exam:
In accordance with the Studies and Exams Code Rules

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):
see on the subject’s MOODLE platform
PHYSICAL EDUCATION III.

Department of Physical Education
Subject: Physical Education III.
Type of Subject: Compulsory
Code of Subject: AOKTSI009_3A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

The syllabus

1st Week: General information
Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra – curricular activities. Heart rate measurement exercises. Ruffier test and evaluation of the results.

2nd Week: Athletic
Diferend athletic exercises like throwing, shot put. Preferably outdoors with the aim of learn how to exeetute the exercise with a proper form and breathing technique.

3rd Week: Tennis
Introducing and learning advanced technical elements (serve, volley) and game.

4th Week.: Agility ladder
To perform different exercises to improve speed, balance and concentration. Preferably outdoors, on grass ground.

5th Week: Relay race and competitive games
To improve explosiveness, skills and experience good team spirit.

6th Week: Football
Practicing the technical elements of football in pairs and game situation.

7th Week: Circuit training
Functional exercises with bodyweight and exercises with basic equipments to improve general coordination skills.

8th Week: Badminton
Introducing the technical and tactical elements of doubles game. Game applying all the previously known rules.

9th Week: Ruffier test
Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.
10th Week: Meta
Reminders of the basic need to know about META. Learn tactical elements of the game and using them. Aim to improve ball skill development, reaction time, explosiveness and collective gaming experience.

11th Week: Obstacle course
To complete a built up obstacle course using different creeping, climbing, hovering, pulling, skipping, throwing techniques for general skill development.

12th Week: Mobilisation
Diamatic stretching exercises with and without equipment to prevent the health of the joints by maintaining and developing the mobility of it.

13th Week: Skipping rope
Skill developing exercises with skipping rope individually and in pairs, in place and in motion at different levels.

14th Week: Kettlebell
Different kind of strengthening exercises with kettlebell.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in ten classes (for trainings 15 times!) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
PHYSICAL EDUCATION IV.

Type of Subject: Compulsory
Code of Subject: AOKTSI009_4A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

1st week: General information
 Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.

2nd week: Basketball
 Dribbling and shooting skill improving drills. Games: 1 on 1; 2 on 2; shooting contests, king of the court. Scrimmage.

3rd week: Wall-bar exercises
 Enhance strength and balance by climbing, declining, hanging, skipping, pulling, pushing etc. exercises.

4th week: Circuit training
 A chain of compete drills in a certain time period with and without equipment. The aim is to improve the general level of strength and stamina.

5th week: Floorball
 Passing and receiving skill improving drills. Exposing shots on goal (wrist-slap- and snapshots). Scrimmage.

6th week: Drills in pairs
 Strength, agility, coordination and battling skill improving exercises with a partner incorporated.

7th week: Volleyball
 Introducing the defensive elements of the game (receiving serves, blocks). Exposing unknown rules. Games.

8th week: Game-day
 Introducing and practicing different kind of cohesion enhancing games (Tick-Tac-Toe, etc.)

9th week: Ruffier test
 Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.

10th week: Circuit training
 Specialized chain of drills for strengthen the shoulder, back, chest, arm and leg muscles, considering the fitness level of the Students.

11th week: Tennis
 Introducing variations of ground strokes and grip types (slice, topspin, lobs etc.) Exposing the rules of doubles. Games (all around the world, etc.)
12th week: Badminton
Exposing the rules and the basic tactical elements of the doubles game. Scrimmage.

13th week: Core exercises
Body-weight exercises targeting to strengthen the muscles of the trunk thus develop a strong fascia to protect it from the harmful effects of overdose sitting (studying).

14th week: Medicine-ball exercises
Strength and coordination (complex) skill developing exercises by throwing, rolling, passing, lob, shot-put, etc. with a partner incorporated.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in ten classes (for trainings 15 times) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
PRE-CLINICAL MODULE
STUDY PROGRAMME

Third year in the 2022/2023 academic year

5th semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology I</td>
<td>2 (h/week)</td>
<td>2,5</td>
<td>Medical Microbiology I, Molecular Cell Biology II, Medical Physiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Translational Medicine – Pathophysiology I.</td>
<td>1,5 (h/week)</td>
<td>1,5</td>
<td>Macroscopic Anatomy and Embriology II, Medical Physiology II., Medical Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Microbiology II</td>
<td>1,5 (h/week)</td>
<td>2</td>
<td>Medical Microbiology I.</td>
<td>examination</td>
</tr>
<tr>
<td>Pathology I.</td>
<td>3 (h/week)</td>
<td>4</td>
<td>Microscopic Anatomy and Embriology II, Macroscopic Anatomy and Embriology II, Medical Physiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Internal Medicine - Propedeutics</td>
<td>1 (h/week)</td>
<td>3</td>
<td>Medical Physiology II, Medical Biochemistry II, Hungarian Medical Terminology IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Aspects of Disaster Preparedness and Response I.</td>
<td>1x2/semester</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology V.</td>
<td>0 (h/week)</td>
<td>4</td>
<td>Hungarian Medical Terminology IV.</td>
<td>final</td>
</tr>
<tr>
<td>Medical Statistics, informatics and telemedicine</td>
<td>1 (h/week)</td>
<td>1,5</td>
<td>Medical Biophysics II.</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical ECG</td>
<td>1 (h/week)</td>
<td>2</td>
<td>Medical Biophysics II, Medical Physiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>PE V.</td>
<td>0 (h/week)</td>
<td>1</td>
<td>PE IV.</td>
<td>signature</td>
</tr>
</tbody>
</table>
Third year

6th Semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology II.</td>
<td>2</td>
<td>2,5</td>
<td>Pharmacology I, Medical Microbiology II., Pathology I</td>
<td>final</td>
</tr>
<tr>
<td>Translational Medicine – Pathophysiology II.</td>
<td>1,5</td>
<td>1,5</td>
<td>Pathology I, Translational Medicine – Pathophysiology I.</td>
<td>final</td>
</tr>
<tr>
<td>Pathology II.</td>
<td>3</td>
<td>4</td>
<td>Pathology I.</td>
<td>final</td>
</tr>
<tr>
<td>Internal Medicine – Propedeutics</td>
<td>1</td>
<td>3</td>
<td>Medical Biochemistry II., Medical Physiology II., Hungarian Medical Terminology IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Bioethics- Medical Ethics</td>
<td>2</td>
<td>0</td>
<td>Medical Psychology</td>
<td>final</td>
</tr>
<tr>
<td>Medical Aspects of Disaster Preparedness and Response II.</td>
<td>1x2/semester</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Basic Surgical Techniques</td>
<td>0,5</td>
<td>1,5</td>
<td>Microscopic Anatomy and Histology II, Medical Physiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>PE VI.</td>
<td>0</td>
<td>1</td>
<td>PE V.</td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice – Internal Medicine</td>
<td>1 month</td>
<td>2</td>
<td>Internal Medicine - Propedeutics</td>
<td>pract. mark</td>
</tr>
</tbody>
</table>
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:

13. Zalatnai A.: 500 Practice Questions about Pathology (Semmelweis University of Medicine)
15. Székely E.: Practice on Histopathology I-II. (Semmelweis University of Medicine) - video
PHARMACOLOGY I.

First and Second Semester

Semmelweis University, Faculty of Medicine
Department of Pharmacology and Pharmacotherapy

Name of the subject: Pharmacology I.
Credits: 4
Total number of hours: 63 lectures: 28 practices: 35
Type of the course (mandatory/elective): mandatory

Academic year: 2022/2023 1st semester
Code of the course: AOKFRM678_1A

Course director (tutor): Dr. Ferdinandy, Péter
Contact details: Department of Pharmacology and Pharmacotherapy, 1089 Budapest, Nagyvárad tér 4.
Tel: +36-1-2104416, e-mail: ferdinandy.peter@med.semmelweis-univ.hu
Position: Head of Department, full professor
Date of habilitation and reference number: June 2 2001., 26/2001 Hab.

Aim of the subject and its place in the curriculum:
Pharmacology is a synthesizing subject, building on what has been learned in the past, especially physiology, biochemistry, pathology, and translational medicine, and is essential for the later acquisition of clinical knowledge. The subject includes: general pharmacology, detailed pharmacology, toxicology and basics of prescription writing. General pharmacology (pharmacodynamics, pharmacokinetics) aims to acquire the basic concepts and knowledge needed for pharmacological thinking, while in detailed pharmacology the student learns the main principles of the mechanism of action, therapeutic effects, adverse effects, major interactions, and partly dosing of medicines. The basics of toxicology describe the mechanisms and targets of major intoxications and thus provide a theoretical background for oxyology education. All of these competencies form the grounds to study clinical pharmacology and prepare students for the skill-level application of pharmacotherapeutic knowledge essential to clinical subjects.

Location of the course (lecture hall, practice room, etc.):
Nagyvárad térí Elméleti Tömb, 1089 Budapest, Nagyvárad tér 4.

Competencies gained upon the successful completion of the subject:
Students understand the pharmacological terminology, learn the mechanism of action, therapeutic effects, adverse effects, important interactions of drugs and the basics of dosing. They understand the mechanisms and targets of the most important poisonings, as well as the knowledge of the basic rules of prescription writing.

Prerequisite(s) for admission to the subject:
Medical Microbiology I, Molecular Cell Biology II, Medical Physiology II

OR
Medical Physiology II, Medical Biochemistry III OR Medical Biochemistry, Molecular and Cell Biology III, Molecular Cell Biology II.
Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
</table>
| 1st | Lecture: Introduction to Pharmacology. (development, pharmacogenomics, basics of toxicology)
Practice: Pharmacodynamics I (drug receptors, receptor theories, drug-receptor interactions). | |
| 2nd | Lecture: Basics of Pharmacokinetics (absorption, distribution, metabolism, excretion).
Practice: Pharmacodynamics II (quantal dose-response curves, therapeutic indices, tolerance, drug interactions). | |
| 3rd | Lecture: Pharmacology of the cholinergic systems
Practice: Parasympathomimetics and parasympatholytics, centrally acting cholinergic drugs | |
| 4th | Lecture: Pharmacology of the adrenergic system
Practice: Sympathomimetics and sympatholytics | |
| 5th | Lecture: Pharmacology of the skeletal muscles.
Practice: Pharmacology of smooth muscles | |
Practice: Drugs acting on opioid receptors | |
| 7th | Lecture: Local anesthetics
Practice: Drugs affecting uric acid metabolism. Drugs for headache syndromes. 1st midterm | |
| 8th | Lecture: Antipsychotics
Practice: Sedative-hypnotics, anxiolytics | |
| 9th | Lecture: Drugs acting on the extrapyramidal motoric system. Nootropic agents
Practice: Antidepressants, drugs against mania, mood stabilizers | |
| 10th | Lecture: General anesthetics
Practice: Anticonvulsants (antiepileptics) | |
| 11th | Lecture: Antiviral drugs
Practice: Cell wall synthesis inhibitor antibiotics. 2nd midterm | |
| 12th | Lecture: Antifungal drugs. Antimycobacterial drugs.
Practice: Protein synthesis inhibitor antibiotics | |
| 13th | Lecture: Antihelmintic and antipROTOzoal agents. Antiparasitic drugs.
Practice: Inhibitors of nucleic acid synthesis and antibiotics with other mechanisms of action. Disinfectants, antiseptics. | |
| 14th | Lecture: Biological Drugs. Orphan Drugs. Advanced Therapy Medicines
Practice: Nutrients, traditional plant medicines, vitamins, anorectic drugs. | |

Potential overlap(s) with other subjects:
- Physiology, biochemistry, molecular biology, pathology, translational medicine, internal medicine, cardiology, pulmonology, neurology, psychiatry, clinical pharmacology

Policy regarding the attendance and making up absences:
- Maximum number of absences is 25 percent of the number of practices in the semester. In the case of absence, the student can attend another class the same week.
Means of assessing the students’ progress during the semester:
There are no mandatory midterm tests during the semester. However, if the two non-mandatory midterm test results indicate that the student is among the best 5% (as stated in the Study and Examination Policy of Semmelweis University) he/she becomes eligible to recognize the progress with a third oral midterm and might receive an offered semifinal grade.

Requirement for acknowledging the semester (signature):
The number of absences must not be more than 25 percent of the number of practices in the semester.

Type of the examination:
oral semifinal exam

Exam requirements:
In the oral semifinal exam, at first 5 active substances selected from the compulsory list of active substances must be identified and their mechanism of action explained. If the student does not recognize at least 3 of the active substances, he/she will not be allowed to continue and will receive a fail mark. After successful completion of two topics of two lists of topics (one from each), an acceptable level of knowledge of pharmacology must be demonstrated.

Topic list "A"
1. The stages of drug development in brief. Types of clinical trials.
2. Pharmacodynamics I (Molecular targets of drugs. Drug receptors. Receptor theory.)
5. Drug biotransformation and excretion, linear and non-linear kinetics. Enzyme inhibitors and enzyme inducers. Clearance, half-life, loading and maintenance dose. Pharmacokinetic drug interactions
6. Drugs acting on gastrointestinal and urogenital smooth muscles. Drugs influencing uterine function. Histamine and antihistamines (H1-blockers)
7. Cholinergic transmission and its presynaptic modification.
8. Adrenergic transmission and its presynaptic modification
9. Cholinomimetics
10. Muscarinic receptor blocking drugs
11. Catecholamines
12. Indirect sympathomimetics. Selective αβCentrally and peripherally acting skeletal muscle relaxants
13. Local anesthetics
14. Natural opioids, opioid receptors
15. Semisynthetic and synthetic opioids
17. NSAIDs, except acetylsalicylic acid. Non-opioid and adjuvant analgesics. Drugs for headache syndromes
18. Inhalational anesthetics
19. Intravenous anesthetics. Perioperative medication
20. Benzodiazepines
22. Antipsychotics
23. Tricyclic, tetracyclic and unicyclic antidepressants. MAO-inhibitors
26. Antiepileptics used in partial seizures and generalized tonic-clonic seizures except for the “broad spectrum” agents.
27. Antiepileptics used in absence seizures. “Broad spectrum” antiepileptic drugs. Drugs used for treatment of status epilepticus
28. Drugs acting in the extrapyramidal motoric system. Nootropic drugs
29. Types of biological drugs. Orphan drugs. Advanced Therapy Medicines (ATMPs)
30. Nutrients, traditional plant medicines, vitamins, anorectic drugs.

Topic list “C”
1. General considerations of antimicrobial therapy. Disinfectants and antiseptics
2. Antimycobacterial drugs
3. Antiprotozoal and antihelminthic drugs.
4. Antifungal agents
5. Agents to treat Herpes simplex (HSV), varicella-zoster (VZV) virus, cytomegalovirus (CMV). Anti-influenza agents Drugs against Corona- and other viruses
6. Antiretroviral agents.
7. Agents against hepatitis viruses
8. Penicillins
9. Cephalosporins
11. Chloramphenicol. Polymyxins. Antifolate drugs
12. Tetracyclines and glyyclcyclines
13. Aminoglycosides
14. Quinolones and fluoroquinolones
15. Macrolides. Pleuromutilins

Type and method of grading:
One question is given from two topic lists each. According to the knowledge proven at the exam.

Detailed information on the compulsory and the full lists of active substances. If the candidate:
1. knows all the active substances to be studied and their information, and can also mention the names of active substances from the full drug list – mark 5
2. knows all the active substances to be studied and the information to a varying degree and can mention the names of active substances from the full drug list to a varying degree - 2,3,4
3. knows all the active substances to be learned, but only the name and nothing else – unsatisfactory (failure)
4. does not know any active substance names – unsatisfactory (failure)
5. does not know all the active substances from the mandatory list, but knows the active substances from the full list of active substances in the given topic, then points 1,2 or 3 above are taken into consideration, the mark is awarded according to these points

Type of grade: five-mark scale (1=failure, 2=pass, 3=fair, 4=good, 5=excellent)

How to register for the exam:
Registration must be done through the NEPTUN system for the days set by the department up to the limits.

Opportunities to retake the exam:
According to the Study and Examination Policy of Semmelweis University

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):

Materials discussed during lectures and seminars: http://semmelweis.hu/pharmacology, Moodle (https://itc.semmelweis.hu)
Pharmacology II.

Semmelweis University, Faculty of Medicine
Department of Pharmacology and Pharmacotherapy

Name of the subject: Pharmacology II.
Credits: 5
Total number of hours: 63 lectures: 28 practices: 35
Type of the course (mandatory/elective): mandatory

Academic year: 2022/2023 2nd semester

Code of the course¹: AOKFRM678_2A

Course director (tutor): Dr. Ferdinandy, Péter
Contact details: Department of Pharmacology and Pharmacotherapy, 1089 Budapest, Nagyvárad tér 4. Tel: +36-1-2104416, e-mail: ferdinandy.peter@med.semmelweis-univ.hu
Position: Head of Department, full professor
Date of habilitation and reference number: June 2 2001., 26/2001 Hab.

Aim of the subject and its place in the curriculum:
Pharmacology is a synthesizing subject, building on what has been learned in the past, especially physiology, biochemistry, pathology, and translational medicine, and is essential for the later acquisition of clinical knowledge. The subject includes: general pharmacology, detailed pharmacology, toxicology and basics of prescription writing. General pharmacology (pharmacodynamics, pharmacokinetics) aims to acquire the basic concepts and knowledge needed for pharmacological thinking, while in detailed pharmacology the student learns the main principles of the mechanism of action, therapeutic effects, adverse effects, major interactions, and partly dosing of medicines. The basics of toxicology describe the mechanisms and targets of major intoxications and thus provide a theoretical background for oxyology education. All of these competencies form the grounds to study clinical pharmacology and prepare students for the skill-level application of pharmacotherapeutic knowledge essential to clinical subjects.

Location of the course (lecture hall, practice room, etc.):
Nagyvárad térí Elméleti Tömb, 1089 Budapest, Nagyvárad tér 4.

Competencies gained upon the successful completion of the subject:
Students understand the pharmacological terminology, learn the mechanism of action, therapeutic effects, adverse effects, important interactions of drugs and the basics of dosing. They understand the mechanisms and targets of the most important poisonings, as well as the knowledge of the basic rules of prescription writing.

Prerequisite(s) for admission to the subject:
Pharmacology I, Medical Microbiology II, Pathology I

Minimum and maximum number of students registering for the course:
Since it is a mandatory subject all the students in the third year of medical education must register.
Detailed thematic of the course:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Lecture: Anticoagulants, inhibitors of platelet aggregation</td>
<td>Practice: Fibrinolytics, drugs against bleeding, drugs acting on blood cell production.</td>
</tr>
<tr>
<td>2nd</td>
<td>Lecture: Drugs influencing cardiac electrophysiology</td>
<td>Practice: Positive inotropic agents.</td>
</tr>
<tr>
<td>3rd</td>
<td>Lecture: Diuretics, antiuretics.</td>
<td>Practice: Drugs influencing blood pressure (sympatholytics, nitrates, Ca-channel blockers and other vasodilators. Pharmacology of RAAS.)</td>
</tr>
<tr>
<td>4th</td>
<td>Lecture: Drugs acting on blood glucose control.</td>
<td>Practice: Drugs influencing the oxygen demand and oxygen supply of the heart. Drugs improving microcirculation.</td>
</tr>
<tr>
<td>5th</td>
<td>Lecture: Drugs affecting lipid metabolism (1 study hour). Bronchodilators and drugs inhibiting the bronchial inflammatory processes (1 study hour).</td>
<td>Practice: Expectorants (secretomotorics, secretolytics, mucolytics), antitussive drugs. Autacoids, histamine, antihistamines. 3rd midterm</td>
</tr>
<tr>
<td>7th</td>
<td>Lecture: Pharmacology of female sexual hormones.</td>
<td>Practice: Androgens, antandrogens, anabolic steroids, drugs influencing sexual activity.</td>
</tr>
<tr>
<td>8th</td>
<td>Lecture: Basics of toxicology</td>
<td>Practice: Drugs affecting bone mineral homeostasis.</td>
</tr>
<tr>
<td>9th</td>
<td>Lecture: Drugs influencing gastric acid secretion, drugs protecting gastric mucosa</td>
<td>Practice: Appetizers, drugs promoting digestion, antiemetics, prokinetic agents. Laxatives, drugs against diarrhea. Pharmacology of liver and bile.</td>
</tr>
<tr>
<td>10th</td>
<td>Lecture: Immunopharmacology (cytotoxic agents, inhibitors of intracellular signaling, cytokine and cytokine receptor inhibitors)</td>
<td>Practice: Cytotoxic anticancer drugs. Retinoids.</td>
</tr>
<tr>
<td>11th</td>
<td>Lecture: Small molecule cytostatic, signal transmission inhibitor anticancer drugs. Anticancer drugs with hormonal mechanisms</td>
<td>Practice: Toxicology I. 4th midterm</td>
</tr>
<tr>
<td>12th</td>
<td>Lecture: Anticancer antibodies. Immunostimulant anticancer agents. Other drugs used in therapies of cancer</td>
<td>Practice: Toxicology II. Basics of prescription writing</td>
</tr>
<tr>
<td>13th</td>
<td>Lecture: Pharmacodynamic and pharmacokinetic basics of drug interactions</td>
<td>Practice: Contrast agents. Consultation</td>
</tr>
<tr>
<td>14th</td>
<td>Lecture: Pharmacogenomics, personalized medicine, drugs for orphan disease. Special aspects of pharmacology in children and elderly</td>
<td>Practice: Drugs and pregnancy</td>
</tr>
</tbody>
</table>
Potential overlap(s) with other subjects:
Physiology, biochemistry, molecular biology, pathology, microbiology, translational medicine, internal medicine, neurology, psychiatry, clinical pharmacology

Special training activities required:
N/A

Policy regarding the attendance and making up absences:
Maximum number of absences is 25 percent of the number of practices in the semester. In the case of absence, the student can attend another class the same week.

Means of assessing the students’ progress during the semester:
There are no mandatory midterm tests during the semester.

Requirement for acknowledging the semester (signature):
The number of absences must not be more than 25 percent of the number of practices in the semester.

Type of the examination:
oral final exam

Exam requirements:
In the oral final exam, at first 5 active substances selected from the compulsory list of active substances must be identified and their mechanism of action explained. If the student does not recognize at least 3 of the active substances, he/she will not be allowed to continue and will receive a fail mark. After successful completion of three topics of three lists of topics (one from each), an acceptable level of knowledge of pharmacology must be demonstrated.

Topic list “A”
1. The stages of drug development in brief. Types of clinical trials.
2. Pharmacodynamics I (Molecular targets of drugs. Drug receptors. Receptor theory.)
6. Drugs acting on gastrointestinal and urogenital smooth muscles. Drugs influencing uterine function. Histamine and antihistamines (H1-blockers)
7. Cholinergic transmission and its presynaptic modification.
8. Adrenergic transmission and its presynaptic modification.
9. Cholinomimetics
10. Muscarinic receptor blocking drugs
11. Catecholamines
12. Indirect sympathomimetics. Selective αβCentrally and peripherally acting skeletal muscle relaxants
13. Local anesthetics
14. Natural opioids, opioid receptors
15. Semisynthetic and synthetic opioids
17. NSAIDs, except acetylsalicylic acid. Non-opioid and adjuvant analgesics. Drugs for headache syndromes
18. Inhalational anesthetics
20. Benzodiazepines
22. Antipsychotics
23. Tricyclic, tetracyclic and unicyclic antidepressants. MAO-inhibitors
26. Antiepileptics used in partial seizures and generalized tonic-clonic seizures except for the “broad spectrum” agents.
27. Antiepileptics used in absence seizures. “Broad spectrum” antiepileptic drugs. Drugs used for treatment of status epilepticus.
30. Nutrients, traditional plant medicines, vitamins, anorectic drugs.
Topic list "B"

1. Drugs influencing blood coagulation I: Antiplatelet agents. Fibrinolytic drugs. Drugs inhibiting bleeding
2. Drugs influencing blood coagulation II: Anticoagulant drugs
3. Agents used in anemias
4. Positive inotropic drugs
5. Drugs influencing cardiac electrophysiology.
6. Drugs acting on the renin-angiotensin-aldosterone-system (RAAS)
7. Ca\(^{++}\)-channel blockers and other vasodilators
8. Drugs influencing the oxygen demand and oxygen supply of the heart. Drugs improving microcirculation.
9. Drugs affecting lipid metabolism.
10. Potassium excreting (wasting) diuretics
11. Potassium sparing diuretics, ADH antagonists, osmotic diuretics
12. Glucocorticoids for oral and parenteral use
15. Estrogens and antiestrogens
16. Progestins and progestagens. Contraceptives
17. Thyroid and antithyroid drugs. Pituitary hormones. Hypothalamic hormones, hormonanalogs and antagonists.
18. Pancreatic hormones and parenterally applied antidiabetic drugs.
20. Agents affecting bone mineral homeostasis (calcium, vitamin D, parathyroid hormone, calcitonin, etc.).
22. Drugs influencing gastric acid secretion, protective drugs of gastric mucosa
24. Drugs used in constipation (laxatives) and diarrhea. Drugs promoting digestion. Pharmacology of liver and biliary tract
26. Immunopharmacology II. (Inhibitors of cytokine gene expression, 5-ASA derivatives)
27. Immunopharmacology III. (Antibodies and fusion proteins)
28. Drugs used in cancer treatment I (antimetabolites)
29. Drugs used in cancer treatment II (cytotoxic agents targeting DNA)
30. Drugs used in cancer treatment III (Topoisomerase inhibitors. Inhibitors of mitotic spindle)
31. Drugs used in cancer treatment IV. (Hormonal agents)
32. Drugs used in cancer treatment V. (Small molecule signal transduction inhibitors. Retinoids)
33. Drugs used in cancer treatment VI. (Large molecule signal transduction inhibitors. Immunostimulant anticancer drugs.)

Topic list "C"

1. General considerations of antimicrobial therapy. Disinfectants and antiseptics
2. Antimycobacterial drugs
3. Antiprotozoal and antihelminthic drugs.
4. Antifungal agents
5. Agents to treat Herpes simplex (HSV), varicella-zoster (VZV) virus, cytomegalovirus (CMV). Anti-influenza agents Drugs against Corona- and other viruses
6. Antiretroviral agents.
7. Agents against hepatitis viruses
8. Penicillins
9. Cephalosporins
11. Chloramphenicol. Polymyxins. Antifolate drugs
12. Tetracyclines and glycyclyclines
13. Aminoglycosides
14. Quinolones and fluoroquinolones
15. Macrolides. Pleuromutilins
Type and method of grading:
Successful toxicology exam is prerequisite of the final exam. The result of the toxicology exam is included in the final evaluation. In the oral final exam, at first 5 active substances selected from the compulsory list of active substances must be identified and their mechanism of action explained. If the student does not recognize at least 3 of the active substances, he/she will not be allowed to continue and will receive a fail mark. After successful completion of three topics of three lists of topics (one from each), an acceptable level of knowledge of pharmacology must be demonstrated.

Detailed information on the compulsory and the full lists of active substances. If the candidate:
1. knows all the active substances to be studied and their information, and can also mention the names of active substances from the full drug list – mark 5
2. knows all the active substances to be studied and the information to a varying degree and can mention the names of active substances from the full drug list to a varying degree - 2,3,4
3. knows all the active substances to be learned, but only the name and nothing else – unsatisfactory (failure)
4. does not know any active substance names – unsatisfactory (failure)
5. does not know all the active substances from the mandatory list, but knows the active substances from the full list of active substances in the given topic, then points 1,2 or 3 above are taken into consideration, the mark is awarded according to these points

Type of grade: five-mark scale (1=failure, 2=pass, 3=fair, 4=good, 5=excellent)

How to register for the exam:
Registration must be done through the NEPTUN system for the days set by the department up to the limits.

Opportunities to retake the exam:
According to the Study and Examination Policy of Semmelweis University

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):

Materials discussed during lectures and seminars: http://semmelweis.hu/pharmacology, Moodle (https://itc.semmelweis.hu)
Translational Medicine – Pathophysiology I-II.

5th semester

Credit value: 3
Subject code: AOKTLM740_1A
Number of lessons per week: 42 lecture: 21 practical course: 21
Academic year: 2022/2023 Semester 1
Name of the course leader: Zoltán Benyó MD, PhD, DSc
His/her workplace, phone number: Institute of Translational Medicine, 06-1-210-0306
Position: Director, University Professor
Date and registration number of their habilitation: 2008, 259

Objectives of the subject, its place in the medical curriculum:
The objective of the course is to have the students understand the complex mechanisms responsible for the development of functional disturbances in common conditions affecting the function of the entire organism through integration of the knowledge imparted by initial courses (most importantly anatomy, biochemistry and physiology), as well as the regulatory processes that are activated in order to fend off these disturbances. Having assimilated the knowledge encompassing organ systems and disciplines and the integrative approach, the students will be ready to understand, in the course of their clinical education, the mechanisms and symptomatology of various diseases and the respective therapeutic possibilities.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Centre of Theoretical Medicine, 37–47 Tűzoltó street, 1094 Budapest
Theoretical Building, 4 Nagyvárad square, 1089 Budapest

Successful completion of the subject results in the acquisition of the following competencies:
Based on their basic training in anatomy, biochemistry and physiology, the students will become capable of understanding the manifestation, on the organism level, of the pathological processes underlying the most common diseases, their symptoms, causes and potential therapeutic outcomes. Helped by practice sessions closely linked with the theoretical material, the students will acquire the skills necessary for following causality relationships in the disturbances of physiological processes and for recognizing the effects of these disturbances on the totality of the function of the organism, and will gain experience in test methods utilized in clinical practice, their theoretical bases, margins for interpretation and actual execution.

Course prerequisites:
Anatomy, final exam Macroanatomy: AOKATN667_2A
Biochemistry, final exam Biochemistry II.
Physiology, final exam Physiology II.

Number of students required for the course (minimum, maximum) and method of selecting students:
Based on registration in the Neptun system; offered in the autumn semester for the entire class.

Detailed curriculum:
Lectures (1.5 lessons/week)
Semester 1

Lectures (70 min. lectures weekly)

Week 1 Hypertension – Zsuzsanna Miklós
Week 2 Congestive heart failure – László Tornóci
Week 3 Obesity – Éva Ruisanchez
Week 4 Diabetes I: Pathogenesis of Type 1 and 2 diabetes – Domokos Gerő
Week 5 Diabetes II: Pathogenesis of diabetic complication – Domokos Gerő
Week 6 Atherosclerosis and disorders of lipid metabolism – Éva Margittai
Week 7 Disorders of Hemostasis – Zoltán Benyó
Week 8 Endocrine diseases I: Thyroid gland – Tamás Ivanics
Week 9 Endocrine diseases II: Adrenal gland – Tamás Ivanics
Week 10 Endocrine diseases III: Pituitary gland and reproductive system – Zoltán Benyó
Week 11 Menopause – Zsuzsanna Miklós
Week 12 Osteoporosis. Calcium and phosphate homestasis – Gábor Kökény
Week 13 Endocrine diseases II: Adrenal gland and Thyroid gland – Gábor Kökény
Week 14 Consultation lecture

Practices (135 min. lessons biweekly)

Weeks 1-2 Hypertension, ABPM and Clinical case discussion
Weeks 3-4 Blood pressure measurement, arterial pulse wave, ankle-brachial index
Weeks 5-6 Obesity and Diabetes, and Clinical case discussion
Weeks 7-8 Diabetic neuropathy diagnostic procedures
Weeks 9-10 Diabetic vascular function task
Weeks 11-12 Adrenal gland and Thyroid gland, and Clinical case discussion
Weeks 13-14 Menopause and Osteoporosis, and Clinical case discussion

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of the syllabuses:
Pathology, immunology, laboratory medicine and general medicine

Special study work required to successfully complete the course:
None

Requirements for participation in classes and the possibility to make up for absences:
Participation at practice sessions is compulsory. Maximum of 1 absence from the practice sessions is acceptable. Absence from more than 1 of the practice sessions in a semester means that the student did not fulfil his/her semestrial study obligations. There is no possibility for making up for absence from lectures; absence from practice sessions can be made up for with another group in the same week, if there is room for additional participants.

Methods to assess knowledge acquisition during term time:
Students might give account of – which there is no compulsory participation - their theoretical and practical curriculum knowledge of the material so far presented in the lectures and the practical lessons on two occasions in the course of the semester, at predetermined dates/times, in the form of written test. Based on the combined results of the two competition rounds, we will prepare a grade offer for the colloquium examination

Requirements for semestral signature:
The requirement for the end-of-semester signature: absence from more than 1 practice sessions in a semester also means that the student did not fulfil his/her semestrial study obligations, therefore he/she is not permitted to take the exam.

Type of examination:
Semifinal exam
Requirements of the examination:

1st Semester, Exam topics, (theory)

1. Definition of hypertension and its different forms; hypertension of known causes; complications of hypertension
2. Essential hypertension; principles of hypertension treatment
3. Heart failure, its causes and symptoms
4. Secondary effects of heart failure, therapeutic options
5. Prevalence, causes and definition of obesity
6. Adipose tissue function and dysfunction
7. Systemic consequences of obesity
8. Pathogenesis of Type 1 diabetes mellitus
9. Pathogenesis of Type 2 diabetes mellitus
10. Microvascular complications of diabetes mellitus
11. Macrovascular complications of diabetes mellitus
12. Characterization of lipoproteins, lipoprotein metabolism
13. Classification of dyslipidemias; syndromes of primary hyperlipoproteinemia
14. Syndromes associated with secondary hyperlipoproteinemia
15. Atherosclerosis
16. Conditions associated with coagulation system dysfunction
17. Conditions associated with excessive activation of the coagulation system
18. Simultaneous under- and overacting disorders of the coagulation system
19. Pathogenesis of hypothyroidism and the symptoms of hypothyroidism
20. Pathogenesis of syndromes with hyperthyroidism and symptoms of thyrotoxicosis
21. Pathogenesis of acute and chronic adrenocortical insufficiency, pathomechanism underlying the main symptoms; congenital adrenal hyperplasia
22. Pathogenesis of Cushing’s syndrome, pathomechanism underlying the symptoms and diagnosis
23. Pathogenesis of primary and secondary hyperaldosteronism; the pathomechanism underlying the symptoms
24. Possible causes of overproduction of growth hormone and prolactin, the pathomechanism of the consequences
25. Male hypogonadism and androgen insensitivity syndrome
26. Disorders of the female hormonal regulation
27. Menopausal transition and menopause
28. Postmenopause
29. Hormonal regulation of calcium and phosphate metabolism in physiological and pathological conditions
30. Hormonal regulation of calcium and phosphate metabolism in physiological and pathological conditions, its effects on the skeletal system
31. Non-osteoporotic bone diseases in adults and extraskeletal effects of vitamin D deficiency
32. General mechanisms in the development of systemic autoimmune diseases
33. Autoimmune joint diseases; rheumatoid arthritis and ankylosing spondylitis
34. Pathomechanism of Systemic lupus erythematosus, systemic sclerosis and Sjögren's syndrome

1st Semester, Exam topics, (practice)

Case study presentation of relevant clinical cases to discuss the pathogenesis of typical symptoms, diagnosis and therapeutic approaches in diseases.

Case 1-4. Hypertension
Case 5-8. Obesity – Diabetes
Case 9-12. Endocrine disorder
Case 13-16. Menopause and osteoporosis

Practical tasks, device operation:

17. Methods to measure blood pressure. Practical aspects of correctly performing blood pressure measurement.
18. ABPM and its indications. How is an ABPM test performed? Why is it important to assess diurnal rhythm?
19. Diagnostic criteria of hypertension using different methods of measurement. What are the indications and benefits of home blood pressure monitoring?
22. The definition and measurement of the ankle-brachial index. Its significance.
23. Diabetic neuropathy task: the manifestations and symptoms of diabetic neuropathy, their pathomechanism
24. Examination procedures used for diagnosing neuropathy affecting somatic nerves. Explanation of the physical examination procedures presented in the practical lesson.
26. **Diabetic vascular function task:** briefly describe the methods of laser Doppler flow measurement and transcutaneous partial oxygen tension measurement. Describe the blood flow response to heating and its changes in diabetic vascular dysfunction; explain the underlying pathomechanism.

27. **Diabetic vascular function task:** briefly describe the methods of laser Doppler flow measurement and transcutaneous partial oxygen tension measurement. Explain what post-occlusive reactive hyperaemia is and how it changes with diabetic vascular dysfunction; explain the underlying pathomechanism.

28. **Diabetic vascular function:** briefly describe the methods of laser Doppler flow measurement and transcutaneous partial oxygen tension measurement. Explain the venoarterial reflex and its changes in diabetic vascular dysfunction; explain the underlying pathomechanism.

Method and type of evaluation:

Semifinal exam:
The semifinal exam is oral.

Exam exemption may be obtained by achieving exceptional results in the competition, a grade “4” or “5” may be offered as the colloquium/semifinal examination grade.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The Figures of the lectures available for download at the website, and short written extracts of the lectures (“handout”)

6th Semester

Credit value: 3
Subject code: AOKTL740_2A
Number of lessons per week: 42
lecture: 21
practical course: 21
Academic year: 2022/2023 Semester 2
Name of the course leader: Zoltán Benyó MD, PhD, DSc
His/her workplace, phone number: Institute of Translational Medicine, 06-1-210-0306
Position: Director, University Professor
Date and registration number of their habilitation: 2008, 259

Objectives of the subject, its place in the medical curriculum:
The objective of the course is to have the students understand the complex mechanisms responsible for the development of functional disturbances in common conditions affecting the function of the entire organism, through integration of the knowledge imparted by initial courses (most importantly anatomy, biochemistry and physiology), as well as the regulatory processes that are activated in order to fend off these disturbances. Having assimilated the knowledge encompassing organ systems and disciplines and the integrative approach, the students will be ready to understand, in the course of their clinical education, the mechanisms and symptomatology of various diseases and the respective therapeutic possibilities.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Centre of Theoretical Medicine, 37–47 Tűzoltó street, 1094 Budapest
Theoretical Building, 4 Nagyvárad square, 1089 Budapest

Successful completion of the subject results in the acquisition of the following competencies:
Based on their basic training in anatomy, biochemistry and physiology, the students will become capable of understanding the manifestation, on the organism level, of the pathological processes underlying the most common diseases, their symptoms, causes and potential therapeutic outcomes. Helped by practice sessions closely linked with the theoretical material, the students will acquire the skills necessary for following causality relationships in the disturbances of physiological processes and for recognizing the effects of these disturbances on the totality of the function of the organism, and will gain experience in test methods utilized in clinical practice, their theoretical bases, margins for interpretation and actual execution.
Course prerequisites:
Pathology I. semifinal exam
Translational Medicine – Pathophysiology I. semifinal exam

Detailed curriculum:
Lectures (1.5 lessons/week)

Semester 2

Lectures (70 min. lectures weekly)
Week 1 Pathophysiology of gastrointestinal diseases – Gábor Kökény
Week 2 Liver and biliary tract disorders – Éva Margittai
Week 3 Acute alcohol poisoning. Acute and chronic pancreatitis – Éva Margittai
Week 4 Acute kidney injury – Péter Hamar
Week 5 Chronic kidney disease – Péter Hamar
Week 6 Acute respiratory failure – György Losonczy
Week 7 Chronic respiratory disorders – György Losonczy
Week 8 Acid-base disorders – Domokos Gerő
Week 9 Na+, K+ and water balance, pathophysiology of fluid and electrolyte disorders – Zsuzsanna Miklós
Week 10 Circulatory shock – Zoltán Benyó
Week 11 Septic and anaphylactic shock – Zoltán Benyó
Week 12 Pathophysiology of ageing – Zoltán Ungvári
Week 13 Disorders developing in the course of immobilization and their treatment. Cachexia. Rehabilitation – Zoltán Benyó
Week 14 Secondary disorders developing in malignant diseases – Péter Hamar

Practices (135 min. lessons biweekly)
Weeks 1-2 GI diseases and Nutritional status analysis, Clinical case discussion
Weeks 3-4 Liver diseases and Clinical case discussion
Weeks 5-6 Kidney diseases and Clinical case discussion
Weeks 7-8 Respiratory diseases and Clinical case discussion
Weeks 9-10 Acid-base disorders and Clinical case discussion
Weeks 11-12 Circulatory shock and Clinical case discussion
Weeks 13-14 Vascular cognitive disorders: fNIRS and cognitive tests

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of the syllabuses:
Pathology, immunology, laboratory medicine and general medicine

Requirements for participation in classes and the possibility to make up for absences:
Participation at practice sessions is compulsory. Maximum of 1 absence from the practice sessions is acceptable. Absence from more than 1 of the practice sessions in a semester means that the student did not fulfil his/her semestrial study obligations. There is no possibility for making up for absence from lectures; absence from practice sessions can be made up for with another group in the same week, if there is room for additional participants.

Methods to assess knowledge acquisition during term time:
Students might give account of – which there is no compulsory participation - their theoretical and practical curriculum knowledge of the material so far presented in the lectures and the practical lessons on two occasions in the course of the semester, at predetermined dates/times, in the form of written test. Based on the combined results of the two competition rounds, we will prepare a grade offer for the colloquium examination.
Requirements for semestral signature:
The requirement for the end-of-semester signature: absence from more than 1 practice sessions in a semester also means that the student did not fulfil his/her semestral study obligations, therefore he/she is not permitted to take the exam.

Type of examination:
Final exam

Requirements of the examination:

1st Semester, Exam topics, (theory)

1. Definition of hypertension and its different forms; hypertension of known causes; complications of hypertension
2. Essential hypertension; principles of hypertension treatment
3. Heart failure, its causes and symptoms
4. Secondary effects of heart failure, therapeutic options
5. Prevalence, causes and definition of obesity
6. Adipose tissue function and dysfunction
7. Systemic consequences of obesity
8. Pathogenesis of Type 1 diabetes mellitus
9. Pathogenesis of Type 2 diabetes mellitus
10. Microvascular complications of diabetes mellitus
11. Macrovascular complications of diabetes mellitus
12. Characterization of lipoproteins, lipoprotein metabolism
13. Classification of dyslipidemias; syndromes of primary hyperlipoproteinemia
14. Syndromes associated with secondary hyperlipoproteinemia
15. Atherosclerosis
16. Conditions associated with coagulation system dysfunction
17. Conditions associated with excessive activation of the coagulation system
18. Simultaneous under- and overacting disorders of the coagulation system
19. Pathogenesis of hypothyroidism and the symptoms of hypothyroidism
20. Pathogenesis of syndromes with hyperthyroidism and symptoms of thyrotoxicosis
21. Pathogenesis of acute and chronic adrenocortical insufficiency, pathomechanism underlying the main symptoms; congenital adrenal hyperplasia
22. Pathogenesis of Cushing’s syndrome, pathomechanism underlying the symptoms and diagnosis
23. Pathogenesis of primary and secondary hyperaldosteronism; the pathomechanism underlying the symptoms
24. Possible causes of overproduction of growth hormone and prolactin, the pathomechanism of the consequences
25. Male hypogonadism and androgen insensitivity syndrome
26. Disorders of the female hormonal regulation
27. Menopausal transition and menopause
28. Postmenopause
29. Hormonal regulation of calcium and phosphate metabolism in physiological and pathological conditions
30. Hormonal regulation of calcium and phosphate metabolism in pathological conditions, its effects on the skeletal system
31. Non-osteoporotic bone diseases in adults and extraskeletal effects of vitamin D deficiency
32. General mechanisms in the development of systemic autoimmune diseases
33. Autoimmune joint diseases; rheumatoid arthritis and ankylosing spondylitis
34. Pathomechanism of Systemic lupus erythematosus, systemic sclerosis and Sjögren’s syndrome

2nd Semester, Exam topics, (theory)

1. The pathophysiology of the gastrointestinal system - the diseases of the stomach and the small intestine
2. The pathophysiology of the gastrointestinal system - inflammatory bowel diseases
3. Liver dysfunction I.
4. Liver dysfunction II.
5. The metabolism of alcohol
6. Acute alcohol intoxication
7. Chronic alcoholism
8. The causes and systemic consequences of acute renal failure
9. The causes and definition of chronic renal failure
10. Pathological changes in organs affected by chronic renal failure
11. Pulmonary ventilation disorders and respiratory function tests to detect them; the definition and forms of respiratory failure
12. The symptoms of acute respiratory failure; the effect of consequent hyperventilation on blood gas and acid-base values
13. The effects of prolonged smoking on the large and small airways and on the elastic fibers of the lungs
14. The correlation between FEV1 decline and arterial pO2 and pCO2 in chronic respiratory failure (COPD and pulmonary fibrosis)
15. Various types of organ damage caused by chronic global respiratory failure (mainly COPD)
16. Acid-base disorders of metabolic origin: metabolic acidosis and metabolic alkalosis
17. Acid-base disorders of respiratory origin: respiratory acidosis and respiratory alkalosis
18. Sodium (Na+) and water balance disorders
19. Potassium (K+) balance disorders
20. The definition and classification of circulatory shock
21. Forms of hypovolemic shock
22. The different phases of hypovolemic shock
23. The progression of circulatory shock
24. Organ manifestations of circulatory shock
25. Possible causes of cardiogenic shock
26. The definition and mechanism of septic shock and the principles of its treatment
27. The development and consequences of pro- and anti-inflammatory processes, coagulation disorders and endothelial dysfunction in septic shock

1st Semester, Exam topics, (practice)
Case study presentation of relevant clinical cases to discuss the pathogenesis of typical symptoms, diagnosis and therapeutic approaches in diseases.

Case 1-4. Hypertension
Case 5-8. Obesity – Diabetes
Case 9-12. Endocrine disorder
Case 13-16. Menopause and osteoporosis

Practical tasks, device operation:
17. Methods to measure blood pressure. Practical aspects of correctly performing blood pressure measurement.
18. ABPM and its indications. How is an ABPM test performed? Why is it important to assess diurnal rhythm?
19. Diagnostic criteria of hypertension using different methods of measurement. What are the indications and benefits of home blood pressure monitoring?
22. The definition and measurement of the ankle-brachial index. Its significance.
23. Diabetic neuropathy task: the manifestations and symptoms of diabetic neuropathy, their pathomechanism
24. Examination procedures used for diagnosing neuropathy affecting somatic nerves. Explanation of the physical examination procedures presented in the practical lesson.
26. Diabetic vascular function task: briefly describe the methods of laser Doppler flow measurement and transcutaneous partial oxygen tension measurement. Describe the blood flow response to heating and its changes in diabetic vascular dysfunction; explain the underlying pathomechanism.
27. Diabetic vascular function task: briefly describe the methods of laser Doppler flow measurement and transcutaneous partial oxygen tension measurement. Explain what post-occlusive reactive hyperaemia is and how it changes with diabetic vascular dysfunction; explain the underlying pathomechanism.
28. Diabetic vascular function: briefly describe the methods of laser Doppler flow measurement and transcutaneous partial oxygen tension measurement. Explain the venoarterial reflex and its changes in diabetic vascular dysfunction; explain the underlying pathomechanism.
2nd Semester, Exam topics, (practice)

Case study presentation of relevant clinical cases to discuss the pathogenesis of typical symptoms, diagnosis and therapeutic approaches in diseases.

Case 1-3. Gastrointestinal disease
Case 4-9. Liver disease
Case 10-14. Kidney disease
Case 15-18. Respiratory disease
Case 19-22. Acid-base disorder
Case 23-26. Circulatory shock

Practical tasks, device operation:

27. What options can you name to define nutritional status? What are the advantages and disadvantages of the different methods?
28. How does the body composition monitor based on bioimpedance spectroscopy work? What are the most important parameters that are determined?
29. What are the clinical uses of bioelectrical impedance analyzers? What are the main parameters used in different areas?
30. Describe the abnormal findings in urine tests; describe the most common symptoms and their causes. Reference values.
31. Possible causes of abnormal urine colour.
32. The mechanism and clinical significance of neurovascular coupling in functional brain imaging. The theoretical background and practical application of the fNIRS method and its significance in the study of frontal cortical function.
33. Types of cognitive tests and their significance in the diagnosis of neurodegenerative disorders. The significance of the recognition of mild cognitive impairment and the theoretical basis of its differential diagnosis.

Method and type of evaluation:

Final exam:
The Final exam is oral.
Exam exemption may be obtained by achieving exceptional results in the competition, a grade “4” or “5” may be offered as the Final examination grade.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The Figures of the lectures available for download at the website, and short written extracts of the lectures (“handout”).
MEDICAL STATISTICS, INFORMATICS AND TELEMEDICINE

lecture 1 hour/week practice 1 hour/week
2 credits
Tutor: Dr Dániel Veres

<table>
<thead>
<tr>
<th>week</th>
<th>lecture topic</th>
<th>practice topic</th>
</tr>
</thead>
</table>
| 1 | Principles of quantitative medicine. | Introduction.
Data types. Introduction to data types. |
| 2 | Summary of data: descriptive statistics | Graphical representation of data and interpretation of plots I. Ploting
frequencies: visualization of samples with a large number of elements on a
histogram, bar plot. |
| 3 | Event, probability, distribution. | Graphical representation of data and interpretation of plots II. Box plots, scatter
plot, mosaic plot. Outliers. Interpretation of percentile curves.
Descriptive values. Determination of descriptive values from a large sample
size. |
| 5 | Principles of hypothesis testing in medical practice. | Reference interval. Approximate calculation for normal distribution.
Interpretation.
Confidence intervals. Simple calculation of the confidence interval of mean.
Interpretation. |
| 6 | T-tests; chi-square tests.
Multiplicity. | Hypothesis tests. Logic of hypothesis tests. |
| 7 | Correlation. Simple linear regression. | Student t-tests. Making t-tests. Interpretation of effect size, confidence interval
and p-value.
Multiplicity. Examples for multiple testing. |
| 8 | Arguing. | Correlation, regression. Interpretation of corerlation coefficient. Making simple
linear regression, interpretation of the slope. |
| 9 | Linear regression as a tool against confounding, | Arguing. Examples.
Bias. Examples |
| 10 | Evaluation of diagnostic tests. | Regression models. Interpreting the results of regression models. |
| 12 | Our own research, diploma work, dialogue with the statistician: How much is enough? How not to make a very bad questionnaire? How to make a good data table? | Diagnostic tests II. ROC curves. Likelihood ratios. |
| 13 | Introduction to medical decision theory, Bayesian theory: a priori and a posteriori distributions, learning model. | Preparing data. Organizing data tables. |
| 14 | Databases, expert systems, AI supported diagnostics, BigData. | When and how to ask a statistician.
Questionnaires. Reflection on a questionnaire - how not to do very badly. |
MEDICAL MICROBIOLOGY II.

Institute of Medical Microbiology
Program Director: Prof. Dr. Dóra Szabó
Tutor: Dr. Ágoston Ghidán

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (1.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medical Mycology</td>
</tr>
<tr>
<td>2.</td>
<td>Medical Parasitology – 1</td>
</tr>
<tr>
<td>3.</td>
<td>Medical Parasitology – 2</td>
</tr>
<tr>
<td>4.</td>
<td>Medical Parasitology – 3</td>
</tr>
<tr>
<td>5.</td>
<td>General Virology</td>
</tr>
<tr>
<td>6.</td>
<td>• DNA viruses – 1 Adenoviruses, Herpesviruses</td>
</tr>
<tr>
<td>7.</td>
<td>• DNA viruses – 2 Pox-, Parvo- and Papillomaviruses</td>
</tr>
<tr>
<td>8.</td>
<td>• RNA viruses – 1 Orthomyxo-, Paramyx- and Togaviruses</td>
</tr>
<tr>
<td>9.</td>
<td>• RNA viruses – 2 Arbo- and Roboviruses</td>
</tr>
<tr>
<td>10.</td>
<td>• RNA viruses – 3 Polio-, Rota-, Calici- and Astroviruses</td>
</tr>
<tr>
<td>11.</td>
<td>Hepatitis viruses</td>
</tr>
<tr>
<td>12.</td>
<td>Retro viruses. AIDS. Viral oncogenesis</td>
</tr>
<tr>
<td>13.</td>
<td>• Slow viruses and Prions. Control of viral diseases. Antiviral chemotherapy</td>
</tr>
<tr>
<td>14.</td>
<td>• Iatrogenic and Nosocomial infections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week</th>
<th>Practicals (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medical Mycology</td>
</tr>
<tr>
<td>2.</td>
<td>Medical Parasitology – 1 Amoebas, Flagellata</td>
</tr>
<tr>
<td>3.</td>
<td>Medical Parasitology – 2 Plasmodia, Toxoplasma, Criptosporidium</td>
</tr>
<tr>
<td>4.</td>
<td>Medical Parasitology – 3 Helminthes</td>
</tr>
<tr>
<td>5.</td>
<td>General Virology</td>
</tr>
<tr>
<td>6.</td>
<td>DNA viruses</td>
</tr>
<tr>
<td>7.</td>
<td>RNA viruses</td>
</tr>
<tr>
<td>8.</td>
<td>Midterm exam II.</td>
</tr>
<tr>
<td>9.</td>
<td>Clinical Bacteriological Diagnosis – 1: Skin, wound and eye infections</td>
</tr>
<tr>
<td>10.</td>
<td>• Clinical Bacteriological Diagnosis – 2: Respiratory tract infections</td>
</tr>
<tr>
<td>11.</td>
<td>• Clinical Bacteriological Diagnosis – 3: Infections of the uro-genital tract. Abdominal and Enteral infections. Sexually transmitted diseases</td>
</tr>
<tr>
<td>12.</td>
<td>• Clinical Bacteriological Diagnosis – 4: Bacteriemia, sepsis, endocarditis, meningitis</td>
</tr>
<tr>
<td>13.</td>
<td>Summary and review</td>
</tr>
<tr>
<td>14.</td>
<td>Practical exam</td>
</tr>
</tbody>
</table>
PATHOLOGY I.

1st Dept. of Pathology and Experimental Cancer Research
Tutor: Dr. Gergely Rácz

1st SEMESTER – 2022

<table>
<thead>
<tr>
<th>WEEK</th>
<th>LECTURES</th>
<th>HISTOPATHOLOGY and PREPARATION</th>
</tr>
</thead>
</table>
| **Week 1** | The place and role of Pathology in the Medicine. Structure of pathology and methods. Definition of Death, Signs of Death, Necrosis and Apoptosis. | Practice 1- Introduction
Safety rules
Digital teaching system
Teleconsultation
E-school |
Histology:
Anemic infarction, kidney
Infarctus haemorrhagicus pulmonis
Acute myocardial infarction
Reperfusion injury
Chronic myocardial infarction
Cerebral infarct
Preparation:
Infarctus anaemicus renis
Ruptura cordis, haemopericardium
Infarctus recurrens myocardii
Gangraena humida antebrachii
Infarctus obsoletus myocardii et aneurysma cordis
Encephalomalacia alba et encephalomalacia rubra |
| **Week 3** | Lipid accumulation, Atherosclerosis, Protein accumulation, Amyloidosis. Cellular adaptations: Hypertrophy, Hyperplasia, Atrophy, Metaplasia | Practice 3- Necrosis 2.
Histology:
Liponecrosis pancreatis
Lymphadenitis tuberculosa
Apoptosis
Preparation:
Liponecrosis pancreatis
Caseatio tuberculosa lympholandulae
Necrosis in centro tumoris |
| **Week 4** | Endogeneous and Exogeneous Pigments, Calcification, Lithiasis Hemorrhage | Practice 4- Accumlation
Histology:
Steatosis hepatis alcoholica (HE)
Atheromatosi arteriae (HE)
Infiliatio adiposa myocardii (HE)
Amyloidosis renis (Congo Red)
IRDS (PAS)
Preparation:
Steatosis diffusa hepatis
Atheromatosi aortae
Amyloidosis lienis et renis |
<table>
<thead>
<tr>
<th>LECTURES</th>
<th>HISTOPATHOLOGY and PREPARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 5</td>
<td>Thrombosis, Embolism, DIC</td>
</tr>
<tr>
<td></td>
<td>Stagnation, oedema, shock</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>Hypertrophia myocardii, CIHD</td>
</tr>
<tr>
<td></td>
<td>Hyperplasia glandulae suprarenalis</td>
</tr>
<tr>
<td></td>
<td>Bronchus, squamous metaplasia (HE)</td>
</tr>
<tr>
<td></td>
<td>Microcalcification, DCIS (HE)</td>
</tr>
<tr>
<td></td>
<td>Preparation:</td>
</tr>
<tr>
<td></td>
<td>Cholelithiasis – Gallbladder stones</td>
</tr>
<tr>
<td></td>
<td>Hypertrophia ventriculi sinistri cordis</td>
</tr>
<tr>
<td></td>
<td>Hypertrophia ventriculi dextri cordis</td>
</tr>
<tr>
<td>Week 6</td>
<td>Acute Inflammation</td>
</tr>
<tr>
<td></td>
<td>Chronic Inflammation and Tissue Repair: Regeneration, Healing, and Fibrosis</td>
</tr>
<tr>
<td></td>
<td>Practice 6 - Circulation 1.</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>Oedema pulmonis (HE)</td>
</tr>
<tr>
<td></td>
<td>Induratio brunea pulmonis (Prussian blue)</td>
</tr>
<tr>
<td></td>
<td>Hepar moschatum adiposum (HE)</td>
</tr>
<tr>
<td></td>
<td>Thrombosis arteriae femoralis (HE)</td>
</tr>
<tr>
<td></td>
<td>Preparation:</td>
</tr>
<tr>
<td></td>
<td>Thrombosis venae</td>
</tr>
<tr>
<td></td>
<td>Thrombosis arteriae</td>
</tr>
<tr>
<td></td>
<td>Thrombus muralis laminata in aneurysma aortae</td>
</tr>
<tr>
<td></td>
<td>Thromboembolia trunci brachiocephalici</td>
</tr>
<tr>
<td>Week 7</td>
<td>New technologies in molecular diagnostic - Numerical and Structural abnormalities of the Chromosomes. Mutations and Clinical manifestations. Pediatric Diseases</td>
</tr>
<tr>
<td></td>
<td>Practice 7 - Circulation 2.</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>DIC (fibrin staining)</td>
</tr>
<tr>
<td></td>
<td>Embolia lipomatosa (Oil-red)</td>
</tr>
<tr>
<td></td>
<td>Preparation:</td>
</tr>
<tr>
<td></td>
<td>Erosiones mucosae ventriculi</td>
</tr>
<tr>
<td></td>
<td>Haemorrhagia subarachnoidealis</td>
</tr>
<tr>
<td></td>
<td>Apoplexia glandulae suprarenalis</td>
</tr>
<tr>
<td>Week 8</td>
<td>Mechanisms of Immune-Mediated Injury</td>
</tr>
<tr>
<td></td>
<td>Immune deficency Diseases. Rejection of Transplants</td>
</tr>
<tr>
<td></td>
<td>Practice 8 - Acute inflammation</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>Pericarditis fibrinosa</td>
</tr>
<tr>
<td></td>
<td>Bronchopneumonia</td>
</tr>
<tr>
<td></td>
<td>Appendicitis acuta ulcerophlegmonosa</td>
</tr>
<tr>
<td></td>
<td>Pneumonia lobaris</td>
</tr>
<tr>
<td></td>
<td>Preparation:</td>
</tr>
<tr>
<td></td>
<td>Pericarditis fibrinosopurulenta</td>
</tr>
<tr>
<td></td>
<td>Pneumonia lobaris</td>
</tr>
<tr>
<td>Week 9</td>
<td>All Saints Day</td>
</tr>
<tr>
<td></td>
<td>Autoimmune Disease</td>
</tr>
<tr>
<td></td>
<td>Practice 9 - Chronic Inflammation</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>Myocarditis rheumatica (HE)</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis pulmonis (HE)</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis pulmonis (ZN)</td>
</tr>
<tr>
<td></td>
<td>Granuloma corporis alienis (HE)</td>
</tr>
<tr>
<td></td>
<td>Granulation tissue (HE)</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis (HE)</td>
</tr>
<tr>
<td></td>
<td>Preparation:</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis pulmonis</td>
</tr>
<tr>
<td>Week 10</td>
<td>Pathological consequences of infectious diseases, sepsis, AIDS</td>
</tr>
<tr>
<td></td>
<td>Characteristics of Benign and Malignant Neoplasms</td>
</tr>
<tr>
<td></td>
<td>Practice 10 - Immunology</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>Polypus nasi (HE)</td>
</tr>
<tr>
<td></td>
<td>Asthma bronchiale (PAS)</td>
</tr>
<tr>
<td></td>
<td>Acute rejection (HE)</td>
</tr>
<tr>
<td></td>
<td>Lupus nephritis (PAS)</td>
</tr>
<tr>
<td></td>
<td>Scleroderma (HE)</td>
</tr>
</tbody>
</table>
| Week 11 | Carcinogenesis, Etiology of Neoplasia
Prevention, Diagnosis and Treatment of Cancer | Practice 11 - Oncology 1.
Histology:
Squamous cell metaplasia, cervix
HPV infection _condyloma_ _LSIL_
HSIL _CIN3_
Invasive carcinoma, cervix
Papilloma laryngis (HE)
Carcinoma basocellulare (HE)
Carcinoma planocellulare cutis (HE)
Polypus adenomatosus coli (HE)
Adenocarcinoma coli (HE)
Preparation:
Papilloma laryngis
Polypus intestini crassi
Haemangioma hepati s |
|---|---|
| Week 12 | Ability to Invade and Metastasize
Preneoplastic Disorders | Practice 12 - Oncology 2.
Histology:
Leiomyoma
Leiomyosarcoma
Osteosarcoma
Wilms tumor
Neuroblastoma (HE)
Teratoma adultum (HE)
Metastasis carcinomatosa lumphnodi (HE)
Metastasis carcinomatosa hepati s
Preparation:
Cysta dermoides
Lymphangiosis carcinomatosa pulmonis
Melanoma malignum cutis
Metastasis carcinomatosa cerebri, melanoma
Metastasis carcinomatosa vertebrarum
Metastasis lymphoglandularum melanomatis
Osteosarcoma manus |
| Week 13 | Effects of Tobacco. Injury by Drugs and Drugs of Abuse. Effect of alcohol. Obesity
Anomalies of cardiac development, IHD | Practice 13 - Cardiology 1.
Histology:
Arteriolosclerosis
Atherosclerotic plaque _calcified_
Atherosclerotic plaque _atheromatous_
Acute myocardial infarction
Chronic myocardial infarction
Preparation:
Fallot tetralogy
Defectus septi atrii (ASD)
Defectus septi ventriculi (VSD)
Cardiomyopathia dilatativa (DCM)
Cardiomyopathia hypertrophica (HOCM) |
| Week 14 | Diseases of endocardium, myocardium, pericardium
Vascular pathology | Practice 14 - Cardiology 2.
Histology:
Infective endocarditis
Viral myocarditis (HE)
Arteritis temporalis (HE)
Kaposi sarcoma (HE)
Preparation:
Vitium aortae
Dissectio coronariae
Thrombosis globuli in atrio sinistri cordis |
2nd Semester - 2023

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Practice 1 - Hematology 1.</th>
</tr>
</thead>
</table>
| • Methods of hematology diagnostics. Classification of Anemia
• Diseases of the Myeloid system | Histology
• Megaloblastic erythroid hyperplasia (MGG)
• AML- pb (MGG)
• AML- pb (MPO)
• CML accelerated phase (MGG)
• Myelofibrosis (HE)
• Myelofibrosis (reticulin) |
| Week 2 | Practice 2 - Hematology 2. |
| • Diseases of the Lymphoid system
• Clinicopathology | Histology:
• Follicularis hyperplasia (HE)
• Follicularis lymphoma grade 1 (HE)
• Follicularis lymphoma (BCL-2)
• CLL - pb (MGG)
• Diffuse large B-cell lymphoma (HE, CD20)
• Myeloma multiplex, bm (MGG)
• Hodgkin-lymphoma NS (HE)
• Non-Hodgkin lymphoma (extranodal)
• CLL-1
• CLL-2
Preparation:
• Hodgkin lymphoma- Cervical lymph nodes
• Myeloma multiplex, - Rib
• Nodularis lymphoid spleen infiltration - (Porphy spleen) |
| Week 3 | Practice 3 - Pulmonology |
| • Lesions of the upper respiratory tract. Pulmonary infections
• Obstructive and Restrictive pulmonary diseases.
• Lung tumors. Pleural lesions. | Histology:
• Aspergillosis (HE, Grocott)
• Pneumocystis pneumonia (HE, Grocott)
• Cysticus fibrosis
• Adenocarcinoma pulmonis
• Carcinoma microcellulare pulmonis
• Mesothelioma
Preparation:
• Emphysema pulmonis et emphysema bullosum pulmonum
• Haemorrhagic pneumonia caused by H1N1 influenza
• Neoplasma malignum peripheriale pulmonis |
| Week 4 | Practice 4 - Gastrointestinal pathology 1. |
| • Pathology of the oral cavity, salivary gland, oesophagus, stomach and small intestine | Histology:
• GIST (HE, CD117)
• Gastritis (HE, Giemsa)
• Ulcus pepticum ventriculi
• Adenocarcinoma ventriculi (diffuse type)
Preparation:
• Adenocarcinoma ventriculi et metastasis carcinomatosa hepatis
• GIST
• Ulcus duodeni
• Ulcus ventriculi
• Varicositas oesophagii |
| Week 5 | • Pathology of the large intestine and the peritoneum
• Pathology of the pancreas. Diabetes mellitus |

<table>
<thead>
<tr>
<th>Practice 4 - Gastrointestinal pathology 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology:</td>
</tr>
</tbody>
</table>
| • Parotis pleomorph adenoma
• Celiac disease
• Ulcerative colitis - biopsy
• Ulcerative colitis - specimen
• Crohn colitis |

<table>
<thead>
<tr>
<th>Preparation:</th>
</tr>
</thead>
</table>
| • Colitis ulcerosa
• Diverticulosis et polyposis sigmae
• Diverticulum perforatum sigmae |

| Week 6 | • Jaundice and cholestasis Alcohol- drug-induced, metabolic and inherited liver diseases.
• Infectious and inflammatory disorders. Hepatic failure. Liver cirrhosis. Tumors of liver.
• Disorders of the gallbladder and biliary tract |

<table>
<thead>
<tr>
<th>Practice 6 - Hepatology, pancreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology:</td>
</tr>
</tbody>
</table>
| • Panreatitis chronica
• Carcinoma pancreatis
• Cholecystitis chronica
• Hepatitis chronica - HCV
• HBV-hepatitis
• Cirrhosis hepatis (HE, Picro)
• Carcinoma hepatocellulare |

<table>
<thead>
<tr>
<th>Preparation:</th>
</tr>
</thead>
</table>
| • Adenocarcinoma pancreatis capitis et metastasis carcinomatosa hepatis
• Hepar polycysticum
• Panreatitis acuta |

| Week 7 | • Malformations. Clinical manifestations of renal disease. Glomerular diseases
• Diseases affecting tubules and interstitium. Diseases involving blood vessels |

<table>
<thead>
<tr>
<th>Practice 7 - Nephrology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology:</td>
</tr>
</tbody>
</table>
| • RPGN
• Nephropathia diabetica (PAS)
• End-stage-kidney (HE, picrosirius)
• Carcinoma renis (HE)
• Carcinoma transitiocellulare |

<table>
<thead>
<tr>
<th>Preparation:</th>
</tr>
</thead>
</table>
| • Carcinoma renis
• Cysta simplex renis
• Pyelonephritis chronica
• Ren soleiformis - trisomia 18
• Urocystitis acuta haemorrhagica |

| Week 8 | • Urinary outflow obstruction. Renal tumors. Pathology of the urinary bladder
• Pathology of the male genital tract |

<table>
<thead>
<tr>
<th>Practice 8 - Male genital organs and gravidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology:</td>
</tr>
</tbody>
</table>
| • Seminoma
• Embryonal carcinoma
• Teratoma adultum (HE)
• Nodular hyperplasia, prostate
• Adenocarcinoma prostaticae
• Extrauterine gravidity |

<table>
<thead>
<tr>
<th>Preparation:</th>
</tr>
</thead>
</table>
| • Gravidity extraterina
• Mola hydatidosa
• Penis carcinoma
• Real knot in umbilicus |
<table>
<thead>
<tr>
<th>Week 9</th>
<th>Pathology of the female genital tract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practice 9 - Female genital organs</td>
</tr>
<tr>
<td></td>
<td>Histology:</td>
</tr>
<tr>
<td></td>
<td>- Carcinoma planocellulare cervicis uteri</td>
</tr>
<tr>
<td></td>
<td>- Teratoma maturum cysticum/cysta dermoides ovarii</td>
</tr>
<tr>
<td></td>
<td>- Serous carcinoma, High grade (cystadenocarcinoma ovarii)</td>
</tr>
<tr>
<td></td>
<td>- Hyperplasia simlex</td>
</tr>
<tr>
<td></td>
<td>- Endometrioid endometrium carcinoma</td>
</tr>
<tr>
<td></td>
<td>- Ovarian follicular cyst</td>
</tr>
<tr>
<td></td>
<td>Preparation:</td>
</tr>
<tr>
<td></td>
<td>- Carcinoma endometrii</td>
</tr>
<tr>
<td></td>
<td>- Cystadenocarcinoma ovarii</td>
</tr>
<tr>
<td></td>
<td>- Endometriosis ovarii</td>
</tr>
</tbody>
</table>

| Week 10 | Pathology of the breast and pregnancy
	Hypophysis, thyroid gland
	Practice 10 - Breast
	Histology:
	- Fibrocystic disease
	- Invasive carcinoma, NST
	- Invasive carcinoma, lobular
	- Ductal carcinoma in situ (DCIS)
	- Fibroepithelial tumor
	Preparation:
	- Malignant breast tumor

Week 11	Parathyroid gland, adrenals, MEN
	Practice 11- Endocrinology and dermatology
	Histology:
	- Multinodulare goiter
	- Hashimoto-thyroiditis
	- Carcinoma papillare thyroideae
	- Pheochromocytoma
	- Naevus intradermalis cutis
	- Melanoma malignum cutis
	- Carcinoma basocellulare
	Preparation:
	- Kaposi sarcoma
	- Keloid
	- Macroglossia propter adenoma hypophysealis

| Week 12 | Pathology of musculoskeletal system
| | Malformations, cerebrovascular diseases, edema, herniation, and hydrocephalus
<p>| | CNS tumors, infections |
| | Practice 12 - Bone and soft tissue |
| | Histology: |
| | - Osteochondroma, bone |
| | - Osteosarcoma, bone |
| | - Fasciitis nodularis, subcutaneous tissue |
| | - Desmoid fibromatosis, mesenterium |
| | - Desmoid fibromatosis, mesenterium (beta catenin) |
| | - Rhabdomyosarcoma, brain |
| | - Liposarcoma-retroperitoneum |
| | - Synovial sarcoma-subcutaneous tissue |
| | Preparation: |
| | - Chondroma |
| | - Neurofibroma |
| | - Osteosarcoma |</p>
<table>
<thead>
<tr>
<th>Week 13</th>
<th>Practice 13 - Neurology</th>
</tr>
</thead>
</table>
| Diseases of myelin
Neurodegenerative disorders
Non-neoplastic diseases of the skin | Histology:
- Glioblastoma
- Medulloblastoma
- Meningeoma
- Parkinson’s disease
- Schwannoma |
| Preparation:
- Anencephaly
- Haemorrhagia pontis (Duret hemorrhage)
- Hydrocephalus externus
- Hydrocephalus internus
- Meningeoma
- Metastasis multiplex cerebri (melanoma malignum)
- Butterfly tumor |

<table>
<thead>
<tr>
<th>Week 14</th>
<th>Practice 14 - Consultation</th>
</tr>
</thead>
</table>
| Neoplastic skin diseases
Pathology competition discussion, student staff meeting, take home message | |

List of textbooks:

WEBPAGE:
General informations and downloads: https://semmelweis.hu/patologia1/
Online available slide center (digital slides): http://193.6.208.216/SlideCenter/Login
Ms. Maria Cserneki shall be approached with technical problems regarding server availability:
E-mail: cserneky.maria@semmelweis-univ.hu

SlideViewer free download:
https://www.3dhistech.com/research/software-downloads/
General information

Lectures
The topic of the lectures includes both general and systemic pathology. Each lecture lasts 1 hour 10 minutes and is illustrated with board layouts, ppt. macroscopic and microscopic photographs, radiologic images, interesting autopsy cases illustrating the presented material.
Attending the lectures is compulsory, since the semifinal and final exams are partly based on them. The Department may record the absences and those students who skip more than 15% of the lectures may not be registered for examination.

Practices
There are 14 two hours (1.5 hours) practices in both semesters, which are divided into autopsy and histopathology. Not more than 2 autopsy practices and not more than 2 histopathology practices can be missed in each semester. Catch up is possible only for autopsy hall practices, students can join other groups and their presence should be registered and signed by the tutor of the autopsy hall practice attended. In case the absences exceed the allowed limit the student will not be accepted for examination.
The histopathology practices provide basic histopathology skills. The topic of the histopathology practices matches that of the lectures. Brief theoretical background for the presented slides will be discussed in the frame of the practice. The pathological lesions will be presented in form of digital slides and will be demonstrated by the tutor with the help of a computerized multidiscussion/teleconsultation system. The digitalized slides will be individually studied and analyzed by the students as well. The digital slides are also available for the students through the internet any time (https://www.3dhistech.com/research/software-downloads/)
The preserved preaparated specimens connected the actual material will be demonstrated during the histopathology practices.
During autopsy practices the students will learn the basic skills of autopsy and how to recognize what’s pathological and will gain skills to demonstrate and describe these lesions. The emphasis is on the clinicopathologic aspects of the discussed cases. The clinical staff or the therapist usually will be called at the end of every autopsy practices in order to realise a common consultation, discussion and summary with the end of take home messages.
The medical and patient information provided during autopsies, lectures and demonstrations is confidential. The requirement to maintain professional secrecy and preserve confidentiality also applies for medical students.
It is strictly forbidden to make any kind of record (photography, video, sound-record) of the material provided during the tuition and demonstrations in the facilities and building of the Department, especially during lectures and practices (excluding the autopsy practices, where students are allowed to make pictures certain gross alteration of the demonstrated organs). The material presented during the tuition is the intellectual property of the Department and their presentation is directly controlled by the Department. Therefore, it is not intended for the public and must not be published or arbitrarily recorded, alternatively taken away without the permission of the Department. Violation of the rules mentioned above implies disciplinary action. Exception can be made only based on the previous and written permission provided by the Head of the Department. The Department reserves the rights to completely control the communication of the information about the Department.

Midterm exams: There are no midterm exams nor in the first and not in the second semester as well.

Pathology competition
The only pathology competition will be held just before the last week of the 2nd semester. Clinicopathology based macroscopic photographs will be projected, and in the former, based on documentation, the participants should recognize and describe an autopsy case and answer the case connected questions.
Students use code word. The first 3 place winner will be awarded. More information will be announced on the lecture held by the Head of the Department.

Consultation
Upon request there is a possibility for a consultation with always the tutor. The students are welcome to autopsy practices of other groups for retake or extra occasion as long as it does not disturb the ongoing practice. There is no planar consultation during any semester.
Examinations

SEMIFINAL:

1. Prerequisites:
 Absences: not more than 2 autopsy practices and not more than 2 histology practices (histology practice and autopsy hall practice counts separately) can be missed in each semester. Attending the lectures is compulsory. If one does not fulfill the above mentioned prerequisites the Department of Pathology and Experimental Cancer Research has the right for not acknowledging the semester.

 The semifinal exam consists of practical and theoretical parts.

 All exam starts with practical exam followed by theoretical part.

2. Practical exam:
 1 first semester histopathology slide and 1 first semester specimen demonstration.
 2 marks will be given.

3. Theoretical part is an oral exam:

 Semi-final exam questions: 2 topics (A and B)
 1 topic: (general pathology) Sign with the letter “A”
 1 topic: (oncology and cardiology). Sign with the letter “B”

 The list of these theoretical questions is on the website of the Department.

 2 additional marks will be given.

Evaluation: Failure of the practice is not obligatory failure of the exam.

Summary by the exam committee 1 final, result mark will be given in the index: practice marks (2) + oral marks (2). It should be kept in mind that the final mark is not merely the mathematical average of the given grades of different parts of the exam! Serious mistakes or “clear spots” in your knowledge may significantly affect the final mark or even result in a failed exam.

Suspension: If you have any problem during the practical exam, ask the supervisor. In case of communicating, unacceptable behaviour, cheating (usage of mobile tools, books, notes, etc.,) your exam is immediately suspended and the exam will not be evaluated and counts as a failed exam. Written report of the incident will be prepared and signed by the teachers.

The exam begins at 9.00 a.m. at the Department of Pathology and Experimental Cancer Research, meeting at the Digital Histology practice room, ground floor. The students to be examined will be identified by picture ID cards by the supervisor before starting the exam.

Therefore, students should present a picture ID, otherwise they are not allowed to take examination!

Exam dates: You will be notified about the dates offered by the Department before the exam period and they will be finalized at the Staff/Student meeting. Then these fixed days will figure in NEPTUN.

Usually Tuesdays and Thursday are the regular exam dates. Usually Tuesdays and Thursday are the regular exam dates and app. 25-30 EM students are accepted each exam day.

Important! Taking examinations before the exam period is not permitted! (University Policy). In exceptional cases (such as near-delivery, etc.), you must have a written permission from the Dean’s Office.

Registration: The internet based sign up system (NEPTUN) regarding pathology has been established for 3rd year students as well. The sign up procedure is controlled and regulated by the software and the institute cannot interfere with the system. The officially signed up students will be scheduled for examination.
Rescheduling the exam date: The list of examinees is completed 1 hour before the examination date. The NEPTUN system automatically closes the sign up list by expiration of the deadline. Example: if the exam is on Tuesday, you may remove your name before Monday 12:00 pm. After that changes are not permitted. If you do not show up on the given exam date, you should justify it within 3 days at the head of the Institute or at the tutor responsible for the English program. Otherwise, “not appeared” note is written in your index, and the exam is not allowed without having a retake ticket! The skipped exam is deducted from the number of possible retake exams.

Retake exam: In case of failure or for those who are unsatisfied with the result of the first exam a retake exam should be taken to improve the mark. For that a retake ticket is required from the secretariat. If one retakes an exam to improve the previous mark it is not granted that mark of the retake exam cannot be the same or worse than the previous mark.

Every parts of the exam must be retaken - the practical exam as well.

One must also register on the NEPTUN system and indicate that this is the first, second, etc. retake exam. Without retake ticket and NEPTUN registration one is not allowed to take an examination.

Any further details regarding the exam and exam dates will be discussed on a Students-Professor sitting held in the 7-8 gradual week, first semester. The date of the meeting is to be announced on the lecture.

FINAL EXAM

Prerequisites:
Absences: not more than 2 autopsy practices and not more than 2 histology practices (histology practice and autopsy hall practice counts separately) can be missed in each semester. Attending the lectures is compulsory. If one does not fulfill the above mentioned prerequisites the Department of Pathology and Experimental Cancer Research has the right for not acknowledging the semester. Further requirement is to pass the semifinal exam before.

The final exam consists of practical and theoretical parts.

All exam starts with practical exam followed by theoretical part.

Practical exam: 2 histopathology slides of any semester and 1 specimen demonstration of any semester and 1 organ demonstration in the autopsy room. During this part of the exam dissected organs or organ complexes are to be described. The student should be able to orientate the organ (or organ complex) properly, to describe it fully and evaluate the pathological alterations and establish diagnoses.

3 marks will be given as the result of the practical exam.

Theoretical part is an oral exam:

Final exam questions: 3 topics (A, B, C)
1 topic: (general pathology) Sign with the letter “A”
1 topic: (oncology and cardiology). Sign with the letter “B”
1 topic: (systemic pathology). Sign with the letter “C”

The list of these theoretical questions is on the website of the Department.
The exam board may ask the 10 autopsy case’s summary collected during the two semesters. The autopsy cases are discussed previously to the students by the tutor.
4 additional marks will be given.
Evaluation: Failure of the practice is not obligatory failure of the final exam.

Summary by the exam committee 1 final, result mark will be given in the index: practice exam marks (3) + oral exam marks (4). It should be kept in mind that the final mark is not merely the mathematical average of the given grades of different parts of the exam! Serious mistakes or “clear spots” in your knowledge may significantly affect the final mark or even result in a failed exam.

Suspension: If you have any problem during the practical exam, ask the supervisor. In case of communicating, unacceptable behaviour, cheating (usage of mobile tools, books, notes, etc..) your exam is immediately suspended and the exam will not be evaluated and counts as a failed exam. Written report of the incident will be prepared and signed by the teachers.

The exam for EM begins at 9.00 a.m. at the Department of Pathology and Experimental Cancer Research, meeting at the Digital Histology practice room, ground floor. The students to be examined will be identified by picture ID cards by the supervisor before starting the exam. Therefore, students should present a picture ID, otherwise they are not allowed to take examination!

Exam dates: You will be notified about the dates offered by the Department before the exam period and they will be finalized at the Staff/Student meeting. Then these fixed days will figure in NEPTUN. Usually Tuesdays and Thursday are the regular exam dates and app. 25-30 EM students are accepted each exam day.

Important! Taking examinations before the exam period is not permitted! (University Policy). In exceptional cases (such as near-delivery, etc.), you must have a written permission from the Dean’s Office.

Registration: The internet based sign up system (NEPTUN) regarding pathology has been established for 3rd year students as well. The sign up procedure is controlled and regulated by the software and the institute cannot interfere with the system. The officially signed up students will be scheduled for examination.

Rescheduling the exam date: The list of examinees is completed 1 hour before the examination date. The NEPTUN system automatically closes the sign up list by expiration of the deadline. Example: if the exam is on Tuesday, you may remove your name before Monday 12:00 pm. After that changes are not permitted. If you do not show up on the given exam date, you should justify it within 3 days at the head of the Institute or at the tutor responsible for the English program. Otherwise, “not appeared” note is written in your index, and the exam is not allowed without having a retake ticket! The skipped exam is deducted from the number of possible retake exams.

Retake exam: In case of failure or for those who are unsatisfied with the result of the first exam a retake exam should be taken to improve the mark. For that a retake ticket is required from the secretariat. If one retakes an exam to improve the previous mark it is not granted that mark of the retake exam cannot be the same or worse than the previous mark.

• Every parts of the exam must be retaken - the practical exam as well.
• One must also register on the NEPTUN system and indicate that this is the first, second, etc. retake exam. Without retake ticket and NEPTUN registration one is not allowed to take an examination.

Any further details regarding the exam and exam dates will be discussed on a Students-Professor sitting held in the 7-8 gradual week of the second semester. The date of the meeting is to be announced on the lecture.
Schedule

Lectures

<table>
<thead>
<tr>
<th></th>
<th>1st semester</th>
<th>2nd semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>10:00 – 11:10</td>
<td>10:00 – 11:10</td>
</tr>
<tr>
<td>Wednesday</td>
<td>08:00 – 09:10</td>
<td>08:00 – 09:10</td>
</tr>
</tbody>
</table>

Practices

<table>
<thead>
<tr>
<th></th>
<th>1st semester</th>
<th>2nd semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 10,11,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>11:30 – 13:00</td>
<td>11:30 – 13:00</td>
</tr>
<tr>
<td>Thursday</td>
<td>11:30 – 13:00</td>
<td>11:30 – 13:00</td>
</tr>
<tr>
<td>Group 14,15,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>12:00 – 13:30</td>
<td>12:00 – 13:30</td>
</tr>
<tr>
<td>Friday</td>
<td>12:00 – 13:30</td>
<td>12:00 – 13:30</td>
</tr>
<tr>
<td>Group 17,19,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>14:00 – 15:30</td>
<td>14:00 – 15:30</td>
</tr>
<tr>
<td>Friday</td>
<td>14:15 – 15:45</td>
<td>14:15 – 15:45</td>
</tr>
</tbody>
</table>

* preliminary data

Contact list of Tutors

Dr. Csernus Balázs
csernus.balazs@med.semmelweis-univ.hu
Dr. Csomor Judit
csomor.judit@med.semmelweis-univ.hu
Dr. Dezső Katalin
deozo.katalin@med.semmelweis-univ.hu
Dr. Fintha Attila
finthus@yahoo.com
Dr. Fónyad László
fonyad.laszlo@med.semmelweis-univ.hu
Dr. Forika Gertrúd
forika.gertrud@med.semmelweis-univ.hu
Dr. Gángo Ambrus
gango.ambrus@med.semmelweis-univ.hu
Dr. Jakob Noémi
jakob.noemi@med.semmelweis-univ.hu
Dr. Jenei Alex
jenei.alex@med.semmelweis-univ.hu
Dr. Kiss Richárd
kiss.richard@med.semmelweis-univ.hu
Dr. Krencz Ildikó
krencz.ildiko@gmail.com
Dr. Kurolı Enikő
kuroli.eniko@med.semmelweis-univ.hu
Dr. Matolcsy András
titkarsag.1path@med.semmelweis-univ.hu
Dr. Nagy Ágnes
nagy.agnes@med.semmelweis-univ.hu

Dr. Nagy Beáta
nagy.beata1@med.semmelweis-univ.hu
Dr. Nagy Péter
pdnagy@gmail.com
Dr. Pálos Kata
palos.kata@med.semmelweis-univ.hu
Dr. Papay Judit
papay.judit@med.semmelweis-univ.hu
Dr. Rácz Gergely- responsible tutor
racz.gergely@med.semmelweis-univ.hu
Dr. Regős Eszter
eszter.regos.88@gmail.com
Dr. Rőkusz András
rokusz.andras@med.semmelweis-univ.hu
Dr. Sápi Zoltán
sapi.zoltan.dr@gmail.com
Dr. Scheich Bálint
scheich.balint@gmail.com
Dr. Szállási Árpád
szallasiarpad@gmail.com
Dr. Szepesi Ágota
szepesi.agota@med.semmelweis-univ.hu
Dr. Székely Tamás
szekely.tamas1@med.semmelweis-univ.hu
Dr. Teleki Ivett
teleki.ivett@med.semmelweis-univ.hu
Dr. Zalatnaí Attila
monteverdi429@gmail.com
Head of the department: Prof. Dr. András Matolcsy
E-mail: titkarsag.1path@med.semmelweis-univ.hu

Student’s mentor/tutor: Dr. Gergely Rácz
E-mail: racz.ergely@med.semmelweis-univ.hu

Study administrator: Szilvia Szabó
Phone: 459-1500 ext. 54459
E-mail: szabo.szilvia@med.semmelweis-univ.hu
PATHOLOGY II.

Second Semester

Lectures (3 hours per week) **Histopathology** practices

- **29. Liver and biliary system**
 - Alcoholic hepatitis H&E(70)
- **30. Liver and biliary system**
 - Chronic hepatitis H&E (71)
- **31. Liver and biliary system**
 - Liver cirrhosis H&E(72)
 - Hepatocellular carcinoma H&E (73)
 - Cavernous haemangioma of liver H&E (35)
- **32. Kidney**
 - Chronic cholecystitis H&E(74)
- **33. Kidney**
 - Chronic pancreatitis H&E(75)
 - Acute hemorrhagic necrotising pancreatitis H&E(76)
 - Pancreatic pseudocyst (slide demonstration)
 - Adenocarcinoma of pancreas H&E (77)
 - Islet cell tumor of pancreas (slide demonstration)
- **34. Urinary tract**
 - Diabetic nodular glomerulosclerosis (Kimmelstiel-Wilson) H&E (78)
- **35. Male genital system**
 - Glomerulonephritis H&E (79)
 - End stage kidney H&E (80)
 - Acute rejection in transplanted kidney H&E (22)
- **36. Gynecologic pathology**
 - Acute pyelonephritis H&E (81)
- **37. Gynecologic pathology**
 - Chronic pyelonephritis H&E (82)
 - Renal cell carcinoma H&E (83)
 - Normal adrenal cortex (slide demonstration)
 - Wilms’s tumor H&E(84)
 - Transitional cell carcinoma H&E (28)
- **38. Neonatology**
 - Nodular hyperplasia of the prostate H&E(85)
- **39. Breast**
 - Adenocarcinoma of prostate H&E(87)
 - Seminoma H&E (88)
 - Embryonal carcinoma (slide demonstration)
 - Teratoma H&E(89)
- **40. Blood and lymphoid organs**
 - Placenta retention H&E (90)
- **41. Blood and lymphoid organs**
 - Extraterine gravidity H&E (91)
 - Arias-Stella phenomenon (slide demonstration)
 - Hydatiform mole H&E (92)
 - Choriocarcinoma H&E (93)
 - Endometrial hyperplasia H&E (94)
- **42. Blood and lymphoid organs**
 - Chronic cervicitis H&E (123)
- **43. Blood and lymphoid organs**
 - HPV infection in cervix H&E (124)
 - In situ hybridisation (slide demonstration)
 - Condyloma acuminatum (slide demonstration)
 - Follicular cyst of the ovary H&E (125)
 - Mucinous cystadenoma of the ovary H&E(29)
 - Mucinous cystadenocarcinoma (slide demonstration)
 - Borderline serous papillary cystadenoma of the ovary H&E (126)
 - Serous papillary cystadenocarcinoma of the ovary (slide demo)
 - Granulosa cell tumor (slide demonstration)
- **44. Endocrinology**
 - Fibrocystic disease of the breast H&E(101)
Lectures (3 hours per week)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Histopathology practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>45. Endocrinology</td>
<td>Peri- and intracanalicular fibroadenoma of the breast H&E (33)</td>
</tr>
<tr>
<td></td>
<td>Phyllloid tumor (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Intraductal carcinoma H&E (102)</td>
</tr>
<tr>
<td></td>
<td>Invasive ductal carcinoma H&E (103)</td>
</tr>
<tr>
<td></td>
<td>Invasive lobular carcinoma H&E (104)</td>
</tr>
<tr>
<td></td>
<td>FNAB of the breast (cytol. smear demonstration)</td>
</tr>
<tr>
<td>46. Skin</td>
<td>Normal bone marrow H&E (127)</td>
</tr>
<tr>
<td>47. Skin</td>
<td>Leukemic bone marrow H&E (128)</td>
</tr>
<tr>
<td></td>
<td>Leukemic infiltration of parenchymal organs (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Multiple myeloma H&E (106)</td>
</tr>
<tr>
<td></td>
<td>Amyloidosis Congo (21)</td>
</tr>
<tr>
<td>48. Head and neck</td>
<td>Non Hodgkin lymphoma (low grade) H&E (107)</td>
</tr>
<tr>
<td></td>
<td>Non Hodgkin lymphoma (high grade) H&E (108)</td>
</tr>
<tr>
<td></td>
<td>Follicular lymphoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Tonsillar lymphoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>MALT lymphoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Hodgkin lymphoma H&E (109)</td>
</tr>
<tr>
<td></td>
<td>Hodgkin lymphoma histologic types (slide demonstration)</td>
</tr>
<tr>
<td>49. Bones and joints</td>
<td>Colloid goiter H&E (110)</td>
</tr>
<tr>
<td>50. Bones and joints</td>
<td>Graves disease H&E (111)</td>
</tr>
<tr>
<td></td>
<td>Follicular adenoma of the thyroid gland H&E (112)</td>
</tr>
<tr>
<td></td>
<td>Follicular carcinoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Papillary carcinoma of the thyroid gland H&E (113)</td>
</tr>
<tr>
<td></td>
<td>Medullary carcinoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Adrenal cortical adenoma H&E (105)</td>
</tr>
<tr>
<td></td>
<td>Parathyroid adenoma (slide demonstration)</td>
</tr>
<tr>
<td>51. Bones and joints</td>
<td>Osteosarcoma H&E (114)</td>
</tr>
<tr>
<td></td>
<td>Rhabdomyosarcoma H&E (115)</td>
</tr>
<tr>
<td></td>
<td>Rheumatoid arthritis H&E (116)</td>
</tr>
<tr>
<td></td>
<td>Autoimmun diseases (slide demonstration)</td>
</tr>
<tr>
<td>52. Eye</td>
<td>Basocellular carcinoma H&E (27)</td>
</tr>
<tr>
<td></td>
<td>Verruca vulgaris H&E (100)</td>
</tr>
<tr>
<td></td>
<td>Naevus pigmentosus H&E (39)</td>
</tr>
<tr>
<td></td>
<td>Malignant melanoma H&E (40)</td>
</tr>
<tr>
<td></td>
<td>Metastatic melanoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Bowen’s disease (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Capillary haemangiomia of the skin H&E (34)</td>
</tr>
<tr>
<td>53. Skeletal muscle</td>
<td>Purulent meningitis H&E (117)</td>
</tr>
<tr>
<td>54. Nervous system</td>
<td>Encephalitis H&E (118)</td>
</tr>
<tr>
<td>55. Nervous system</td>
<td>Meningeoma H&E (119)</td>
</tr>
<tr>
<td></td>
<td>Glioblastoma multiforme H&E (120)</td>
</tr>
<tr>
<td></td>
<td>Schwannoma H&E (121)</td>
</tr>
<tr>
<td></td>
<td>Neuroblastoma H&E (122)</td>
</tr>
<tr>
<td></td>
<td>Ganglioneuroblastoma (slide demonstration)</td>
</tr>
<tr>
<td></td>
<td>Paraganglioma (slide demonstration)</td>
</tr>
<tr>
<td>56. Nervous system</td>
<td>Review</td>
</tr>
<tr>
<td>57. Clinicopathologic conference</td>
<td></td>
</tr>
</tbody>
</table>
PATHOLOGY I - II.

Department of Pathology, Forensic and Insurance Medicine
Head of Department: **Prof. Dr. András Kiss**

Index
Lectures
List of textbooks
Histopathology practices - slides for the histopathology exam and slide demonstrations
General information - Lectures, practices, competition
Examinations: Examination
Examinations - Final
Schedule
Schedule for the academic year

1st SEMESTER

<table>
<thead>
<tr>
<th>Week 1</th>
<th>LECTURES</th>
<th>HISTOPATHOLOGY</th>
</tr>
</thead>
</table>
| Week 1 | Introduction (Kiss)
Cell injury (Kiss)
Reversible cell injury (hydropic swelling, atrophy, hypertrophy, hyperplasia, metaplasia, dysplasia, intracellular storage).
Irreversible cell injury (necrosis, apoptosis, ischemic cell injury, external damaging agents, calcification, hyalinization, aging). | Practice 1- Introduction
Safety rules
Digital teaching system
Teleconsultation
E-school |
| Week 2 | Hemodynamic disorders I. (Madaras)
Hemodynamic disorders II. (Madaras)
Thrombosis, embolism. Infarction. Shock. | Practice 2- Cell injury, adaptation, storage disorders
Coagulative necrosis,
Liquefactive necrosis
Apoptosis
Hypertrophy
Hyperplasia
Fatty degeneration
Amyloidosis
Infiltratio adiposa myocardii
Bronchus - squamous metaplasia |
| Week 3 | Inflammation I. (Tímár)
Inflammation II. (Lotz)
Chronic inflammation. Fibrosis, scar formation. Granulomatous inflammation: (tuberculosis, syphilis, etc.) | Practice 3- Hemodynamic disorders I.
Acute congestion - pulmonary edema
Chronic pulmonary congestion
Hemosiderin in alveolar macrophages (“heart failure cells”)
Chronic congestion in the liver (“nutmeg liver”)
Shock, DIC |
| Week 4 | Cardiovascular pathology I. (Glasz)
Cardiovascular pathology II. (Glasz)
Endocarditis, myocarditis, pericarditis. Rheumatic heart disease. Ischemic heart disease. | Practice 4- Hemodynamic disorders II.
Thrombus
Fat embolism
Anemic infarction – kidney
Hemorrhagic infarction - lung |
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Histopathology</th>
</tr>
</thead>
</table>
| 5 | Cardiovascular pathology III. (Glasz)
Neoplasia I. (Schaff)
Acute appendicitis
Fibrinous pericarditis
Granulation tissue
Foreign body granuloma
Rheumatic myocarditis |
| 6 | Neoplasia II. (Schaff)
Neoplasia III. (Tímár)
Molecular mechanisms of tumor development: protooncogenes, oncogenes, tumor suppressor genes, growth factors. | Practice 6- Midterm I (cell injury, hemodynamics, inflammation)
Cardiovascular diseases
Arteriosclerosis
Atherosclerosis
Acute myocardial infarction
Myocardial infarction - healing
Endocarditis
Viral myocarditis
Temporal arteritis
Kaposi-sarcoma |
| 7 | Neoplasia IV. (Tímár)
Tumor growth, tumor progression, metastasis. Familiar cancer
Neoplasia V. (Kulka)
Prognostic factors in tumor pathology. Staging and grading of tumors. TNM. Handling of surgical biopsy material | Practice 7- Neoplasia I
Squamous metaplasia
Condyloma (LSIL)
CIN 3 (HSIL)
Invasive carcinoma |
| 8 | Childhood tumors (Halász)
27/10 Genetic and developmental disorders. Gene pathology I. (Kiss)
Squamous papilloma
Squamous cell carcinoma
Adenoma
Adenocarcinoma
Lymph node metastasis
Liver metastasis |
| 9 | All Saints’ Day
Genetic and developmental disorders. Gene pathology II. (Kiss)
Leiomyoma
Leiomyosarcoma
Osteosarcoma
Wilms tumor
Neuroblastoma
Mature teratoma
Fascitis nodularis
Desmoid fibromatosis
Rhabdomyosarcoma
Liposarcoma |
<table>
<thead>
<tr>
<th>Week 10</th>
<th>LECTURES</th>
<th>HISTOPATHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical pathology I. (Szekely E)</td>
<td>Practice 10- Biopsy techniques, protein- and DNA-based diagnostics</td>
</tr>
<tr>
<td></td>
<td>Tumor Screening, Cytodiagnostics. Basic cytopathological morphology of benign and malignant lesions. Case presentations.</td>
<td>Cytology smear</td>
</tr>
<tr>
<td></td>
<td>Clinical pathology II. (Kiss)</td>
<td>Core needle biopsy</td>
</tr>
<tr>
<td></td>
<td>Diagnostic parameters, requirements, which guide the clinical protocols. Molecular diagnostics of tumors. Targeted therapy</td>
<td>Biopsy by endoscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frozen section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Special stains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polypus nasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asthma bronchiale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acut rejection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lupus nephritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scleroderma</td>
</tr>
<tr>
<td>Week 11</td>
<td>Immunopathology (Kiss)</td>
<td>Practice 11- Hematopathology I.</td>
</tr>
<tr>
<td></td>
<td>Constituents of the immune system. Hypersensitive reactions. Allergy. Transplantation. Immunodeficiency. AIDS.</td>
<td>Reactive lymphadenopathy</td>
</tr>
<tr>
<td></td>
<td>Autoimmune diseases (Glasz)</td>
<td>Hodgkin’s lymphoma</td>
</tr>
<tr>
<td></td>
<td>Etiology. Monosystemic diseases (e.g. chr. athrophic gastritis, myasthenia gravis, Graves disease, Hashimoto thyroiditis, Addison disease, Insulin-dependent diabetes mellitus, multiple sclerosis) and Oligo- polysystemic diseases (e.g. SLE, Sjögren sy, RA, scleroderma, dermatomyositis)</td>
<td>Nodal non-Hodgkin’s lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extranodal non-Hodgkin’s lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple myeloma</td>
</tr>
<tr>
<td>Week 12</td>
<td>Hematopathology I. (Szekely E)</td>
<td>Practice 12- Practical exam (1 organ, 1 histology slides, 3 questions from the definition list)</td>
</tr>
<tr>
<td></td>
<td>Hematopathology II. (Szekely E)</td>
<td>Megaloblastos vérképzés</td>
</tr>
<tr>
<td></td>
<td>Acute myeloproliferative syndromes (acute leukaemias). Chronic myeloproliferative syndromes (CML, myelofibrosis, thrombocytemia). Acute and chronic lymphocytic leukemias. Disorders of the spleen</td>
<td>AML</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLL</td>
</tr>
<tr>
<td>Week 13</td>
<td>Hematopathology III. (Szekely E)</td>
<td>Practice 13- Hematopathology II.</td>
</tr>
<tr>
<td></td>
<td>Lymphomas (Hodgkin, non-Hodgkin). Metastatic tumors in bone marrow and lymph nodes. Clinicopathological case demonstrations</td>
<td>Megaloblastos vérképzés</td>
</tr>
<tr>
<td></td>
<td>Infectious diseases (Lotz)</td>
<td>AML</td>
</tr>
<tr>
<td></td>
<td>Viral diseases (tick-borne viruses, polio, smallpox, herpes, CMV, EBV, rubella, varicella, mumps, influenza), Rickettsiae, Spirochetes.</td>
<td>CML</td>
</tr>
<tr>
<td></td>
<td>Bacteria (tularaemia, pertussis, legionella, brucellosis, listeriosis, clostridial infections (tetanus, botulism), Streptococci Actinomycosis. Mycobacteria (tbc, leprosy). Protozoa (malaria, toxoplasmosis, amebiasis)</td>
<td>Myelofibrosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLL</td>
</tr>
<tr>
<td>Week 14</td>
<td>Environmental and nutritional pathology (Istok)</td>
<td>Practice 14- The pathology report, Interesting autopsy case presentation, Consultation</td>
</tr>
<tr>
<td></td>
<td>Smoking, alcoholism, drugs. iatrogenic injuries. Environmental chemical and physical factors. Obesity, protein malnutrition, vitamins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bones and joints (Arató G.)</td>
<td></td>
</tr>
</tbody>
</table>
| Week 1 | Head and neck (Székely E)
Neoplastic and non-neoplastic lesions of the lips, oral cavity, tongue, teeth, salivary glands, sinuses, pharynx, larynx, ear.
Respiratory system I. (Székely E)
IRDS
Bronchopneumonia
Lobar pneumonia
Tuberculosis
Boeck sarcoidosis
Cystic fibrosis
Pneumocystis pneumonia |
| --- | --- |
Student’s research Conference (TDK) | Practice 2- Pulmonary pathology II- neoplastic
Small cell carcinoma
Squamous cell carcinoma
Adenocarcinoma
Mesothelioma |
| Week 3 | Gastrointestinal tract I. (Kiss)
Esophagus (anatomy and developmental disorders, inflammation, trauma, tumors). Stomach- part I.
Gastrointestinal tract II. (Madaras)
Pathology of the stomach (part 2) and small bowel. Appendix. | Practice 3- Gastrointestinal pathology I.
Peptic ulcer - stomach
Gastritis chronica (H. pylori)
Carcinoma sigillocellulare
GIST
Pleomorphic adenoma – parotid gland |
| Week 4 | Gastrointestinal tract III. (Madaras)
Colon (congenital disorders, infections, diverticular disease, inflammation, Crohn's disease, ulcerative colitis, vascular diseases, neoplasms, other disorders). Peritoneum.
Pathology of the liver I. (Schaff)
Celiac disease
Ulcerative colitis
Crohn's disease |
| Week 5 | Pathology of the liver II. (Schaff)
Pathology of the liver III. (Kiss)
Neoplasms. Gallbladder and bile ducts (congenital anomalies, cholecystitis, cholelithiasis, cholangitis, neoplasms) | Practice 5- Liver pathology
Alcoholic hepatitis
Viral hepatitis
Cirrhosis
Hepatocellular carcinoma
Chronic cholecystitis |
| Week 6 | Pathology of the exocrine pancreas (Székely E)
Developmental abnormalities, inflammation, tumors of the exocrine pancreas.
Endocrinology I. (Székely E)
Pathology of the pancreas
Acute pancreatitis
Chronic pancreatitis
Adenocarcinoma of the pancreas
Neuroendocrine tumor |
| Week 7 | holiday (long weekend) | Practice 7- Endocrine pathology
Goiter
Autoimmune thyroiditis (Hashimoto)
Thyroid gland-follicular adenoma
Thyroid gland-papillary carcinoma
Phaeochromocytoma |
|--------|------------------------|--------------------------|
| | Endocrinology II. (Kovács A)
| | Practice 8- Renal- and uropathology
Kidney biopsy – diabetic nephropathy
End-stage kidney disease
Renal cell carcinoma
Transitional cell carcinoma |
| Week 8 | Renal pathology I. (Kardos)
| | Renal pathology II. (Székely)
| | Uropathology I. (Székely E)
| | Practice 9- Uropathology- prostate, testis
Prostatic hyperplasia
Prostatic adenocarcinoma
Testis- seminoma
Testis -embryonal carcinoma |
| Week 9 | Uropathology II. (Székely E)
Diseases of the epididymis, testes, prostate, penis and scrotum | |
| | Gynecologic pathology I. (Schaff)
| | Practice 10- Midterm III. (endocrine, kidney, urology and gynecology) |
| | Gynecologic pathology II. (Madaras)
Pathology of the uterus. Uterine bleeding disorders. Endometrial hyperplasia, endometriosis. Tumors of the endometrium, myometrium and serosa. |
| | Gynecologic pathology III. (Kulka)
Pathology of the fallopian tube and the ovaries. Pregnancy-related pathology of the uterus. | |
| | Practice 11- Biopsy techniques II.
Grossing and lab work |
| Week 11 | Neonatology (Kiss)
| | Spring break |
| Week 12 | Breast pathology I. (Kulka)
Symptoms and diagnosis of breast diseases.
Malformations. Benign symptomatic lesions (inflammations, fibrocystic disease, epithelial dysplasia and its significance, benign tumors)
Breast pathology II. (Kulka)
Malignant tumors - epidemiology, risk factors.
Histologic classification of breast cancer. Prognostic factors in breast cancer. Non-epithelial malignancies of the breast. Screening: non-palpable breast lesions. The male breast | Practice 12-
Breast pathology
Fibrocystic disease
Fibroepithelial tumors
Ductal carcinoma in situ (DCIS)
Invasive carcinoma (NST, lobular)
COMPETITION- 1st round |
|---|---|
| Week 13 | Central nervous system I. (Reiniger)
Central nervous system II. (Reiniger)
Neoplasms (neuroectodermal, embryonic, ectopic tissue, metastasis). Peripheral nervous system (neuropathies, inflammations, trauma, tumors). | Practice 13- CNS histopathology:
Purulent meningitis
Meningeoma
Glioma
Brain metastasis
Parkinson-kór
COMPETITION- 2nd round |
| Week 14 | Skin pathology (Kuroli)
Basics of skin pathology. Primary lesions.
Dermatitides. Infectious conditions of the skin. Skin manifestations of systemic diseases. Tumors of the surface epithelium and skin appendages. Pigmented nevi and malignant melanoma
Clinicopathology I. (Székely) | Practice 14- Skin pathology
Capillary haemangioma - skin
Basal cell carcinoma
Melanocytic nevus
Malignant melanoma |

List of textbooks
2. Szende B., Suba Zs Introduction to Histopathology (Medicina, 1999)

Webpage https://semmelweis.hu/patologia2/en/

General Information: https://semmelweis.hu/patologia2/en/
General information, downloads: https://semmelweis.hu/patologia2/en/
Online available case center (digital slides): http://casecenter-korb2.sote.hu/casecenter/
User name and password for Java based version: student_jav
User name and password for Panoramic Viewer based usage: student_pv

The visit of the internet based Case Center and Practice Test on tuition and exam dates is allowed after 4 p.m. only!
Mr. Gábor Drozda and Mr. Endre Kontsek shall be approached with technical problems regarding server availability:
e-mail: for Mr. Gábor Drozda: drozda.gabor@semmelweis-univ.hu
for Mr. Endre Kontsek: kontsek.endre@med.semmelweis-univ.hu

Panoramic Viewer free download at: http://www.3dhistech.com/
4D pathology and auxiliary materials at: www.4dpathology.hu

Panoramic Viewer free download: http://www.3dhistech.com/
Practice test: http://casecenter-korb2.sote.hu/espractice/
General information

Lectures

The topic of the lectures includes both general and systemic pathology. Each lecture lasts 1 hour 10 minutes and is illustrated with macroscopic and microscopic photographs, radiologic images, illustrating the presented material. Occasionally interesting autopsy cases will be demonstrated during the lectures.

Attending the lectures is compulsory, since the examination and final exams are partly based on them. The Department of Pathology, Forensic and Insurance Medicine may record the absences and those students who skip more than 15% of the lectures may not be registered for examination.

Practices

There are 14 two + two hours practices in both semesters, which are divided into autopsy and histopathology. Not more than 2 autopsy practices and not more than 2 histopathology practices can be missed in each semester. Catch up is possible only for autopsy hall practices, students can join other groups and their presence should be registered and signed by the tutor of the autopsy hall practice attended. In case the absences exceed the allowed limit the student will not be accepted for examination.

The histopathology practices provide basic histopathology skills. The topic of the histopathology practices matches that of the lectures. Brief theoretical background for the presented slides will be discussed in the frame of the practice. The pathological lesions will be presented in form of digital slides and will be demonstrated by the tutor with the help of a computerized multidiscussion/teleconsultation system. The digitalized slides will be individually studied and analyzed by the students as well. The digital slides are also available for the students through the internet every day from 4 p.m. till 8 a.m. the next day.

During autopsy practices the students will learn the basic skills of autopsy and how to recognize what’s pathological and will gain skills to demonstrate and describe these lesions. The emphasis is on the clinicopathologic aspects of the discussed cases. If there is no autopsy available, organ demonstration will take place on plastinated organs. Alternatively, visit of the laboratories (Laboratory of Histopathology, Laboratory of Immunohistochemistry and Laboratory of Molecular Pathology) of the Department will be on the program.

The medical and patient information provided during autopsies, lectures and demonstrations is confidential. The requirement to maintain professional secrecy and preserve confidentiality also applies for medical students.

It is strictly forbidden to make any kind of record (photography, video, sound-record) of the material provided during the tuition and demonstrations in the facilities and building of the Department, especially during lectures and practices (including autopsy and histology practices). The material presented during the tuition is the intellectual property of the Department and their presentation is directly controlled by the Department. Therefore, it is not intended for the public and must not be published or arbitrarily recorded, alternatively taken away without the permission of the Department. Violation of the rules mentioned above implies disciplinary action. Exception can be made only based on the previous and written permission provided by the Head of the Department. The Department reserves the rights to completely control the communication of the information about the Department.

Midterm exams: There are two midterm exams in each semester. The participation and successful absolvation (average result exceeding 60%) of the midterm exam is compulsory. If a student can not attend one of the midterms or the average 60% is not achieved, the tutor should assess the basic knowledge of the student (see list of definitions on our webpage).

Pathology competition

Pathology competition has two rounds: the first, during the 12th and the second, during the 14th week of the 2nd semester. Macroscopic photographs will be projected in the first round and diagnoses should be given. The students with the best results (up to 8-10 people, depending on the number of participants) will enter the second round. The 2nd round has two parts: theoretical and histopathology parts. In the former, participants should recognize and describe autopsy macrophotos (virtual autopsy). During the histopathology part, participants should recognize and describe a neoplastic and a non-neoplastic slide.

Students use pseudonyms in both rounds. Those students who enter the second round are exempt from test writing, those who recognize both of the histopathology slides in the second round are exempt from histopathology in the final exam. The first three ranked students will get only 2 theoretical questions in the final examination.

Consultation

Upon request there is a possibility for a consultation with the tutor. The students are welcome to autopsy practices of other groups for retake or extra occasion as long as it does not disturb the ongoing practice. **There is no consultation during the exam period.**
Examinations

SEMIFINAL:

1. Prerequisites:

 Absences: not more than 2 autopsy practices and not more than 2 histology practices (histology practice and autopsy hall practice counts separately) can be missed in each semester. Attending the lectures is compulsory. If one does not fulfil the above mentioned prerequisites the 2nd Department of Pathology has the right for not acknowledging the semester.

 Midterm exams: Completion of the 2 midterm exams during each semester is compulsory.

2. Autopsy demonstration will be held during the last autopsy hall practice. One should be able to recognize the organ (complex), orientate it properly, precisely describe the pathological lesions and establish a macroscopical diagnosis. The performance is graded on a scale from 1 to 5. In case the mark of autopsy demonstration would be 1 (failure) it should be retaken otherwise the student will not be examined at the examination. The score (1-5) of the autopsy demonstration will be added to the written exam’s result if the latter is over the passing limit.

3. The exam is a written test!!

 The material for the examinations is based on the book, the lectures and practices as well. The questions are prepared based on the official pathological textbook, but the factual data of the lectures are also constituents of the written test.

 The test consists of 80 questions. The students have 80 minutes for writing the test. The test is given in one session, there will be no break during the examination. Your sitting order is determined by the actual supervisor. The written test will be held in the Histopathology practice room using the teleconsultation computerized system. Every student to be examined on a certain exam day will receive the same set of questions, however, in different order within one question and regarding the numbering of the questions as well. The actual set of questions will be randomly selected from a pool by the computer. Upon submission of the test for evaluation, the computer will evaluate it. The result is immediately available and will be recorded. Since there is no possibility of human error in the correction the result of the written test is not subject of personal consultation.

 The test questions include simple choice (one correct answer out of 5), multiple choice (2 answers are correct), “true-false” analysis and definitions should be given. Every correct answer of a multiple choice question will be awarded with one point, false statements of the multiple choice questions will result in one point deduction in order to avoid randomly crossing every possible answer of the multiple choice questions. Altogether, the deductions cannot conclude a negative score, the worst score for one question is 0. Before submitting the test for evaluation the answers might be changed. Copying the questions are not permitted. The results are posted at the same day, generally early afternoon.

Evaluation: The passing level is 60 %. Each correct answer is worth of 1 point.

 0-59,99%: = 1
 60-69,99%: = 2
 70-79,99%: = 3
 80-89,99%: = 4
 90-100%: = 5

Suspension: If you have any problem during the test, ask the supervisor. In case of communicating, unacceptable behaviour, cheating (usage of mobile phone, books, notes, etc.,) your exam is immediately suspended and the exam will not be evaluated and counts as a failed exam. Written report of the incident will be prepared and signed by the teachers.

4. The exam for EM begins at 8.30 a.m. sharp at the 2nd Department of Pathology, meeting at the Histology practice room. The grade books are collected by the supervisor before starting the exam. Students without a grade book should provide a photo ID, otherwise they are not allowed to take the examination.

5. Exam dates: You will be notified about the dates offered by the Department before the exam period and they will be finalized at the Staff/Student meeting. Then these fixed days will figure in NEPTUN.

 Important! Taking examinations before the exam period is not permitted! (University Policy). In exceptional cases (such as near-delivery, etc.), you must have a written permission from the Dean’s Office.
6. **Registration** The internet based sign up system (NEPTUN) regarding pathology has been established for 3rd year students as well. The sign up procedure is controlled and regulated by the software and the institute cannot interfere with the system. The officially signed up students will be scheduled for examination.

7. **Rescheduling** the exam date: The list of examinees is completed 2 days before the examination date (deadline: 9.00 a.m.), the NEPTUN system automatically closes the sign up list by expiration of the deadline. Example: if the exam is on Thursday the data sheet for Thursday will be taken in and finalized on Tuesday at 9 a.m.. You may remove your name prior to this period. After that changes are not permitted. If you do not show up on the given exam date, you should justify it within 3 days at the head of the Institute or at the tutor responsible for the English program. Otherwise, „not appeared” note is written in your index, and the exam is not allowed without having a retake ticket! The skipped exam is deducted from the number of possible retake exams.

8. **Retake exam:** In case of failure or for those who are unsatisfied with the result of the first exam a retake exam should be taken to improve the mark. For that a retake ticket is required from the secretariat. If one retakes an exam to improve the previous mark it is not granted that mark of the retake exam cannot be the same or worse than the previous mark.

 The retake exam - the first retake exam as well - may be oral by request!!

 At least 4 days should be passed between the day of the failed exam and the day of the retake exam (the days of the examinations are not included). One must also register on the NEPTUN system and indicate that this is the first, second, etc. retake exam. Without retake ticket and NEPTUN registration one is not allowed to take an examination.

Any further details regarding the exam and exam dates will be discussed on a STUDENT / STAFF meeting held in the last week of November. The date of the meeting is to be announced on the lecture.

FINAL EXAM

Form of the **FINAL** examination

The final exam consists of two practical and two theoretical parts. The practical parts are **histopathology** in the histology practice room and **organ demonstration** in the autopsy hall. The theoretical parts are: **written test** (60 questions – 60 minutes) and **oral exam about theoretical topics** – concerning not only the organ or organ complex to be demonstrated, but the complete material discussed in the official pathology books as well as the material presented in the lectures. **The written test is compulsory part of the exam! The passing limit is 60%**. The test is given in one session, there will be no break during the examination. Your sitting order is determined by the actual supervisor.

Written test: The test questions include simple choice (one right answer out of 5), and multiple choice (2 correct answers are correct), “true-false” analysis. Every correct answers of multiple choice questions will be awarded with one point, false statements of the multiple choice questions will result in one point deduction on order to avoid randomly crossing every possible answers of the multiple choice questions. Every answer should be marked in the computer. Before submitting answers for evaluation the answers might be changed.

Oral exam: the 2 theoretical questions of the oral examination are from a list of theoretical questions. The list of these theoretical questions is on the website of the department.

 The material for the examinations is based on the book, the lectures and practices as well!!

The examination will take place at the 2nd Department of Pathology starting with the written test in the Histology Practice Room. The final exam starts at 8.30 a.m. sharp!!!

MEETING POINT: In the Histology Practice Room at the 2nd Dept. of Pathology!!

The students to be examined will be identified by picture ID cards by the supervisor before starting the exam. Therefore, students should present a picture ID, otherwise they are not allowed to take examination!

Evaluation: The passing level is 60 %. Each correct answer is worth of 1 point.

- 0-59,99%: = 1
- 60-69,99%: = 2
- 70-79,99%: = 3
- 80-89,99%: = 4
- 90-100%: = 5
After test writing, examinees are required to take the histology part of the final. Two slides from the pool are given to the student and the examinee should describe the organ (if there is one present on the side) and the histological findings. Finally, a correct diagnosis should be given. The Histology part cannot be examined by the tutor of the student.

After the test and histology, organ demonstration follows. During this part of the exam dissected organs or organ complexes are to be described. The student should be able to orientate the organ (or organ complex) properly, to describe it fully and evaluate the pathological alterations and establish diagnoses.

Finally, the 2 theoretical questions are to be discussed.

The final mark will be decided by the exam board of the institute based on the marks received on the practical and theoretical parts of the final exam.

It should be kept in mind that the final mark is not merely the mathematical average of the given grades of different parts of the exam! Additional factors, for example your midterm results, your general performance during the academic year (evaluated by your tutor), the competition results, etc. are also taken into consideration. Serious mistakes or “clear spots” in your knowledge may significantly affect the final mark or even result in a failed exam.

Retake exam: In case of failure or for those who are unsatisfied with the result of the first exam a retake exam should be taken to improve the mark. If the student retakes the exam to improve the previous mark, the mark of the retake exam may be the same or worse than the previous mark.

At least 4 days should be passed between the day of the failed exam and the day of the retake exam (the days of the examinations are not included). The student must also register on the NEPTUN system and indicate that this is the first, second, etc. retake exam. Without retake ticket and NEPTUN registration the student is not allowed to take an examination.

By retake examination in case of failure the written test or/and the histology exam should not be repeated in case it has reached at least grade 3 by the previous examination.

In case of a retake exam that serves as improving the grade, the complete examination should be repeated, except if the written test/histology part was grade 5.

Failure on any part of the exam excludes a result of 5!

Announcement of the results is at the same day. Signed grade books can be obtained in the office of the Head of Department.

Suspension: If you have any problem during the test, ask the supervisor. In case of communicating, unacceptable behaviour, cheating (usage of mobile phone, books, notes, etc.) your exam is immediately suspended and the exam will not be evaluated and counts as failed exam. Written report of the incident will be prepared and signed by the teachers.

Tutors

Dr. Benedek GYÖNGYÖSI
Dr. Judit HALÁSZ
Dr. Dóra HARGITAI
Dr. Ildikó ILLYÉS
Dr. István KENESSEY
Dr. Magdolna KARDOS
Dr. András KISS
Dr. Zsófia KRAMER
Dr. Gábor LOTZ /
Dr. Lilla MADARAS
Dr Tekla KOVÁCS
Dr. Márton SÁGHI
Dr. Eszter SZÉKÁCS
Dr. Ildikó SZIRTES
CLINICAL ECG

Semmelweis University, Faculty of Medicine

Name of the managing institute (and any contributing institutes):
Heart and Vascular Center
Institute of Translational Medicine

Credit value: 3
Weeks 1–7: Total number of lessons/week: 4 lecture: 2 practical course: 2 seminar: 0
Weeks 8–14: Total number of lessons/week: 2 lecture: 0 practical course: 2 seminar: 0
Subject type: compulsory course
Academic year: 2021/2022
Subject code: AOKKAR680_1A

Name of the course leader: Zoltán Benyó MD, PhD, DSc (weeks 1-7)
His/her workplace, phone number: Institute of Translational Medicine, 210-0306
Position: director, professor
Date and registration number of their habilitation: 2008, 259

Name of the course leader: Dávid Becker MD, PhD, (weeks 8-14)
His/her workplace, phone number: Heart and Vascular Center, +36-1-458-10
Position: deputy director
Date and registration number of their habilitation: 2020, 02

Objectives of the subject, its place in the medical curriculum:
The aim of the subject is to prepare students for the courses in cardiology and internal medicine. The student should be able to recognize the conditions requiring immediate cardiac intervention and the most important arrhythmias.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Nagyvárad square Building, 1089 Bp. Nagyvárad tér 4. (weeks 1–7: lectures and practicals)
Heart and Vascular Center, 1122 Budapest, Városmajor u. 68. (weeks 8–14: practicals)

Successful completion of the subject results in the acquisition of the following competencies:
The student will be able to independently record an ECG and give a professionally correct description of a 12-lead ECG at rest. He/she will be able to estimate basic parameters, identify abnormalities and list clinical conditions that may cause the abnormalities described. Of particular importance is the ability to recognize ST-elevation myocardial infarction, atrial fibrillation and arrhythmias requiring acute intervention.

Course prerequisites:
biophysics, physiology
Detailed curriculum:

Weeks 1–7, lectures (2·45 min):

<table>
<thead>
<tr>
<th>Week</th>
<th>Translational Medicine (45 min)</th>
<th>Cardiovascular Center (45 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Classification of conduction disorders, mechanisms of bradyarrhythmias</td>
<td>The practical significance of impulse formation and conduction disorders</td>
</tr>
<tr>
<td>3</td>
<td>Repolarization disorders. ECG signs of different forms of ischaemic heart disease.</td>
<td>The role of ECG in the investigation of chest pain pathologies and its role in risk stratification.</td>
</tr>
<tr>
<td>4</td>
<td>Ventricular arrhythmias</td>
<td>Differential diagnosis of wide QRS tachycardias. Detection of ventricular tachycardias, ECG criteria.</td>
</tr>
<tr>
<td>5</td>
<td>Basics of pacemaker systems</td>
<td>ECG of a patient with pacemaker</td>
</tr>
<tr>
<td>6</td>
<td>Cases with multiple abnormalities</td>
<td>Description of complex ECGs, ECG differential diagnostics.</td>
</tr>
<tr>
<td>7</td>
<td>Cases to learn from</td>
<td>Revision</td>
</tr>
</tbody>
</table>

Weeks 1–7, practicals:

1. ECG lead systems, nomenclature. Analysis of normal ECG tracings. Estimation of frequency and heart axis. The ladder diagram.
2. Recognition of nomotopic and heterotopic pacemaker disturbances, supraventricular and ventricular tachycardias on ECG tracings.
4. Angina and NSTEMI. Localization and staging of ST-elevation infarcts.
5. Recognition of electrolyte abnormalities, atrial and ventricular strain and hypertrophy.
7. **Mid term exam**

Weeks 8–14, practicals:

During the practicals, theoretical knowledge is correlated with clinical practice at the bedside of the wards of the Heart and Vascular Center, and ECG curves of patients are analyzed.

From week 14 – end of the exam period: Examination (written)

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: biophysics, physiology, cardiology

Special study work required to successfully complete the course: none

Requirements for participation in classes and the possibility to make up for absences:

Students can miss two practices, above that they have to make up. It is not possible to make up lectures, but you can make up the practicals in another group in the same week.

Methods to assess knowledge acquisition during term time:

An oral mid term of the material from the basic course (first 6 weeks) in week 7 (analysis of ECG tracings. Attendance is compulsory.
Requirements for signature:
Successful (at least satisfactory) oral demonstration (as the subject is taught by two different departments).

Type of examination:
Written MCQ test

Requirements of the examination:
Recognition of attendance

Method and type of evaluation:
Grading is based on performance in the written test.

How to register for the examination:
through the Neptun system

Possibilities for exam retake:
In accordance with the study and examination regulations

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Thaler, Malcolm S.: Az egyetlen EKG-könyv, amire szükséged lehet, Medicina Kiadó, 2019
Malcolm S. Thaler: The Only EKG Book You’ll Ever Need, Wolters Kluver, 2019
Trappe, Hans-Joachim, Schuster Hans-Peter: EKG-Kurs für Isabel, Thieme, 2013
Simon András–Tornóci László: EKG érthetően (munkafüzet), Semmelweis Kiadó, 2015
INTERNAL MEDICINE - PROPEDEUTICS

First (Groups 10-18) or Second (Groups 1-9) Semester

Department of Internal Medicine and Oncology
Department of Internal Medicine and Hematology

Course directors: prof. István Takács and prof. Tamás Masszi
Course coordinators: dr Péter Studinger and dr Katalin Keltai
Exam type: oral exam

Credit: 4

Objective of the course: Primary objective of the course is to have the student to acquire the basic skills of examination of a medical patient. Lectures will present the fundamental components of a complete medical patient interview and methods of physical examination. Bedside practices will allow students to gain experience in using these methods. Special emphasis will be placed on the of proper physician behavior with patients.

Lectures:
1. Patient interview, comprehensive health history.
2. Techniques of physical examination: inspection, palpation, percussion, auscultation.
4. Physical diagnosis of the common pleural and pulmonary syndromes. I.
5. Physical diagnosis of the common pleural and pulmonary syndromes. II.
6. Heart sounds and murmurs, diagnosis of valvular diseases.
7. Evaluation of blood pressure, pulse, and vascular system.
8. Physical examination of the abdomen and hernias.
9. Signs, symptoms and differential diagnosis of “acute abdomen”.
10. General diagnostics of the kidney and the urinary tract.
11. Evaluation of the musculoskeletal system.
13. Examination of the lymph nodes. Physical and laboratory evaluation of the hematologic diseases.
14. Signs and symptoms of diseases of the endocrine system.

Practices:
1. Introduction to medicine. Patient interview and health history
2. Approach to symptoms, patient documentation (patient chart, flowsheet, follow up)
3. Methods of physical examination: inspection, palpation
4. Methods of physical examination: percussion, auscultation
5. Practicing physical examination of the thorax and lung I.
6. Practicing physical examination of the thorax and lung II.
7. Practicing physical examination of the heart I.
8. Practicing physical examination of the heart, ECG evaluation.
9. Practicing blood pressure and pulse measurement, evaluation of the vascular system
10. Practicing physical examination of the abdomen I.
11. Practicing physical examination of the abdomen II.
12. Practicing evaluation of changes in body temperature and examination of the urogenital system. Bedside blood glucose measurement.
13. Practicing physical examination of the musculoskeletal system, breasts and lymph nodes.
14. Summary and review
BASIC SURGICAL TECHNIQUES

Department of Surgical Research and Techniques
Theoretical Block at Nagyvárad Square, Operating training center,
1089 Budapest, Nagyvárad sqr 4.
Lecturer: Professor Dr. György Wéber
Tutor: Dr. Györgyi Szabó

Credit: 2
Second Semester

Prerequisites: Microscopic Anatomy and Histology II., Medical Physiology II.

The aim of the subject is to practice the basic surgical techniques, to present hygienic approach, which attainments are indispensable for clinical doctors working in manual field of medicine. This subject provides basics about special behavior in the operating theatre, preparation of the patient and surgical team before operation, surgical tools and instruments, wound management, laparoscopic instruments and techniques. Recommended for students interesting in manual fields of medicine.

Practices are held on every second week (7x135 minutes).
1. The operating room.
2. Knoting and suturing on in vitro models.
3. Knoting and suturing on in vivo models.
4. Operations on small animals I.
5. Operations on small animals II.

Attendance is obligatory on every practice. Because of limited capacity of operating theatre, absence cannot be repeated by joining another group. One missed practice can be repeated on 14th week of the semester.

Absence should be certified with medical or other official certificate. Absence from practices is not to exceed 25%.

Requirement: Practical exam (5 degree evaluation).

Textbook: Basic surgical techniques (textbook and video)
PROBLEM BASED MEDICAL PHYSIOLOGY

Course Director: Prof. Dr. László Hunyady M.D., Ph.D., D.Sc.,
Head of the Department of Physiology

Lecturers:
- Professor László Hunyady M.D., Ph.D., D.Sc.
- Professor Péter Enyedi M.D., Ph.D., D.Sc.
- Péter Várnai M.D., Ph.D., associate professor
- Miklós Geiszt M.D., Ph.D., associate professor
- Gábor Czirják M.D., Ph.D., assistant professor

Credits: 4

Programme:
The primary purpose of this course is the synthesis of the theoretical and practical knowledge of the students. The thematic of the course includes various clinical and non-clinical practical problems (e.g. acclimatisation). The students will receive questions related to a specific problem and they have usually one week to find the proper answer in available electronic and printed information sources. Problem solving is based on the discussion of the students with directions from the instructors. This course requires the active participation of the students. The role of the instructor is to determine the thematics of the course and to provide guidance to the discussions.

Thematics:
1. Physiologic principles of circulatory problems I.
2. Physiologic principles of circulatory problems II.
3. Physiologic principles of circulatory problems III.
4. Physiologic principles of respiratory problems I.
5. Physiologic principles of respiratory problems II.
6. Physiology of acclimatisation.
7. Dysfunctions of kidneys I.
8. Dysfunctions of kidneys II.
9. Immune cells and blood coagulation.
10. Physiologic principles of the regulation of food intake.
11. Dysfunctions of neuroendocrine system I.
12. Dysfunctions of neuroendocrine system II.
13. Dysfunctions of central nervous system I.
14. Dysfunctions of central nervous system II.

Requirement and attendance

Requirement: Medical Physiology (AOKIKELT2A)
In case of an over-application selection will be made on the base of the exam achievement.
Condition of the sign: participation at min. 75% of the lessons. Replacement of an absence is not possible.
Absence: Certification of the absence from the lessons is not required. Absence from the exam should be certificated in three weekdays (medical certificate).

Semester requirement: Recitation: every week, oral or written. Details will be given on the first lesson.
End-semester evaluation: Condition of the sign: participation at min. 75% of the lessons. A practical mark will be given.
Mark: Weekly results plus the oral exam grade.
Exam sign up: On the last week, personal.

Written subject-matter of instruction: the discussable themes were selected by the lecturers of the Department of Physiology, and are given to the students every week. The necessary subject-matter of instruction will be published on the home page of the Department of Physiology. Use of data bases in the Central Library of the University (e.g. PubMed) is required.
BIOETHICS—MEDICAL ETHICS

Department:
Institute of Behavioral Sciences
Department of Bioethics
NET Building, 19th, 20th floor
Tel: 210-2953
Secretary: Csilla Motyovszki, e-mail: motyovszki.csilla@med.semmelweis-univ.hu
Tel: 210-2930/56114, NET Building, 20th floor, Room-2015
(28 hours)
2022/2023 year II. semester

Course objectives:
a.) To enable students to recognize ethical issues when encountered in everyday clinical practice and research
b.) To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
c.) To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patients’ research subjects and fellow health care professionals
d.) To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health

Lectures:

Time: Thursdays, 14.35-16.10
Venue: NET, Brown Auditorium (1089. Budapest, Nagyvárad tér 4.) or possibly Online lectures via Zoom

1. week Lecture (18 February, 2021)
Principles of Medical Ethics (Jozsef Kovacs)

2. week Lecture (25 February, 2021)
Informed Consent I. (Jozsef Kovacs)

3. week Lecture (4 March, 2021)
Informed Consent II. (Jozsef Kovacs)

4. week Lecture (11 March, 2021)
Competence and Capacity to Make Health Care Decisions (Orsolya Peter)

5. week Lecture (18 March, 2021)
Ethical Questions of Human Research (Jozsef Kovacs)

6. week Lecture (25 March, 2021)
Reproductive Issues (Orsolya Peter)

7. week Lecture (1 April, 2021)
Organ and Tissue Transplantation (Jozsef Kovacs)

8. week Lecture (8 April, 2021)
Information Disclosure to Terminally Ill Patients. Telling the Truth to Patients (Orsolya Peter)

9. week Lecture (15 April, 2021)
Confidentiality and Medical Records. Reportable Illnesses, HIV-Related Issues, Sexually Transmitted Diseases (STDs) (Orsolya Peter)

10. week Lecture (22 April, 2021)
End of Life Issues (Jozsef Kovacs)

11. week Lecture (29 April, 2021)
Doctor-Patient, Doctor-Doctor Relationship (Jozsef Kovacs)

12. week Lecture (6 May, 2021)
Doctor and Society (Jozsef Kovacs)

13. week Lecture (13 May, 2021)
Malpractice (Orsolya Péter)

14. week Lecture (20 May, 2021)
The Rights of Patients (Orsolya Péter)
Course Faculty:
1. Jozsef Kovacs, MD, PhD, (Head of the Department of Bioethics), 210-2930/56115; e-mail: kovacs.jozsef@med.semmelweis-univ.hu (Room 2003)
2. Ágnes Dósa, MD, JD, PhD e-mail: dosaagi@gmail.com (Tel: +36-30-9-912-462)
3. Imre Szebik, MD, PhD e-mail: szebik.imre@med.semmelweis-univ.hu (Room 1914) (Tel: +36-20-824-3195)
4. Jenő Lőrincz, MD e-mail: lorincz.jeno@med.semmelweis-univ.hu (Room 2007) (Tel: +36-30-749-4768)
5. Ágnes Zana, PhD e-mail: zana.agnes@med.semmelweis-univ.hu (Room 2008) (Tel: +36-30-53-01-647)
6. Orsolya Péter, JD, PhD, peter.orsolya@med.semmelweis-univ.hu; peterorsolya@gmail.com (Room 2012) (Tel: +36-30-906-5787)

Course attendance statistics can be found on NEPTUN in the following way:
Taken courses -- options -- Course details -- Attendance statistics.

List of questions
1. The principles of medical ethics
2. Competence and the capacity to make decisions
3. Paternalism in medical practice
4. Informed consent
5. Information disclosure for terminally ill patients
6. Withholding and withdrawal of medical treatment
7. Advance Directives
8. Do not resuscitate (DNR) orders
9. Withholding Fluids and Nutrition in terminally ill patients
10. Physician assisted suicide
11. Active and Passive Euthanasia
12. Terminal sedation and the law of double effect
13. Futile medical care
14. Determination of death and brain death
15. Ethical problems of live organ donation
17. Organ donation form brain-dead donors: presumed consent
18. Reproductive issues (abortion, contraception, sterilization, donation of sperm and eggs)
19. HIV related issues (confidentiality, partner notification, HIV-positive health-care workers, refusal to treat HIV-positive patients) and sexually transmitted diseases (STDs)
20. Malpractice
21. Doctor-patient relationship (beginning and ending the relationship, gifts from patients, doctor/patient sexual contact)
22. Doctor and society (child abuse, elder abuse, impaired drivers, physician participation in executions, torture, spousal abuse, gunshot wounds, gifts and industry funding)
23. Doctor-doctor relationship (reporting impaired physicians, physician disagreements)
24. Confidentiality and medical records
25. Ethical Questions of Human Research
26. The Rights of Patients

Textbook:
MHID 1-25-964121-X

The textbook can be ordered in the following bookshop: Medicina könyvesbolt, Budapest, IX. Üllői út 91/a (tel: 06-1-215-3786)

Lectures: The power point slides of the lectures can be found at:
http://semmelweis.hu/magtud/en/education/faculty-of-medicine
Password is given on the lectures

A thorough knowledge of the textbook is the absolute minimum for passing the exam, although in itself it may not be enough to pass it. Because the power point slides contain only the outline of each lecture, participation on the lectures is indispensable for a full understanding of the subject.
Second Semester

Purpose of the lecture:
The goal of the subject is to provide basic knowledge of the definition, mission, reasons and circumstances of establishment of civil protection/disaster management, on its place and role in the country’s defense/protection system; to provide information on the types of disasters and their features. Based on experience gained in real incidents, to provide information on the peculiarities of disaster management and the tasks of medical authorities in this context.

The syllabus:

(M1) Concept, mission, tasks and establishment of civil protection and disaster management in Hungary. Types and features of disasters, the disaster vulnerability of Hungary, the organizational system of the protection against disasters, command and control of protection, the role of medical authorities.

(M2) The early warning system and signals of disaster management. The elimination of the consequences of disasters, the staff work applied during protection. Features and activities of Hungarian disaster management organizations and authorities, international possibilities of disaster management and the lessons learnt, demonstrated by examples.

Requirements and the potential for absences to participate in the sessions:
The subject consists of 4 modules. Module 1 does not have any prerequisites; module 2 anticipates the fulfillment of module 1. Students must register to attend the course announced as required. Those who are unable to fulfill module 1 or 2 (do not attend), may participate in a supplementary lesson in the 1st semester of the following year.

The method of certificate for the workshops and the exam absences:
Certificate of absence: medical, official – court of justice, local government, Students’ Union, etc.

The mid-term controls’ (reports, midterm) number, topic and date, replacements and repairs:
Method of making up for the absence justified by certificate: participation in a supplementary lesson.

Requirements for the signature:
Students must participate in the lesson announced to acquire signature, or in case of absence justified by certificate, in a supplementary lesson. Only registered students may participate in a supplementary lesson announced.

The method of grading: signature
Type of examination: none
Requirements: none, students must fulfill the obligation to attend the lessons.
Application for exam: none
Changing procedure for exam application: none

Absence from the examination: none

HUNGARIAN MEDICAL TERMINOLOGY V.

Responsible organisational unit:
Department of Languages for Specific Purposes

Programme director:
Dr. Katalin Fogarasi, associate professor, Director
4 lessons per week, 2 credits,

Assessment: midterm (written) and endterm (written and oral) tests and a final examination

Role of subject in fulfilling the aim of training:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective professional communication in the language they use during their field practice. With the help of this course they become able to communicate with the patients in the Hungarian hospitals.

Brief description of subject:
The last module covers the terminology of the main body systems and provides further training in taking history. The symptoms, diseases and common treatments of the diverse body systems (respiratory, cardiovascular, urinary, digestive and endocrine) are discussed during the semester.

Course content of practical lessons:
Lesson 1-4: Communication practice (family and social history)
Lesson 5-6: Communication practice (internal medicine – medical history)
Lesson 7-8: Communication practice (treatments, medication)
Lesson 9-10: Common illnesses - symptoms
Lesson 11-16: The respiratory system
Lesson 17-22: The cardiovascular system
Lesson 23-24: Consolidation
Lesson 25-26: Test 1 + situation
Lesson 27-32: The urinary system
Lesson 33-38: The digestive system
Lesson 39-44: The Endocrine system
Lesson 45-50: Consolidation
Lesson 51-52: Test – situation, communication practice
Lesson 53-56: Mock final exam (oral part), assessment

Course material, recommended text book(s), professional literature and supplementary reading(s)
PHYSICAL EDUCATION V-VI.

Practice: 1 hour per week

SUMMER (INTERNAL MEDICINE) PRACTICE

Managing (and contributing) institutes:
Department of Internal Medicine and Hematology
Department of Internal Medicine and Oncology
In English: Internal medicine summer practical

Total hours: practice: 40 hours/week for 4 weeks
Type of course: compulsory
Course code: AOKNG893_1A

Responsible for course: Prof. Dr. Tamás Masszi, Prof. Dr. István Takács
Aim of the course, its position in the medical curriculum:
The main aim of the internal medicine summer practical following the 6th semester is, apart from practicing taking medical history and performing physical examination, detailed introduction to and participation in practical clinical work, as well as utilisation of obtained pre-clinical knowledge. Acquiring the basics of the integrative approach of internal medicine, practicing differential diagnostics.

Location of course (address of lecture-hall, seminar room, etc.):
Department of Internal Medicine and Hematology
Department of Internal Medicine and Oncology
External training sites (see list of accepted practical locations)

Acquired competences after successfully completing the course:
Practical and internal medical utilisation of knowledge obtained during theoretical courses and propedeutics within the internal medicine famulus practical. The goal is that the student is able to receive the patient, start examination, set up diagnostic and, as far as possible, treatment plan, as well as to perform routine treatment, under supervision. Furthermore, the aim is to acquire professional and human communication skills with medical staff, patients and their relatives.

Prerequisite(s) for admission to the course:
Attendance requirements of propedeutics and signature in propedeutics. Successful exam in propedeutics is not a criterium for attending summer practical.

Student enrolment requirements (minimum, maximum), method of student selection:
Based on registration in the Neptun system maximum 25 students per shift per Department.

Detailed syllabus:
Students participate in practice 8 hours daily, 5 days a week for 4 weeks General syllabus:
Introduction to the internal medical ward and the hospital.
Examination of patient, treatment of assigned patients at an assistant physician level under supervision, according to only partial pharmacological knowledge.

Medical history:
- taking medical history of patient, documenting the organised collected information with medical terms.
- interpretation of medical history in patient’s documentation (abbreviations, recognition of connection of events)
- considering an expected home treatment based on medical history
Medication
- connecting the name of the patient’s medications with the active ingredients
- identifying indication of drugs (in medical history)
- setting up a medical treatment plan for the condition indicated upon admission

Physical examination
- practicing head-to-toe examination and its professional description
- practicing targeted examination (e.g. patient with dyspnoea, anaemia, hepatic cirrhosis)
- recognising connection between acquired results of physical examination and medical history

Practicing the most important medical interventions
- Measuring pulse, blood pressure, temperature, weight, blood glucose
- Administration methods of medication
- Blood sample collection, injection administration, insulin administration, utilisation of pen (perhaps insulin pump)
- Prepare and administer infusions with supervision, introduction to transfusion
- Utilisation of diagnostic devices (ECG, Doppler, ultrasound, monitor, blood gas)

Introduction to patient’s documentation (patient’s chart, medical record, glucose chart, fluid chart, critical patient sheet), individual documentation. Professional demonstration of patient case known and followed by student on clinical rounds.

Acquiring skills of communication with patient and relatives, especially of informing patient and confidentiality. Become familiar with informed consents required for interventions, their introduction to patient, obtaining consent.

As far as possible, participation in consultations, in imaging diagnostics, in examination with devices, in clinical pathological consultations, especially in case of patient’s known by student.

Participation in professional consultations of the institute.

Schedule
8:00-8:15 AM short meeting about events of night shift, daily tasks
8:15-9:30 AM medical rounds at ward - making rounds in the ward with the ward physician
9:30-10:00 AM clinical case consultation
10:00-10:20 AM coffee break
10:20-11:00 AM participation in ward tasks, participation in scheduled examinations, admission of new patients
11:00 AM-12:00 PM medical rounds with senior physician of ward
12:00-12:30 PM midday medical consultation
12:30-01:00 PM lunch break
01:00-01:30 PM assessment of and consultation on laboratory findings
01:30-02:00 PM consultation on daily tasks, reviewing and correction of documentation, reviewing activities log book, discussion of home study

Cross-border issues of the given course related to other courses (compulsory and elective). Possible overlaps in curriculum: general hospital bedside practice, practical basics of clinical courses

Activities
The student prepares an activity log book during the practical. Each student follows the patient turnover of a hospital bed. Student prepares medical record for the patient assigned to the bed and documents daily events. Student may analyse and explain patient’s medication, details of therapy (e.g. choice of antibiotics, adjusting medication of cardiac insufficiency, etc.). Student may document main points of examinations, interventions, consultations they participated in during the day. The log book may be electronic or hand-written.

Requirements for participation in classes and opportunities to make up for absences:
According to the Studies and Exams Code, the criteria for obtaining signature is at least 75% participation in the practical.

Examination of acquired knowledge during term:
cannot be interpreted

Type of exam: report
Exam requirements:
Presentation of activity log book, exam on the subjects listed in the general syllabus within the context of a bedside consultation.

Method and type of class marks:
The completion of the practical is confirmed by a signature. Confirmation is given based on the activity shown during the practical and the complex patient examination at the end of the practice.

How to apply for the exam:
Application happens automatically when applying for the practical.

Opportunity to repeat the exam:
Not applicable.

The list of printed, electronic and online notes, textbooks, study aids and literature to be used for to learn the curriculum (in case of online sources, html address): Bickley, L.S.: Bates’ Guide to Physical Examination and History Taking. 12th ed.Wolters Kluver, 2016.

Practical examination
1. taking medical history of a given patient, documenting the organised collected information with medical terms, complete physical examination of patient and its professional presentation (may be performed previously during the days before the exam, student is expected to present the documentation in the test)
2. theoretical and practical consultation on one item of the exam items.

Exam items
1. targeted examination of patient with dyspnoea
2. targeted examination of patient with anaemia
3. targeted examination of patient with renal insufficiency
4. targeted examination of patient arriving with chest pain
5. targeted examination of patient with fever
6. measurement of pulse, bedside diagnostics of vascular stenosis
7. blood pressure measurement technique, ABPM, assessing values of blood pressure measured at home
8. describing transfusion process (indication, choosing blood supply, bedside tasks)
9. blood glucose measurement (technique), assessing glucose chart, therapy recommendations
10. practical instructions on insulin treatment, describing utilisation of pen
11. primary/hospital treatment of hypoglycaemic patient
12. primary treatment of patient with ketoacidosis
13. diagnosis and treatment of pleural effusion
14. diagnosis and treatment of ascites
15. arterial blood gas analysis (technique, assessment)
16. recognising septic patient/patient in critical condition (ABCDE), report on condition (SBAR)
17. examination procedure of patient with icterus
18. utilisation of bedside ultrasound device
19. administration methods of medication, preparation of infusion
20. placement technique of urinary catheter
OBLIGATORY ELECTIVE AND ELECTIVE SUBJECTS – SCHEDULE OF THE BASIC AND PRE-CLINICAL MODULES (1st, 2nd & 3rd year) – Find detailed curricula after the 5th year

OBLIGATORY ELECTIVE SUBJECTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practics</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Developmental Biology I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology II.</td>
</tr>
<tr>
<td>Library Informatics</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical Physiology of Respiration and Respiratory Diseases</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Basic Cell Biology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology I.</td>
</tr>
<tr>
<td>Teaching assistance (Demonstrator)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>Only 2nd year students and up with an average of 3,51 from the previous school year and having achieved a final grade of “good” (4) or better in the course related to the teaching assistant work</td>
</tr>
<tr>
<td>Teaching assistance II. (Demonstrator)*</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Work within the union of research students (TDK munka)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Introduction to Clinical Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Profession</td>
</tr>
<tr>
<td>Medical Profession</td>
<td>0,67</td>
<td>1,33</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Mathematical and Physical Basis of Medical Biophysics</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>2nd semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical anatomy – propedeutics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology III.</td>
</tr>
<tr>
<td>Developmental Biology II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Developmental Biology I.</td>
</tr>
<tr>
<td>Clinical cardiovascular physiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Introduction to Medical Informatics</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>pract. mark</td>
<td>Medical Profession</td>
</tr>
<tr>
<td>Library Informatics</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Med. Fac.: Medical Physiology II. Dent. Fac.: Medical and Dental Physiology I.</td>
</tr>
<tr>
<td>Teaching assistance (Demonstrator)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>Only 2nd year students and up with an average of 3,51 from the previous school year and having achieved a final grade of “good” (4) or better in the course related to the teaching assistant work</td>
</tr>
<tr>
<td>Teaching assistance II. (Demonstrator)*</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Work within the union of research students (TDK munka)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Preclinical and clinical neuropsychopharmacology and psychopharmacogenetics</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>Previous attendance of courses in Biology, Physiology and Biochemistry</td>
</tr>
<tr>
<td>The Scalpel and the Paragraph: Special Issues of Medical Practice in Light of the Law</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Ultrasonography in obstetrics and gynecology</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>completion of second year</td>
</tr>
<tr>
<td>Introduction to Clinical Anatomy</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Macroscopic Anatomy and Embryology I-II.; Microscopic Anatomy and Embryology I-II.</td>
</tr>
</tbody>
</table>
ELECTIVE SUBJECTS

1st semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art of Learning</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Social media in medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>The theory and the practice of Mindfulness Based Stress Reduction</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Introduction to Epigenetics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Immunology</td>
</tr>
<tr>
<td>Lessons in Digital Health</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>basic module</td>
</tr>
<tr>
<td>Highlights on Mental Health and Mental Treatment (Culture in Medicine II.)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Culture in Medicine, Culture of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Basic Cell Biology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology I.</td>
</tr>
<tr>
<td>Cardiorespiratorical and neurophysical measuring techniques</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Jewish Medical Ethics I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>History of Medical Professionalism</td>
<td>2,5</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Introduction to Pharmacological Research</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochemistry, Molecular and Cell Biology I.</td>
</tr>
<tr>
<td>Basics of Medical Chemistry</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Medical Genomics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochem., Molecular and Cell Biology I, II, III</td>
</tr>
<tr>
<td>Cardiac Electrophysiology</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>examination</td>
<td>Medical Physiology I.</td>
</tr>
</tbody>
</table>

2nd semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art of Learning</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical Hungarian</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>pract. mark</td>
<td>Hungarian Medical Terminology V.</td>
</tr>
<tr>
<td>Medical Terminology II.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Disruptive Technologies in Medicine</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Pathobiochemistry</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochemistry II.</td>
</tr>
<tr>
<td>Social media in medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>basic module</td>
</tr>
<tr>
<td>Culture in Medicine, Culture of Medicine</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Problem based medical physiology</td>
<td>2,5</td>
<td>–</td>
<td>4</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Clinical cardiovascular physiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>History of Medical Professionalism</td>
<td>2,5</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Subject</td>
<td>Lectures</td>
<td>Practics</td>
<td>Credit Points</td>
<td>Examination</td>
<td>Prerequisite</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Sexual genetics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Anatomy, Cell, Histology and Embryology II. Biochemistry, Molecular and Cell Biology I.</td>
</tr>
<tr>
<td>Jewish Medical Ethics II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Chemotaxis – Its significance in biology and clinical sciences</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Chemistry</td>
</tr>
<tr>
<td>Introduction to Pharmacological Research</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochemistry, Molecular and Cell Biology I. or Medical Biochemistry I.</td>
</tr>
<tr>
<td>Systems Neuroscience</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>pract. mark</td>
<td>–</td>
</tr>
<tr>
<td>Clinical Gastroenterology</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Internal Medicine – Propedeutics</td>
</tr>
<tr>
<td>Climate Change and Health in Sociological Perspectives</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Sociology</td>
</tr>
<tr>
<td>Pathobiochemistry</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Biochemistry, Molecular and Cell Biology II.</td>
</tr>
<tr>
<td>Hate Crimes</td>
<td>2 hours</td>
<td>14 hours</td>
<td>1</td>
<td>oral semifinal</td>
<td>Medical Sociology, Medical Physiology II.</td>
</tr>
<tr>
<td>Introduction to Principles of Students’ Scientific Research</td>
<td>2</td>
<td>–</td>
<td>1</td>
<td>pract. mark</td>
<td>completion of the 1st and 2nd semester</td>
</tr>
<tr>
<td>Biomedical Innovation for the 21st century</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract.mark</td>
<td>recommended from 2nd year</td>
</tr>
</tbody>
</table>
CLINICAL MODULE
STUDY PROGRAMME

Fourth Year in the 2022/2023 academic year

4th and 5th Years (7th-10th semesters)

Teaching is done in “clean” blocks: Theory + Practice + Exam. (Practices are taught by “shadowing”)
The time span of each block depends on the credit value of the subjects: 1 to 5 weeks
Pharmacology and Pharmacotherapy is taught on a weekly regular basis for 2 × 14 weeks in the 7th and 8th semesters

For example: based on a subject of 2 credits:
- 2 credits × 14 lessons = 28 lessons (1 semester consists of 14 weeks. The number of credits are equal with the lessons in a week)
- Education is provided as 8 lessons in a day: 4 days × 8 lessons = 32 lessons
- the training and the exam must be completed in 2 weeks
- approx. 40 students will be trained by providing 4 days of training and 2 days of exams within 10 working days.

7th and 8th semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>practice (h/week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Medicine (Metabolism, Endocrinology, Gastroenterology, Nephrology)</td>
<td>5,6</td>
<td>14</td>
<td>Internal Medicine – Propedeutics Translational Medicine and Pathophysiology II. Pharmacology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Cardiology, Heart Surgery, Angiology, Vascular Surgery</td>
<td>2</td>
<td>4,5</td>
<td>Pharmacology II. Clinical ECG Internal Medicine - Propedeutics</td>
<td>examination</td>
</tr>
<tr>
<td>Surgery</td>
<td>3</td>
<td>3</td>
<td>Basic Surgical Techniques, Pathology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Traumatology</td>
<td>18*</td>
<td>74¹</td>
<td>Pathology II. Basic Surgical Techniques</td>
<td>examination</td>
</tr>
<tr>
<td>Orthopedics</td>
<td>12</td>
<td>36</td>
<td>Pathology II., Internal Medicine - Propedeutics Microscopic Anatomy and Embryology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Imaging</td>
<td>14</td>
<td>28</td>
<td>Medical Biophysics II. Translational Medicine and Pathophysiology II Pathology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Otorhinolaryngology</td>
<td>14</td>
<td>28</td>
<td>Basic Surgical Techniques Pathology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Dermatology</td>
<td>2</td>
<td>28</td>
<td>Pharmacology II. Medical Microbiology II. Pathology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Oral Surgery and Dentistry</td>
<td>–</td>
<td>28</td>
<td>Basic Surgical Techniques Pathology II.</td>
<td>examination</td>
</tr>
</tbody>
</table>

¹ Groups are subdivided into further smaller groups, where more tutors will be teaching (the total maximal amount of teaching hours is about 104).
<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Medicine</td>
<td>1,5</td>
<td>1</td>
<td>Pathology II., Pharmacology II., Translational Medicine and Pathophysiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pulmonology – Thoracic Surgery</td>
<td>1,5</td>
<td>2,5</td>
<td>Pharmacology II., Basic Surgical Techniques</td>
<td>examination</td>
</tr>
<tr>
<td>Oncology and Reconstructive Oncoplastic Surgery</td>
<td>1</td>
<td>2</td>
<td>Pharmacology II., Pathology II., Basic Surgical Techniques</td>
<td>examination</td>
</tr>
<tr>
<td>Emergency Medicine and Oxyology</td>
<td>1</td>
<td>1,5</td>
<td>Pharmacology II., Basic Surgical Techniques</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Pharmacology</td>
<td>0</td>
<td>2,5</td>
<td>Pharmacology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Family Medicine</td>
<td>0</td>
<td>20</td>
<td>Internal Medicine – Propedeutics, Pharmacology I.</td>
<td>examination</td>
</tr>
<tr>
<td>PE VII.</td>
<td>0</td>
<td>1</td>
<td>PE VI.</td>
<td>signature</td>
</tr>
<tr>
<td>PE VIII.</td>
<td>0</td>
<td>1</td>
<td>PE VII.</td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice – Surgery</td>
<td>1 month</td>
<td>2</td>
<td>Surgery</td>
<td>pract. mark</td>
</tr>
<tr>
<td>The Medical Basis of Disaster Management III.</td>
<td>2/semester</td>
<td>0</td>
<td>The Medical Basis of Disaster Management II.</td>
<td>signature</td>
</tr>
<tr>
<td>The Medical Basis of Disaster Management IV.</td>
<td>2/semester</td>
<td>2</td>
<td>The Medical Basis of Disaster Management III</td>
<td>signature</td>
</tr>
</tbody>
</table>
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:
3. Davis-Christopher: Textbook of Surgery / Synopsys for students (Sabiston)
4. Clive R. G. Quick, Joanna B. Reed et all.: Essential SURGERY(5th Edit.) Churchill Livingston
6. Semmelweis Egyetem e-learning rendszere Ortopédia fejezet – Semmelweis University e-learning system: Orthopaedics
11. Online sources: UpToDate.com / Dermatology and DermNet.nz
INTERNAL MEDICINE I. – Metabolism, Endocrinology, Nephrology, Gastroenterology

Department of Internal Medicine and Oncology, 1083 Budapest, Korányi S. u 2/a

Course director: prof. István Takács
Course coordinator: dr. Péter Studinger
5 weeks
Lectures: 28 hours
Practices: 70 hours
Credit: 7

Objectives of the course:
The primary objective of the course in internal medicine for fourth-year students, who have been acquired the basic skills of physical examination, is the symptom-based and patient-oriented education of various segments of internal medicine. Internal medicine I comprises endocrinology, metabolic disorders, nephrology and gastroenterology. Students become familiar with the diagnostics and the treatment of the most common disorders of these disciplines.

Detailed syllabus:

During a 5-week block practice, students spend 13 days in the department, through 4 weeks.

Within the daily schedule, there are lectures for the entire block of students (45-50 students), and case discussion practices in rotation and bedside practices for small groups of students. Students are assigned into groups (15-16 students / group) for the case discussions that are held in rotation. Bedside practices are also held in small groups (7-8 students/group).

On the last Monday of the course a written test is taken by all students. On the following days (Tuesday-Friday), students continue with a bedside, patient-oriented oral exam. Written test and oral exam both provide 50-50 points. Passing the written test requires at least 25 points (50%). In case of a failure during the written test, oral retake exam is provided on the last day of the exam week.

Score-to grade conversion is as follows: 90-100: excellent (5), 80-89: good (4), 70-79: average (3), 60-69 pass (2), <60 fail (1).

Schedule:

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:15-9:45</td>
<td>Case discussion 1</td>
<td>Case discussion 3</td>
<td>Case discussion 5</td>
<td>Case discussion 7</td>
</tr>
<tr>
<td>10:00-12:15</td>
<td>Bedside practice</td>
<td>Bedside practice</td>
<td>Bedside practice</td>
<td>Bedside practice</td>
</tr>
<tr>
<td>13:15-14:00</td>
<td>Lecture 1</td>
<td>Lecture 3</td>
<td>Lecture 5</td>
<td>Lecture 7</td>
</tr>
<tr>
<td>14:15-15:00</td>
<td>Lecture 2</td>
<td>Lecture 4</td>
<td>Lecture 6</td>
<td>Lecture 8</td>
</tr>
<tr>
<td>15:15-16:00</td>
<td>Case discussion 2</td>
<td>Case discussion 4</td>
<td>Case discussion 6</td>
<td>Case discussion 8</td>
</tr>
</tbody>
</table>
Endocrinology and metabolic diseases

Lectures:
1. Introduction to endocrinology: Diseases of the pituitary and the hypothalamus.
2. Thyroid disorders – symptoms, diagnosis and treatment.
5. Thyroid nodules and cancer.
7. Disorders of the gonads.
8. Disorders of calcium metabolism.
9. Causes and diagnosis of blood glucose disorders.
10. Glucose control in diseases of carbohydrate metabolism.
11. Managing diabetic patients and their complications.
12. Obesity, management and treatment of patients with lipid metabolism disorders.

Case discussions:
1. Diagnosis, treatment and follow-up of patients with pituitary adenoma and hypopituitarism. (90’)
2. What to do in case of altered TSH, examination of thyroid disorders. (90’)
3. Examination of cortisol overproduction and deficiency, follow-up and management of patients with Cushing’s syndrome and adrenocortical insufficiency (90’)
4. Diagnosis and treatment of osteoporosis. (90’)
5. Managing diabetes mellitus – diet and treatment. (90’)
6. Purine, iron, copper and other rare metabolism disturbances. (90’)
7. Thyroid nodules, examination of thyroid cancer, radioiodine treatment. (90’)
8. Options of neuroendocrine tumour treatment, endocrine paraneoplastic syndromes. (90’)
9. Examination and treatment of hyper- and hypocalcaemia (90’)
10. Thyroid ultrasound (45’)
11. Managing and follow-up of diabetic patients, complications. (45’)
12. Obese patient, metabolic syndrome, when to treat elevated cholesterol. (45’)

Nephrology

Lectures:
1. Glomerular diseases.
2. Tubulointerstitial and cystic kidney diseases.
3. Electrolyte disorders.
4. Renal transplantation.

Case discussions:
1. A young female patient with acute kidney injury and liver dysfunction. (90’)
2. Approach to a patient with glomerulonephritis. (90’)
3. Dialysis treatment. (90’)
4. Management of a patient with chronic kidney disease. (90’)
5. Vascular disorders of the kidneys, kidney stones and urinary tract infection. (90’)
6. Hematuria and proteinuria during pregnancy. (90’)

Gastroenterology

Lectures:
1. Disorders of the oesophagus and the stomach.
2. Disorders of the small bowel, malabsorption and maldigestion.
3. Inflammatory bowel diseases.
5. Gastrointestinal bleeding.
7. Disorders of the pancreas.

Case discussions:
1. Management of a patient with a pancreatic disease. (90’)
2. Approach to a patient with acute abdominal pain. (90’)
3. Approach to a patient with an abnormal liver function test. (90’)
4. Differential diagnosis and management of obstructive jaundice. (90’)
5. Approach to a patient with swallowing difficulty. (90’)
6. Celiac disease. Differential diagnosis of diarrhoea (90’)

246
CARDIOLOGY – Heart Surgery, Angiology, Vascular Surgery

Heart Center Department of Cardiology
Tutor: Dr. György Bárczi

Lectures (2 hours per week)
1. Anatomy and physiology of the heart
2. Cardiomyopathies
3. Acute coronary syndrome
4. Treatment of Chronic Heart Failure
5. Symptoms, diagnosis and conservative treatment of vascular diseases
6. The diagnosis and treatment of Stable Coronary Artery Disease
7. Chest pain differential diagnosis. Life threatening diseases
8. Ventricular arrhythmias. Sudden cardiac death
9. Resynchronization therapy, mechanical circulatory support, heart transplantation
10. Surgical treatment of arterial diseases
11. Heart surgery in XXI. Century. Revascularization, valve surgery, circulatory support
12. Valvular heart diseases.
13. Pacemaker, ICD indications
14. Primer and secunder prevention
15. Paediatric cardiology
16. Hypertension
17. Supraventricular arrhythmias, atrial fibrillation
18. Antithrombotic, anticoagulant treatment
20. Infective Endocarditis

Practices (ward rounds, 4,5 hours per week)

Bedside practice:
1. Patient examination
2. ECG; ECG signs of life-threatening cardiac diseases.
3. Basics of echocardiography; Examination of the heart cavities, heart valves, heart muscle, systolic and diastolic function.
4. Heart failure; Symptoms of left- and right-sided heart failure; Differentiation between systolic and diastolic heart failure; Diagnosis of heart failure; Conservative and interventional treatment of heart failure
5. Cardiac valve dysfunction; Clinical signs of valvular heart disease; Auscultation; Systolic and diastolic murmurs; Valvular heart disease diagnosis and treatment; Transcatheter aortic valve implantation; Heart valve repair and replacement surgery; Anticoagulant therapy.
7. Management of ischemic heart disease in outpatient care; Symptoms and diagnosis of acute coronary syndrome; Signs of STEMI and NSTEMI ECG; Differential diagnosis of major chest disorders with chest pain; GRACE score; Clinical forms of ischemic heart disease; Medication of acute myocardial infarction.
8. Management of arrhythmias in outpatient care; Atrial fibrillation; CHA2DS2–VASc score; Supraventricular arrhythmias and malignant ventricular arrhythmias; Bradyarrhythmias. Practical lessons:
9. Invasive cardiology; Indications and implementation of percutaneous coronary intervention; Types of stents; Transcatheter aortic valve implantation.
10. Non-invasive cardiac imaging; cardiac echo, MRI and CT scans; Indications and procedure of these tests; Vulnerable plaque.
11. Electrophysiology; Indications for pacemaker implantation; Types of pacemakers; Indications for electrophysiological examination; Arrhythmia ablation procedures.
12. Vascular surgery in the operating room
13. Cardiac Surgery in the operating room
14. Intervention laboratory practice
15. Practical examination
Type of examination:

Practical exam and colloquium: test and theoretical exam.

Exam topics:

1. Diastolic heart murmurs. Heart sounds.
2. Systolic heart murmurs. Heart sounds.
4. Dilated cardiomyopathy.
5. Hypertrophic cardiomyopathy.
6. Acute heart failure, cardiogenic shock - etiology, symptoms, diagnostics.
8. Chronic heart failure - etiology, symptoms, diagnostics.
10. Infective Endocarditis.
11. Pericarditis, pericardial effusion.
15. Hypertension I. Etiology, diagnosis.
16. Hypertension II. Treatment. Hypertensive Heart Disease.
17. Anticoagulant treatment and indications.
18. Anti-platelet treatment and indications.
19. Manifestations and evaluation of Ischemic Heart Disease.
20. Angina pectoris.
22. Non ST segment elevation Acute Coronary Syndrome II. Treatment.
23. ST segment elevation Acute Coronary Syndrome I. Etiology, pathomechanism, diagnosis.
24. ST segment elevation Acute Coronary Syndrome II. Treatment.
26. Percutaneous coronary revascularization. (PCI)
28. Pulmonary embolism.
29. Bradyarrhythmias.
30. Supraventricular arrhythmias.
31. Atrial Fibrillation.
32. Electrical and pharmacological cardioversion.
33. Ventricular arrhythmias.
34. Ablation treatment of arrhythmias.
35. Pacemaker indications and pacemaker types.
36. ICD and CRT indications, types.
37. Non-coronary structural interventions in cardiology (TAVI, Mitraclip, Left atrial appendage closure, etc.)

2.

2. Treatment of mitral valve stenosis, mitral valve insufficiency.
3. Diagnosis and treatment of aortic dissection.
4. Coronary revascularization: CABG.
5. Treatment of end-stage heart failure with mechanical circulatory support.
9. Symptoms and physical and visual diagnostic examination of peripheral arterial disease of the lower extremities - diabetic foot.
10. Symptoms and physical and visual diagnosis of chronic venous insufficiency, treatment options.
13. Diseases, symptoms, diagnosis and treatment options of supravalvular branches and upper extremity arteries.
14. Aortic and peripheral aneurysms.
16. Vascular imaging diagnostics (UH, CT, MRI) - Vascular malformations.
17. Renal and visceral occlusive and aneurysmal diseases - artificial arteriovenous fistulas, haemodialysis access.
18. Endovascular interventions in venous diseases.
20. Acute cardiac surgery.

Recommended printed, electronic and online notes, textbooks, guides and literature (html address in case of online material) can be used to learn the course material:

Students are strongly recommended to visit regularly our website where updated information are available: http://vszek.semmelweis.hu/education-cardiology
SURGERY I-II.

Department of Surgery, Transplantation and Gastroenterology

Tutors:
Dr. Pekli Damján
Dr. Gábor Telkes

Lectures (3 hours per week)
- Definitions, indications and types of surgery, surgical techniques, perioperative treatment
- Emergency surgery
- Surgical Site Infection
- Hernias
- HPB surgery (liver-biliary tract)
- HPB surgery (pancreas I-II)
- Endocrine surgery
- Breast surgery
- IBD, Diverticulitis
- Proctology
- Minimal Invasive Surgery
- Malignant diseases of the small- and large intestine
- Surgery of the Upper GI
- Transplantation

After all the lectures we have a case report/case discussion about a real case at the department. (11x)

Practice (3 hours per week)
All in wards (bedside practice) and the operation theatre:
- Investigate of surgical patients
- Method of physical examinations.
- Evaluation of the findings.
- Visiting the operation theatre.
- Visiting the intensive care unit
- Wound treatment, dressings
- Participation in the work of the surgical ambulance
- Surgical administration
- Postoperative treatment, medication
- Endoscopy

Form of EXAM:
Oral exam
TRAUMATOLOGY

Department of Traumatology
Type of subject: Mandatory
Code: AOKTRA687_1A
credit points: 3
Head of Department: Prof. Dr. Hangody László

Number of lessons per week: 44* lecture: 18* practical course: 74*
The ratio between lectures and practices may also vary, depending on the institute’s subspeciality.

On the department’s website, which is constantly updated, students can access all the information, documents to download, use and submit in relation to the practice.
https://semmelweis.hu/traumatologia/foreign-students/medicine-english-language-programme/

Objectives of the subject, its place in the medical curriculum:
Traumatology as a specialty deals with the treatment of injured patients, independent of the injured organ, patient’s age or previous diseases. In developed countries, the 4-5th leading cause of death is injury, while in the actively working population, the rate of death is even higher. Morbidity in children and in the elderly is also high. Traumatology treatment for the most part deals with extremity surgery in correlation to orthopedics, however cranial, thoracal, abdominal, spinal and pelvic injuries as well as the treatment of polytraumatized patients also belong to the field of trauma care.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Uzsoki Hospital, Department of Orthopedics-Traumatology, Conference room (ground floor)
1145 Budapest, Uzsoki street 29-41.

Dr. Manninger Jenő Traumatology Center, Conference room (8th floor)
1081 Budapest, Fiumei street 17.

Successful completion of the subject results in the acquisition of the following competencies:
During practices, students will have the opportunity to learn the following: physical examination of injured patients, bandaging, suturing, casting techniques, and the uses of orthesises and splints. Students will have the opportunity to enter the operating theater, scrubbing, and become aquainted with special instruments used in Traumatology. Consultation of typical and the more frequent trauma cases, radiologic diagnostics, as well as videos in the operative theater are also part of the curriculum. During on duty shifts, students will have an opportunity to examine and participate in the trauma care of patients under supervision.

Course prerequisites:
Pathology II., Basic Surgical Techniques

Detailed thematic of the course:
Lectures
Traumatology lectures are available on Semmelweis University’s E-learning portal (moodle)
2. Fracture management. Bone healing
3. Immediate care and major accidents. (Multiple injuries, shock, major disasters)
4. Thoracic and abdominal trauma
6. Pelvic injuries. Femoral fractures (proximal femur and shaft)
7. Fractures of the tibia and fibula. Injuries of the ankle, talus, calcaneus and the foot
8. Knee Injuries. Cartilage repair, ligament surgeries
9. Injuries of the upper extremity
10. Hand injuries
11. Pediatric trauma
<table>
<thead>
<tr>
<th>Time</th>
<th>08:30 – 09:15</th>
<th>09:15 – 09:30</th>
<th>09:30 – 10:15</th>
<th>10:15 – 10:30</th>
<th>10:30 – 11:45</th>
<th>11:45 – 12:30</th>
<th>12:30 – 16:00 with 30 minutes break</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 – Monday</td>
<td>Introduction to the Traumatology department</td>
<td>Break</td>
<td>Assignment homework</td>
<td>Break</td>
<td>Polytrauma/scenario</td>
<td>Lunch break</td>
<td>ER, Operating theater 1-3, Operating theater 5-6, Ward/OPD</td>
</tr>
<tr>
<td></td>
<td>Cast splinting/Wound dressing</td>
<td></td>
<td>Trauma implants</td>
<td></td>
<td>Chest/abdomen/pelvic trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trauma radiographs demonstration</td>
<td></td>
<td>Trauma implants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td></td>
</tr>
<tr>
<td>Day 2 – Tuesday</td>
<td>Femoral fractures</td>
<td>Break</td>
<td>Knee fractures</td>
<td>Break</td>
<td>Fractures of the tibia ankle and the foot</td>
<td>Lunch break</td>
<td>ER, Operating theater 1-3, Operating theater 5-6, Ward/OPD</td>
</tr>
<tr>
<td></td>
<td>Injuries of hands (wrists), forearms</td>
<td></td>
<td>Injuries of the upper extremity</td>
<td></td>
<td>Postoperative infections, septic complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5 – Friday</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td>Free Day</td>
<td></td>
</tr>
</tbody>
</table>

The Traumatology Department reserves the right to make changes to the order of practices depending on which institute the student attends the practice at.

Requirements for participation in classes and the possibility to make up for absences:
According to the SZMSZ 17§ 7. regulation of Semmelweis University, the attendance of minimum 75% of seminars and practices is necessary.

Requirements for signature:
Attendance of consultations and practices or repeating of unattended practices and the written exam result is required. We cannot verify the semester, or allow the student to take the midterm if the student did not attend at least 75% of practices during the semester.
Only those students will be allowed to take the exam, who have presented their trauma topic to the group and tutor.

Type of examination:
Written MCQ electronic exam (single answer and multiple choice test), on Semmelweis University’s E-learning portal (moodle)

Requirements of the examination:
The knowledge of the given textbook, electronic lecture and practice material.

Method and type of evaluation:
Written electronic exam (single answer and multiple choice test).
Percentage grading, not Bell curve

Possibilities for exam retake:
Retaking of the written electronic exam (single answer and multiple choice test), on Semmelweis University’s E-learning portal (moodle)
Students may take the exam a total of maximum 3 times.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Name of Textbook:
The Trauma Manual:
TRAUMA AND ACUTE CARE SURGERY
Third edition

Editors:
Andrew B. Peitzman
Michael Rhodes
C. William Schwab
Donald M. Yealy
Timothy C. Fabian

Publisher:
Wolters Kluwer / Lippincott Williams & Wilkins

Internet
The lecture material can be downloaded from Semmelweis University’s E-learning portal https://itc.semmelweis.hu/moodle/
OTORHINOLARYNGOLOGY

Tutor: Dr. Beáta Bencsik For updated information please contact the department.

<table>
<thead>
<tr>
<th>Lecture (1 hour per week)</th>
<th>Practice (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute and chronic otitis media I. (etiology, diagnosis, pathology).</td>
<td>Diagnostical methods of the ear.</td>
</tr>
<tr>
<td>Acute and chronic otitis media II. (Complications and therapy)</td>
<td>Evaluation of different types of perforations of the tympanic membrane. Cadaver bone practice.</td>
</tr>
<tr>
<td>Physiology and lesions of the vestibular system.</td>
<td>Examination of the vestibular system. ENG. CCPG.</td>
</tr>
<tr>
<td>Neurological and ophthalmological aspects of ear diseases. Prevention and rehabilitation.</td>
<td>Evaluation of different otological cases.</td>
</tr>
<tr>
<td>Clinical anatomy, physiology and diseases of the pharynx.</td>
<td>Advanced examination of the pharynx. Directoscopy, fiberoscopy.</td>
</tr>
<tr>
<td>Dyspnoe and suffocation with upper airway origin. Conicotomy and tracheotomy.</td>
<td>Emergency management of suffocation.</td>
</tr>
</tbody>
</table>
ORAL SURGERY AND DENTISTRY

Course Leader: Dr. Zsolt Németh med. habil. PhD
Department of Oro-Maxillofacial Surgery and Stomatology
Dental Training Centre of the Faculty of Dentistry
Department of Community Dentistry

Credit value: 2

Number of lessons per week: 28 hours lecture: 0 practical course: 20 hours seminar: 8 hours
Subject type: compulsory course
Subject code: AOKSZB690_1A

Objectives of the subject, its place in the medical curriculum:
The main aim of the „Oral surgery and Dentistry” course for 4th year medical students is to introduce the most specific symptoms, recognition and treatment of the most common dental, oral and maxillofacial diseases. In addition, the knowledge of various specialisations of dentistry is important to medical students because later, as specialized medical doctors - regardless of their specialization – they will find numerous correlations and these skills will prove to be essential in case of many borderline diseases and to face diagnostic difficulties. During the course students learn about the method of oral examination and stomato-oncological screening. The practice focuses on the oral and dental contexts of disciplines of medicine. It is extremely important for future medical doctors to be aware of the symptoms of systemic diseases in the oral cavity and know which dental and oral diseases may lead to systemic diseases.

Successful completion of the subject results in the acquisition of the following competencies:
As practicing physicians, they will be in the possession of modern theoretical and practical skills and will be able to perform medical practice on their own and build correct human relationships with their patients and family members as well as other health professionals. It is important that they will receive a comprehensive picture of the concept of oral health. As practicing physicians, they will be able to examine the oral cavity and the head and neck region, and interpret the lesions and altered functions, initiate the diagnostic and therapeutic process. In accordance with the preventive approach that is characteristic for today’s medicine, they will be able to prevent and detect teeth (oral) diseases with systemic effect in their early stage.

Course prerequisites:
Pathology II.
Basic surgical techniques

Number of students required for the course (minimum, maximum) and method of selecting students:
Based on registration through the Neptun system.

How to apply for the course:
through the Neptun system

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)
The course is educated in block system; the duration of the course is 1 week.
The English language practices will take place according to the schedule of the blocked education in 2022/2023 academic year.
The courses take place in the building of Department of Oro-Maxillofacial Surgery and Stomatology and in the Dental Training Centre of the Faculty of Dentistry during the educational period (according to the schedule of academic year in Faculty of Dentistry).
The courses take place in the building of Department of Oro-Maxillofacial Surgery and Stomatology and in the Department of Community Dentistry of the Semmelweis University, Faculty of Dentistry during the exam period (according to the schedule of academic year in Faculty of Dentistry).
The schedule of the one-week block:

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>from 8:00 am to 1:00 pm</td>
<td>education</td>
<td>education</td>
<td>education</td>
<td>seminar</td>
<td></td>
</tr>
<tr>
<td>from 1:00 pm to 2:00 pm</td>
<td>lunch break</td>
<td>lunch break</td>
<td>lunch break</td>
<td>day off (obligatory)</td>
<td></td>
</tr>
<tr>
<td>from 2:00 pm to 3:00 pm</td>
<td>education</td>
<td>education</td>
<td>education</td>
<td>exam</td>
<td></td>
</tr>
</tbody>
</table>

About 18-25 students attends to the clinics weekly. The students are divided into six groups (3-4 students per little group) as the practice are taught by six disciplines of Faculty of Dentistry. The small groups of students (3-4 person) take part on practice on Monday, Tuesday and Wednesday. The practices and seminar are held in educational period (according to the schedule of academic year in Faculty of Dentistry) in the Department of Oro-Maxillofacial Surgery and Stomatology and at the Clinics of Dental Training Centre of the Faculty of Dentistry, in the exam period (according to the schedule of academic year in Faculty of Dentistry) in the Department of Oro-Maxillofacial Surgery and the Department of Community Dentistry.

The schedule of the small (3-4 person) student groups in the educational period (according to the schedule of academic year in Faculty of Dentistry):

A – Department of Conservative Dentistry
B – Department of Prosthodontics
C – Department of Pediatric Dentistry and Orthodontics
D – Department of Periodontology
E – Department of Oral Diagnostics
F – Department of Oro-Maxillofacial Surgery and Stomatology

The schedule of the small (3-4 person) student groups in the exam period (according to the schedule of the academic year in the Faculty of Dentistry):

A – Department of Community Dentistry
B – Department of Community Dentistry
C – Department of Community Dentistry
D – Department of Community Dentistry
E – Department of Community Dentistry
F – Department of Oro-Maxillofacial Surgery and Stomatology
The Departments and Clinics are involved in education:
Department of Oro-Maxillofacial Surgery and Stomatology (Faculty of Dentistry, educational period and exam period)
Department of Conservative Dentistry (Faculty of Dentistry, educational period)
Department of Prosthodontics (Faculty of Dentistry, educational period)
Department of Periodontology (Faculty of Dentistry, educational period)
Department of Pediatric Dentistry and Orthodontics (Faculty of Dentistry, educational period)
Department of Oral Diagnostics (Faculty of Dentistry, educational period)
Department of Community Dentistry (Faculty of Dentistry, exam period)

The teachers/instructors of Clinics and Departments are involved in education:
Department of Oro-Maxillofacial Surgery and Stomatology
Sándor Bogdán, Dr., Mihály Vaszilkó Dr., Tamás Huszár Dr., Iván Decker Dr., Péter Barabás Dr., Gergely Csókay Dr., Zsófia Somogyi Dr., Tamás Würsching Dr., Gábor Pintér Dr., Szófia Szantéli Dr., Péter Lillik Dr., Ákos Dora Dr., Lőrincz Zatik Dr. Anita Győrffy Dr., Zsolt Németh Dr.

Department of Conservative Dentistry
Sarolta Pozsgay Dr., Karolina Kőműves Dr., Kinga Sárdy Dr. Coordinator: Andrea Demeter Dr., Zsuzsanna Baráth

Department of Prosthodontics
Máté Jász Dr.

Department of Periodontology
Orsolya Láng Dr., Fanni Bolya – Orosz Dr., Bernát Keglevich Dr., László Márk Czumbel Dr.

Department of Pediatric Dentistry and Orthodontics
Violetta Szabó Dr., Réka Sklánicz Dr., Réka Macsali Dr., Dr., Anna Répási – Moldovan Dr., Adrienn Auth Dr., István Simon Dr., Réka Bálint Dr., Gergely Balaton Dr., Noémi Rózsa Dr., Miklós Kaán Dr., Gergely Kaán Dr., Dorottya Bányai Dr., Lili Heckenast Dr., Bálint Nemes Dr., Levente Szegedi Dr., Stefánia Radó Dr.

Department of Oral Diagnostics
Szabolcs Gyulai-Gaál Dr., László Simonffy Dr., Éva Bartolák Dr., Fruzsina Gyékiczki Dr.,

Department of Community Dentistry
Gergely Oláh Dr., Márk Répási Dr., Levente Palásti Dr.
Topics of each sub-practices:

Maxillofacial and dentoalveolar surgery:

Conservative dentistry:

Prosthodontics:
Indications and contraindications of prosthodontics treatments. Making prosthodontic treatment plan: when and which type, fixed or removable and implant retained prosthetic appliances etc. Demonstration of the most frequently used fixed and removable prosthetic appliances emphasizing which types must be removed from the oral cavity of an unconscious patient. The significance of the control and care of patients after prosthetic treatment. Examination of the temporomandibular joint, its dysfunction (TMD), diagnosis and conservative treatment options. The clinical team of treating TMD patients. Detection and treatment of early and late outcome of complete endentulousness.

Periodontology:
Survey of the patient’s oral hygiene and setting professional oral hygiene. Examination of the oral mucosa and diagnosis. Opportunity to assist in subgingival depuration (in non-surgical pocket treatment) and surgical periodontic procedures.

Pediatric Dentistry and Orthodontics:
Dental examination in childhood, medical and dental history, dental screening. Opportunity to assist in paedodontic procedures e.g. sealent application, primary and permanent tooth filling, primary tooth extraction; alternative solutions to treatment of childhood caries. Characteristics of primary, mixed and permanent dentition. Difficulties and emergencies in paedodontics. Scanning and eliminating focal infections. Oral manifestations of childhood infections. Use of anaesthetics and drugs in childhood. The connection between paedodontics-orthodontics and other dentistry specialties. Opportunity to assist in activation of removable and fix orthodontic appliances. The most frequently used orthodontic appliances.

Oral diagnostics:
More specialties contain similar course topics:

Emergency cases and its treatments, the importance of prevention and its connection of medical specialties. Dental and dentoalveolar outpatient department connection to maxillofacial and otolaryngology departments work. Gerostomatology, Dental infectology.

The students (with the help of their tutor) are involved mainly in patient examination, elaborate and discussion of diagnostic-therapeutic plans. Related to the anamnesis and patient examination the students will discuss the general medical and interdisciplinary aspects of the given symptoms. In case of every examined patient the symptoms, conditions, diagnostic and treatment options in dental co-disciplines will be discussed. An important element of the oral surgery and dentistry education is that the tutor demonstrates the possible relationship of the symptom or condition to general medical practice.

The study materials of practices and other teaching aids related to the course are available to students on E-learning/Moodle interface.

Students, who have been studied in a given week, will take an online seminar on Friday mornings between 8.00 and 13.00 for summarizing what they have learned during the week. The students will take a written exam on the E-learning platform between 14.00 and 15.00 in the afternoon. It is possible to repeat/replace the exam by previous arrangement, following the rules of Study and Examination Regulations.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!).

Possible overlaps of themes:
- Cleft lip and cleft palate – Pediatric surgery
- Sinus illnesses, head and neck cancers – Otorhinolaryngology
- Allergy, mucosa – skin diseases – Dermatology, Internal Medicine
- Focal diseases – Internal medicine, Dermatology, Rheumatology
- Hemorrhagic patients’ care – Hematology
- Head and neck medical imaging – Radiology
- Interventions in general anesthesia – Anesthesiology
- Transfusion – 2 week transfusion course
- Sepsis – Intensive Therapy, Infectology, Microbiology
- Oncologic patients’ care – Oncology, Oncoradiology
- Dental, oral surgical care in elder patients – Gerontology
- Injuries of teeth, maxillofacial bone and soft tissue – Traumatology
- Facial pain – Neurology
- Orbital diseases due to infections and traumatologic causes – Traumatology, Ophthalmology
- Examination of tissue from orofacial area – Pathology

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)
None

Requirements for participation in classes and the possibility to make up for absences:
At least 75% participation is obligatory of the practices, according to the Study and Exam Policy. The replacement of practices is available at the time of same language group by priori arrangement (depending on the student’s number).

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
During the short moduls of education there will be no exams. All through the interactive practices and consultations it is enabled to assess the students’ knowledge and the usage of the information which is provided, available.

Requirements for signature:
At least 75% participation.
Type of examination:
Written test exam on E-learning interface.

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)
Written test exam on E-learning according to the practices. The study materials of practices are available for student on E-learning interface. The test questions (simple choice – 1 correct answer from 4 options) are made up by the Departments and Clinics participated in the education.

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
Test exam:
40-45 points Excellent, 36-39 points Good, 31-35 points Average, 27-30 points Fair, 0-26 points Unsatisfactory

How to register for the examination?
On Neptun system.

Possibilities for exam retake:
According to the Study and Exam Policy.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The study materials are available for students on E-learning interface: https://itc.semmelweis.hu/moodle/
Students can find more study materials, additional resources, notes, textbooks and literature links on the website of clinics and departments participated in education.
DERMATOLOGY

Department of Dermatology-Venerology and Dermatooncology

Head of the Department: Péter Holló, M.D., Ph.D., Professor of Dermatology
Tutor: Kende Lőrincz M.D., Ph.D., Assistant Professor of Dermatology

Credits: 4

Lectures: 2 hours (90min) /week; practices: 8 hours (8x45min or 4x90min) /day

At the first day’s lesson medical students should participate a comprehensive introductory lecture. Afterwards the focus is on the practical education of Dermatology. We hold small group special sessions – e.g. problem-based seminars and in-/outpatient patient contact practices each day during the block.

Objectives of the course:

Learning the morphology, structure, physiology, and general pathology of the skin. Basics of the skin immune system, dermato-allergology and -immunology.
Symptoms, diagnostics, and management of the following conditions: Bacterial, viral, and fungal infections of the skin. Sexually transmitted diseases infections (STDs). Autoimmune connective tissue diseases, bullous skin disorders and vascular diseases. Inflammatory dermatoses as eczemas, atopic dermatitis, psoriasis, hidradenitis suppurativa etc. Dermato-oncology and dermato-surgery. Skin symptoms of internal diseases. Basic principles of topical, systemic treatments and adverse drug reactions.

Purpose of the training:

a. The main goal is the transfer of knowledge for use in general medical practice regarding aetiopathogenesis, diagnostics and treatment of skin diseases.

b. Problem-oriented assessment of skin symptoms and their placement in the context of general medicine.

Half of the fourth-year students take the subject in the first semester, the other half in the second semester in form of block rotations. The curriculum contains the following topics discussed as problem-based seminars: anatomy and functions of the skin, dermatoinfectology, oncodermatology, dermatoscopy, atopic dermatitis, urticaria and eczema, drug eruptions, bullous diseases, allergic skin diseases, autoimmune skin disorders, psoriasis, sexually transmitted infections, pathology of the skin.
During practices students examine patients, master the description and evaluation of symptoms, dermatological treatment options.

Important notes: All preclinical modules are required. Registration in the Neptun system is imperative at the beginning of the semester.

Attendance of the lectures and practices is compulsory. Absence from 25% of the seminars or practices is accepted.
Each student should attend the seminars and practices according to the block schedule, and his presence is confirmed by the signature of the lecturer.
In case of absence attendance at the practice of another teacher’s lesson is accepted, but the deputy teacher’s signature is required.

Semester requirement: Optional: at the end of block a competition for clinical examination (a written quiz with projected clinical cases) is announced. The best three students/block are dispensed from taking the practical part of the examination. Sign up in the Neptun system is imperative.

Evaluation: Practical part (clinical examination and discussion of one patient) and theoretical part with randomly selected three main topics compose the semi-final examination.

Sign up and modifying exam: Via Neptun.

Absence from the exam: Only an official medical certificate is accepted within 3 working days.
PULMONOLOGY AND THORACIC SURGERY

Department of Pulmonology
Tömő str. 25-29., Budapest, Hungary 1083
http://semmelweis.hu/pulmonologia/english/

Course director: Prof. Dr. Veronika Muller
Course tutor: Dr. Gabor Horvath

Subject code: AOKPUL751_1A
Credits: 4
Hours: 56 hours/3-week course

Lectures (18 hours)
• Lung cancer
• Chronic obstructive pulmonary disease
• Pneumonia. Tuberculosis
• Respiratory insufficiency. Non-invasive mechanical ventilation
• Bronchial asthma
• Pulmonary rehabilitation. Smoking cessation
• Lung transplantation. Cystic fibrosis
• Pulmonary embolism
• Sleep related breathing disorders
• Chest surgery: lung cancer, pneumothorax, pleural effusion, lung transplantation
Practices (35 hours)

Practical demonstrations/laboratory visits:
- Lung function measurement laboratory techniques
- Pulmonary diagnostics
- Non-invasive ventilation methods
- Oxygen therapy methods
- Inhalation therapy methods
- Pulmonary hypertension

Interactive demonstrations/skill development:
- Bronchology/skill laboratory examinations

- Non-invasive ventilation patient care
- Allergology tests
- Sleep laboratory tools/methods
- Pulmonary rehabilitation procedures
- Chest drainage

General/specific patient examinations:
- Pulmonary dept.
- Pulmonary-oncology dept.
- Transplantation dept.
- Chest surgery dept.

Attendance: lectures and practices are compulsory. Absence hours less than 25% of total are accepted.

Exam type: oral
Exam sign up: Neptun system

Textbook:

For updated information please contact the department.
Department of Thoracic surgery

Ráth György str.7-9., Budapest, Hungary 1122
https://semmelweis.hu/mellkassebeszet/education/

Course director: Dr. Rényi-Vámos Ferenc

Lectures (3 hours)
- Surgical aspects of lung cancer
- Emergency chest pathologies:
 - pneumothorax, pleural effusion
 - lung transplantation

Practices (5 hours)
Interactive demonstrations
- Lung cancer case recognition, diagnosis and treatment
- Recognition, diagnosis and treatment of pulmonary metastases
- Recognition, diagnosis and treatment of pleural effusions
- Recognition, diagnosis and treatment of pneumothorax
- Surgical mediation
- Thoracic drainage

General/specific patient examinations:
- Transplant outpatient clinic/department.
- Thoracic surgery outpatient clinic/department

Attendance: lectures and practices are compulsory. Absence hours less than 25% of total are accepted.
Exam type: oral
Exam sign up: Neptun system

Textbook:
ONCOLOGY AND RECONSTRUCTIVE ONCOPLASTIC SURGERY

Department of Oncology and Department of Clinical Oncology

Credits: 3
Total number of hours: 40 lecture: 14 practice: 26 seminar: 0

Course type: obligatory
Academic year: 2020/21 1st semester
Course code: AOKONK752_1M
Name of the person in charge of the subject: Prof. Dr. Polgár Csaba

The aim and place of the teaching of the subject in the curriculum of medical education: To get acquainted with the epidemiology, etiology, biological properties, prevention (primary and secondary prevention), diagnostics and multidisciplinary therapy of cancer diseases, to acquire the complex oncological approach. To get acquainted with the modern treatment of the most common solid tumours (surgical, radiation, chemo-, hormone, immunological and biological therapy) and their results. Understanding the possibilities of oncological reconstructive and oncoplastic surgeries. Early and late side effects of oncology treatments, their possible prevention and treatment. Palliative treatment, analgesia, somatic and mental rehabilitation of oncology patients. Oncological emergencies and their treatment. Defining the role of the practitioner in the prevention, early detection of tumours and in the care and care of cancer patients.

Place of teaching the subject (address of lecture hall, seminar room, etc.):
Semmelweis University Department of Oncology, National Institute of Oncology, Budapest, 1122 Ráth György u. 7-9. Semmelweis University Department of Oncology Department of Clinical Oncology, Budapest, 1083, Tőmő u. 25-29. IV. floor

Successful completion of the subject results in the acquisition of competencies: Acquisition of general oncological knowledge in 4th year medical students, based on preliminary studies, knowledge of the main etiological factors, epidemiology, early detection, diagnosis and 3 main therapeutic modalities of tumours (tumour surgery, radiotherapy, drug treatments) and the main solid tumour type treatment and rehabilitation, including mastering the basics of oncoplastic surgical solutions.

Prerequisite (s) required for the admission or acquisition of the subject: Pharmacology II., Pathology II., Basic Surgical Techniques

Student headcount conditions for starting the course (minimum, maximum), method of selecting students: Based on registration in the NEPTUN system, it is 1/8 of the class

How to apply for the course: In the NEPTUN system

Detailed topics of the subject:

Classroom lectures (14 hours):

Block Day 1:
2. Imaging diagnostics of tumours (45 minutes) (M. Gődény, P. Manninger)
3. Histological and molecular pathological diagnosis of tumours (Szőke J./Tóth E.)
5. Basics of radiotherapy and radiochemotherapy of tumours (Cs. Polgár, J. Lövey, Z. Takácsi-Nagy)
6. Basics of oncological drug treatments (chemo-, hormone, biological and immunotherapy) (Dank M., Rubovszky G.)

Block Day 2:
7. Oncotherapy of head and neck tumours (Takácsi Nagy Z.)
8. Oncotherapy of gastrointestinal tumours (Lövey J.)

Block Day 3:
9. Oncotherapy of gynecological tumours (Polgár Cs., Vízkeleti J.)
10. Complex treatment of breast tumours (Cs. Polgár, N. Mészáros)
Block Day 4:
11. Complex treatment of lung tumours (Lövey J.)
12. Oncotherapy of urological tumours (Ágoston P., Jorgo K.)

Block Day 5:
13. Treatment of central nervous system / bone and soft tissue tumours (Lövey J., Ágoston P.)
14. Oncological emergencies / Oncological rehabilitation and follow-up (Dank M., Szentmártoni Gy.)

Block practices (26 hours):

Block Day 1:
Tumour Diagnosis I: Cytological, Histological, Molecular Pathology Practice (2×45 minutes)

Block Day 2:
Tumour Diagnosis II: Imaging Diagnostic Practice 1. (4×45 minutes; 1 hour mammography / UH, 1 hour CT, 1 hour MRI, 1 hour PET-CT)
Tumour Radiation I: Treatment Planning Practice (2×45 minutes)

Block Day 3:
Tumour surgery (surgical practice) (4×45 minutes)
Oncoteam practice (2×45 minutes)

Block Day 4:
Systemic treatment of tumours I: Chemotherapy, hormone therapy (2×45 minutes)
Systemic treatment of tumours II: Targeted biological and immunotherapy (2×45 minutes)
Systemic treatment of tumours III: Supportation, treatment of side effects (2×45 minutes)

Block Day 5:
Radiation Treatment of Tumours II: Practice of External Radiation Treatment (2×45 minutes)
Tumour radiotherapy III: Brachytherapy practice (2×45 minutes)
Consultation (2×45 minutes)

Other subjects concerning the border issues of the given subject (both compulsory and optional subjects!).
Possible overlaps of themes:

Urology: diagnosis and surgical treatment of urological tumours

Clinical genetics: hereditary tumours

Special study work required for successful completion of the course:
There is no such

Requirements for participation in classes and the possibility to make up for absences:
According to the study and exam regulations, 75% of the classes are compulsory

How to check the acquired knowledge during the diligence period:
During the short period of education available to us, there is no intermediate, formal examination. However, the interactive nature of the practices and consultations allow teachers to test the students’ knowledge and how they use the information available to them. At least 75% participation in classes. Checking each session by keeping a catalogue.

Type of exam:
Oral exam based on a pre-issued line of items.
Exam requirements:
General oncology and radiotherapy line items
1. Etiology of cancer
2. Epidemiology of cancer
3. Screening and early detection of tumours
4. Imaging methods and their role in the treatment of tumours
5. Imaging diagnostics of major tumour groups
6. Histological diagnosis of tumours
7. Molecular pathological diagnosis of tumours
8. Methods of treatment of tumours - surgery
10. Methods of treating tumours - medication
11. Physical, chemical and biological bases of radiation therapy
12. Basic concepts of dosimetry
13. Computer treatment planning, significant volumes in radiation therapy
14. Structure and operating principle of teletherapeutic devices
15. Structure and operating principle of brachytherapy devices
16. Brachytherapy applicators
17. Brachytherapy planning system, imaging devices
18. Interstitial brachytherapy
19. Image Guided Radiation
20. Intensity Modulated Radiation Therapy
21. Stereotaxic Radiotherapy and Radiosurgery
22. Basics of chemotherapy
23. Side effects of chemotherapy
24. Basics of simultaneous radio-chemotherapy
25. Basics of targeted, biological therapy
26. Side effects of targeted, biological therapy
27. Basics of immunotherapy
28. Side effects of immunotherapy
29. Basic elements of oncopharmacology
30. Clinical pharmacology studies in cancer
31. Evaluation of objective clinical response and general condition

Detailed line of oncology and radiotherapy items
1. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of head and neck tumours.
2. Radiation therapy, surgical and pharmacological treatment of head and neck tumours.
3. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of oesophageal tumours.
5. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of gastric tumours.
7. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of colorectal tumours.
8. Surgical and pharmacological treatment of colorectal tumours.
9. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of rectal tumours.
11. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of pancreatic tumours.
13. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of liver tumours.
15. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of cervical tumours.
17. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of uterine tumours.
19. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of vulvar, vaginal and ovarian tumours.
20. Radiation therapy, surgery and systemic treatments for tumours of the vulva, vagina and ovaries.
21. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of penis, testis and kidney tumours.
22. Radiation therapy, surgery and systemic treatment for penile, testicular and kidney tumours.
23. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of prostate and bladder tumours.
25. Surgical and pharmacological treatment of prostate and bladder tumours.
27. Radiation therapy of lung tumours.
29. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of breast tumours.
30. Radiation therapy of breast tumours.
31. Surgical and pharmacological treatment of breast tumours.
32. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of central nervous system tumours.
33. Radiation therapy of central nervous system tumours.
34. Surgical and pharmacological treatment of central nervous system tumours.
35. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of bone tumours.
37. Epidemiology, etiology, histology, staging, symptoms and pre-treatment examination of soft tissue tumours.
38. Radiation therapy, surgery and medication for soft tissue tumours.
40. Radiation treatment of distant metastases and oncological rehabilitation.
41. Principles of the possibilities of reconstructive plastic surgery.
42. Oncoplastic surgery for head and neck tumours.
43. Oncoplastic surgery for breast tumours.

Method and type of rating:
Activity during the block (20%) + oral exam (80%)
Marks: Excellent above 90%, good 80-89%, satisfactory 70-79%, pass 60-69%, fail 60%

How to apply for the exam:
Students apply for the exam exclusively with the help of the NEPTUN unified study system according to the regulations described in the TVSZ (Study and Examination Regulations-SER).

Options for retaking the exam:
According to the Study and Examination Regulations (SER)

Printed, electronic and online notes, textbooks, aids and literature (html title in case of online material) can be used to acquire the study material:
Curriculum: University Note on Oncology and Radiation Therapy (Ed.: Csaba Polgár):
– in Hungarian, English and German in the form of an electronic note
– in Hungarian in print (Semmelweis Publishing House, Budapest, 2018)

Recommended reading:
Basics of oncology (Ed.: Miklós Kásler), university textbook (2nd edition Medicina Könyvkiadó Zrt., Budapest, 2018

For updated information please contact the department.
ORTHOPEDICS

Tutor: Dr. Gergely Holnapy

Lectures

- Subject of Orthopedic Education. Organization.
- Orthopedic care in Hungary. Possibilities of prophylaxis.
- Inflammatory diseases in orthopaedics.
- Anatomy and biomechanics of the spine. Mai posture.
- Spondyloysis and spondylolisthesis. Lumbarization and Sacralization.
- Deformities and diseases of the neck and the upper extremity.
- Madelung deformity. Sudeck dystrophy of the upper extremity.
- Osteoarthritis of the hip. Etiology, pathology, clinical and radiological symptoms.
- Methods of conservative and operative Treatment.
- Diseases of the knee. Recurrent dislocation of the patella.
- Bone disorders. Osteoporosis, osteomalacia, osteogenesis imperfecta, Paget disease.
- Developmental anomalies. Congenital anomalies of the extremities.

Consultation

Practices

- Instruction of correct behaviour in the Hospital and during practicals. Introduction to the Hospital. Therapeutic aims of Orthopedics.
 Methods of the clinical practicals.
- Methodology of learning Orthopedics.
- Fixation, relief of weight bearing, plaster splints, plaster bandages. Examination of patients. Examination of the diseases and deformities of the spine, malposture (Calves deformity, spondylarthrosis).
- Preparation of plaster splints, bandages. Examination of patients with lumbago, ischias syndrome, spondylolysis, spondylolisthesis. Demonstration of Roentgenograms.
- Examination of scoliotic patients. Preparation of plaster and other corsets.
- Examination of patients. Tuberculous spondylitis. Demonstration of Roentgenograms.
- Preparation of plaster beds.
- Examination of patients with congenital dislocation of the hip. Early and late symptoms of this disease. Demonstration of Roentgenograms.
- Examination of patients with congenital dislocation of the hip. Demonstration of the means and methods of therapy and their application.
- Examination of patients with juvenile osteochondritis of the hip. Epiphyseolysis.
- Preparation of hip spica.
- Examination of patients with osteoarthritis of the hip. Examination of contractures of the hip. Demonstration of Roentgenograms.
- Examination of patients with recurrent dislocation of the patella. Osteoarthritis, tuberculous arthritis of the knee. Punction of the knee joint. Methods of fixation of this joint, preparation of plaster bandage.
- Examination of patients with diseases and deformations of the neck, upper extremity. Torticollis, cervicobrachial syndrome, periarthritis of the shoulder, tuberculosis of the shoulder joint. Demonstration of Roentgenograms. Application of the methods of hand and arm fixation.
- Examination of patients with congenital clubfoot and flatfoot. Therapy. Application of the methods of foot and lower leg fixation.
- Demonstration of the methods of gymnastics and physiotherapy.
- The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester.
- Exam: Practical exam at the time of last practice.
- Semester Closing exam registration has to be done through the NEPTUN system for the days set by the department up to the limits.
- Students have to fill -during semester- the trial test on Semmelweis University’s e-learning system. Modifying of exam dates through the NEPTUN system, as it allows.
- Semester Closing exam is a written test. The material for examination is based on the lectures.
- Test results of exam are available within one day.

For updated information please contact the department.
MEDICAL IMAGING

Medical Imaging Centre
Head of Department: Pál MAUROVICH-HORVAT MD, PhD, MPH, DSc
Chief of Undergraduate Education: Zsuzsanna LÉNARD MD PhD

2 week-long course
Lectures: 14 hours per course
Practices: 28 hours per course
Credits: 3

Goals of the undergraduate Medical Imaging education
● to understand the application of radiology technology in an appropriate manner to answer clinical problems or questions
● to learn the differential diagnoses for common radiographic findings
● to understand the role of radiologists as part of the multi-disciplinary patient care team
● to learn when and how to request a medical imaging study

Lectures
● Introduction of imaging modalities
● Basics of ultrasonography
● Basics of X-Ray
● Basics of CT
● Basics of MRI
● Basics of nuclear medicine
● Emergency imaging (abdominal, neuro and thoracic)
● Breast imaging
● Basics of interventional radiology
● Artificial Intelligence

Practices
● Demonstration of imaging methods
● PACS-based image analysis
● Clinical radiology by interactive case reviews
● Thyroid, vascular and abdominal ultrasound skill practice
● Must-see-images
LABORATORY MEDICINE

Department of Laboratory Medicine
Address: H-1089 Budapest, Nagyvárad sq 4. Floor XIV
Phone +36-1-210-0278 ext: 56318

Acting Directors
General: Prof. Barna VÁSÁRHELYI MD., PhD., DSc. (vasarhelyi.barna@med.semmelweis-univ.hu)

Background
The Department of Laboratory Medicine was founded in 2010 with missions on the following areas:
Education. The main goal is the introduction of basic principles of Laboratory Medicine to graduate medical students. The Department also provides post-graduate education for health-care specialists including physicians and clinical biochemists.
Diagnostics. It coordinates laboratory tests at the majority of University and provides professional support for clinical decision making.
Research. The Department actively participates in research studies involving laboratory tests; it also manages research projects of its own.

The Department manages its own PhD program.

Education
The Laboratory Medicine curriculum is based on knowledge acquired during studies of Translational Medicine and Pathophysiology obtained during the third year. The major goal is to present some approach and diagnostic algorithms that are required for efficient test ordering and evaluation of lab test results. As part of education the students obtain information regarding: the procedure that generates laboratory test results (from test ordering to laboratory reports) laboratory tests needed to establish a diagnosis the major aspects that the medical doctors should take into account when they evaluate a laboratory report novel techniques used in general laboratory (with their drawbacks and benefits).
Beyond the basic knowledge integrated into the internal medicine training, real diagnostic problems through life examples are discussed during the practices.

Classroom lectures and practices “Laboratory Medicine” for 4th year medical students
The participation in the tuition is obligatory.
The digital slides are available for the students via our website (www.labmed.usn.hu).
The participation on lectures is highly recommended, since the exam is partly based on them.
The topics of the lectures include the elements of general and practical clinical laboratory.

The areas to be covered by the planned lectures:
1. Introduction in Laboratory Medicine (Specimen collection and processing. Preanalytical variables. To identify the major factors interfering with laboratory tests. Establishment and use of reference values/intervals.)
2. Concepts in Laboratory Medicine (Interpretation of laboratory test results: sensitivity and specificity of a laboratory test, predictive values. Quality control, quality assurance in clinical laboratories.)
3. Laboratory investigations of hematology diseases. (To understand the basic principles of modern hematology analyzers in clinical laboratories.)
4. Laboratory investigations of hemostatic disorders. (Identify the appropriate laboratory tests for evaluation of the bleeding patient and the thrombotic patient.)
5. Laboratory investigations of inflammation and tissue damage. (To understand how cell injury and inflammation can be tracked through plasma markers.)
6. Immunological investigations in laboratory medicine. (Learn the diagnostic tests required to the assessment of autoimmune disorders.)
7. Laboratory enzyme diagnostics
8. Endocrine investigations in laboratory medicine (Understand the laboratory tests used in the diagnosis of the more commonly encountered endocrine disorders.)
9. Molecular genetics investigation in laboratory medicine
10. Therapeutic drug monitoring (To learn when therapeutic drug monitoring is required and how it is performed for commonly monitored drugs. To identify the common drugs of abuse and learn how they are detected.)
11. Laboratory investigations of tumor markers
12. Laboratory investigations of cerebrospinal fluid and ascites, pleural fluid
13. To learn the laboratory tests used near patients (Point of care testing)
14. To learn the rationale for selection of laboratory tests in pediatrics including neonatal screening programs.
The topics of the exercises include some clinical case studies, harmonized with the Internal medicine studies, dealing with the following diagnostic problems:

16. “Sick or not?” screening tests.
17. Hypertensive patient.
18. Obese patient.
19. Diabetic patients.
20. Endocrine patients.
22. Patient with joint complaint.
23. Alcoholic patient.
24. Patients with kidney disorders.
25. Liquid, ion homeostasis disorder.

We also provide consultation and laboratory visit during the semester.

Exam

The exam is a written test. The material for examination is based on the lectures. The questions are prepared by lectures. The exam consists of 50 questions. The students have 60 minutes for writing the test. The test questions include simple choice (one correct answer out of 4 or 5 options). Test results of exam are available within one day.

Evaluation:

- 0-60% = 1 (Failed)
- 61-70% = 2
- 71-80% = 3
- 81-90% = 4
- 91-100% = 5

Exam dates: You will be notified about the dates offered by the Department before the exam period and they will be finalized at the Staff-Student meeting.

Taking examination before the exam period is not allowed.

The sign up procedure is controlled and regulated by the NEPTUN software and the Department cannot interfere with system. The officially signed up student will be scheduled for examination. The list of examinees is completed 2 days before the date of exam; then NEPTUN system automatically closes the sign up list.

Diagnostic profile of the Department

The Central Laboratory at Semmelweis University forms the basis of the Department. It performs more than 400 different tests in the field of clinical chemistry, hematology, hemostasis, serology, endocrinology, therapeutic drug level monitoring and clinical microbiology with an annual number over 3 million. The laboratory is classified as FJ-3 meaning that it provides a 24 hour service for 7 days a week. Laboratory reports are provided through GLIMS lab informatics system integrated to eMedSolution.

Research at the Department

Laboratory tests are performed in the majority of clinical studies and drug research. In order to use the results more efficiently the colleague who is directly involved in performing the lab tests also participates in study design and evaluation. Therefore, clinical laboratories at the University are active partners of researchers and medical doctors. The major research profile of the Institute is to characterize specific patterns of biomarkers predictive for specific disorders. Characteristic examples are the determination of immune phenotype and analysis of kinetic alteration of intracellular analytes with flow cytometry, measurement of cytokine levels with biochips, genomic analyses (genotyping and gene expression arrays). These instruments and the professional knowledge are also available for research purposes. Medical students are welcome to do research in any of the fields listed above.

Useful and updated information about the Institute and the subject of Laboratory Medicine can be found at home page: Semmelweis.hu/laboratorium

For updated information please contact the department.
EMERGENCY MEDICINE and OXYOLOGY

Dept. of Anesthesiology and Intensive Therapy
Division of Emergency Medicine and Oxyology
Tutor: Peter Vass MD, (Tel: +36 1 459-1500/62037, 62038, E-mail: seemgrad@gmail.com)

Compulsory subject: Emergency Medicine and Oxyology (EMO) – program and topics

2 credits

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain syndromes. As long as it hurts you know that you are alive.</td>
<td>Headache, chest and abdominal pain, back pain. The basics of pain management.</td>
</tr>
<tr>
<td>Environmental accidents.</td>
<td>Electrocution, drowning, near-drowning, heat exhaustion, heat stroke, hypothermia. What to do on the scene and in the ED.</td>
</tr>
<tr>
<td>Group of symptoms in emergency</td>
<td>Dyspnoe, vertigo, syncope, nausea and vomiting, diarrhoea, weakness. Allergic reactions.</td>
</tr>
<tr>
<td>Prehospital emergency services as integral parts of emergency care.</td>
<td>First aid, primary emergency systems, levels of rescue, connection of ambulance with hospital care.</td>
</tr>
<tr>
<td>Perfuse it or lose it.</td>
<td>Things you’ve missed from pathophys but will surprise you in acute situations.</td>
</tr>
<tr>
<td>Emergency cardiac care. From the sliding door to the PCI.</td>
<td>Syncope, heart failure, ACS.</td>
</tr>
<tr>
<td>Acute neurological deficit. Time is brain.</td>
<td>Stroke, altered mental states, convulsions.</td>
</tr>
<tr>
<td>Paediatric emergencies. The same but downsized?</td>
<td>The most frequent emergency situations in kids. Special view of paediatric emergency care.</td>
</tr>
<tr>
<td>The severely injured patient. The future: Die Hard 6.</td>
<td>Trauma, burns, compartment syndromes. Integration, teamwork, damage control.</td>
</tr>
<tr>
<td>Massive bleeding. The dynamic approach of coagulopathies.</td>
<td>How to deal with bleeding patients?</td>
</tr>
<tr>
<td>Toxicology. Alle Ding sind Gift- any stuff is a poison. Two steps above earth.</td>
<td>Toxidromes. Aspecific and specific care. Substances of abuse.</td>
</tr>
<tr>
<td>Fever, infections, sepsis. „Blood poisoning” in the 20th century.</td>
<td>Severe heat imbalance, the emergency aspects of sepsis.</td>
</tr>
</tbody>
</table>

Types of practices in Emergency Medicine - Oxyology:

OMV-M-RF-2-NOT-Compulsory (2x45 Min): Monitorising, basics of red flag treatment and team skills. Diagnostic and therapeutic approach of critical ill patient with basic technical and non-technical skills. Basic monitoring technics in treatment of emergency patient during simulation. Presentation and practice during simulations of non-technical skills to make teamwork better. Team member non-technical skills presentation and practice during simulations.
PBL-SBAR-Compulsory: Problem Based Learning SBAR communication practice (2x45 min) Acquaintance and practice of SBAR-communication method in emergency situations. Communication with patient and relatives in critical situations and during end of life care procedure. Communication practice between dispatch and HCP on the scene.

PBL-Triage-Compulsory: Problem Based Learning – Priorisation practice (2x45 min) Basic technics to solve different problems, with prioritisation techniques and the usefulness of different early warning scores. How to organize and prioritize to maintain Patient safety.

Clinical Pharmacology

Tutor: Dr. Pál Riba

Department of Pharmacology and Pharmacotherapy
Total credits: 35
Course Director: Dr. Ferdinandy Péter

Thematic:
In a block system of 5 days, divided into two weeks, 7 hours of practice per day:
All relevant topics are developed with the involvement of clinical experts. The clinical cases prepared in this way (3-5 cases per topic) are presented and processed in an interactive way on a problem-oriented basis. Related to the above is a description of current therapeutic recommendations.

Day 1:
Infectious Diseases Treatment Strategy.
Treatment strategy for respiratory and gastrointestinal diseases

Day 2:
Endocrine Disease Treatment Strategy
Treatment strategy for cardiovascular diseases and metabolic syndrome

Day 3:
Clinical trials and drug registration
Basics of Drug Development
Pharmacovigilance, recognition of adverse drug reactions in clinical practice.
Clinical Addictology

Day 4:
Strategy for the treatment of psychiatric and neurological diseases
Treatment strategy of autoimmune diseases
Clinical Toxicology, Emergency Medicine

Day 5:
Pharmaceutical Formulations and Prescriptions
Individualized pharmacotherapy, special patient populations
Pain Relief

Maximum number of absences is 25 percent of the number of practices in the semester. In the case of absence the student can attend another block class later during the semester.

Certifying absence from the lesson:
Medical certificate is accepted

Exam type:
Written multiple choice test, evaluation with the five-mark scale (excellent=5, good=4, intermediate=3, pass=2, failure=1)

Exam sign up:
Registration has to be done through the NEPTUN system for the days set by the department.
Modifying:
Through the NEPTUN system, as it allows. Students are allowed to take the exam on an exam day of another block.

Certifying absence from the exam:
Medical certificate is accepted.

Literature:
2 Materials discussed during practices: http://semmelweis.hu/pharmacology, Moodle (https://itc.semmelweis.hu)
FAMILY MEDICINE

Department of Family Medicine
H- 1085 Budapest, Stáhly u. 7-9. Phone: +36-1-355-8530
Head of the Department: Dr. Péter Torzsa M.D. Ph.D.

Credits: 2
Total number of hours: 20 lectures: 8 practices:16
Type of the course (mandatory/elective): mandatory

Academic year: 2022/2023
Code of the course: AOKCSA695_1A

Aim of the subject and its place in the curriculum:
Health care is based on the family practice system. It’s important for future doctors to get to know the gatekeeping function of family practices. It’s also important to show them on a one-to-one tutoring basis that family practice is an integrating profession. While getting involved in the work of the family practice medical students are introduced to the preventive approach, the ways of how to solve holistic, complex, bio-psycho-social and somatic problems and the differential diagnostics of frequent diseases. The aim is to teach them how to use and apply the basic means of diagnostic and therapeutic procedures and tools, to give them an insight into the most frequent laws and courses of action they may meet, to develop the medical students’ communication skills in practice and to practise how to work with short interventions.

Location of the course (lecture hall, practice room, etc.):
Accredited tutorial practices
The lecture hall of the Department of Family Medicine

Competencies gained upon the successful completion of the subject:
- Preventive approach, screening
- Holistic patient care
- Managing complex bio-psycho-social-health problems
- Frequent chronic illness care
- Differential diagnostics
- How to use basic diagnostic tools on their own and how to assess test results
- Basic health-care-connected legal knowledge

Prerequisite(s) for admission to the subject:
Internal medicine propaedeutics, Pharmacology I, Laboratory medicine

Minimum and maximum number of students registering for the course:
Student selection method in case of oversubscription:
Turn based system.

How to register for the course:
To register for the course in the ‘Neptun’ system

Detailed thematic of the course:
Lectures
- Lectures take place on the first day of the course in an eight-hour period in the following categories:
 - Screening procedures
 - Mood- and sleep disorders
 - Diabetes screening and care
 - Gastrointestinal disease care
 - Emergency care in the practice
 - Cardiovascular prevention, hypertonic patient care
 - Supplementary medicine
Practices
- The subject is taught in blocks. Medical students have five lessons in the family practice on one-to-one tutoring basis on the second and the fourth day plus a three-lesson long case discussion with a practical and differential diagnostic approach.
- During the training session in the family practice medical students will get to know and acquire
 - the possible forms of prevention
 - chronic illness care
 - acute illness care
 - the managing of complex bio-psycho-social problems
 - how to use the available diagnostic and therapeutic devices and tools

The subject of the case discussion includes the most frequent problems in basic care and provides an opportunity to discuss the diagnostic, differential diagnostic and therapeutic ways and possibilities in the following topics in an interactive way:
Screening procedures
- Complex cardiovascular/metabolic diseases
- Frequent, serious communicable diseases
- Patients with musculoskeletal diseases that have a strong negative impact on their life
- Patients with psycho-social problems

Potential overlap(s) with other subjects:
Internal medicine

Policy regarding the attendance and making up absences:
It's compulsory for the student to attend 75 percent of the training sessions.

Means of assessing the students' progress during the semester:
During training the tutor checks whether the students have acquired the practical and theoretical content of the training. There is no formal assessment.

Requirement for acknowledging the semester (signature): It’s compulsory for the student to attend at least 75 percent of the training sessions.

Type of the examination:
Assessment of how actively the student has participated in the training by the tutor.
Compiling a 3-4,000 character case study based on what students have learnt through the training period in one of the topics given in advance.

Exam requirements:
Compiling a case study about a specific patient based on the following topics:
Patient picked through screening
- A complex cardiovascular/metabolic disease
- Frequent serious communicable disease
- Patient with a musculoskeletal disease that has a strong negative impact on their life.

A case study displaying psycho-social problems

Parts of the presentation of the case:
1. Anamnesis
2. Current complaints
3. An examination plan
4. Examinations
5. Diagnosis
6. Therapy
7. Care
8. Processing and assessing the case based on professional literature
9. Bibliography
Type and method of grading:
Assessment and grading of the course: with a 1 to 5 term mark:
It’s based on the student’s activity through the training assessed by the tutor (40 percent) and the grade of the required case study (60 percent).
Assessment of the case study is based on the following:
Grade 1: failing to hand in the essay on the deadline, the number of characters is under 3,000, the case study is not original, but plagiarism
Grade 2: absence of a required part of the case study, unsophisticated wording, serious professional failure
Grade 3: 2-3 professional or formal mistakes
Grade 4: one not too significant professional mistake
Grade 5: precise and accurate wording in the medical jargon, logical conclusions

How to register for the exam:
Registering for the exam in the ‘Neptun’ system

Opportunities to retake the exam:
In accordance with the Studies and Exams Code.
PHYSICAL EDUCATION VII-VIII.

Practice: 1 hour per week
Credit value: 0
Number of lessons per week: 1
Practical course: 14
Subject type: compulsory course
Subject code: AOTS1009_7A
Name of the course leader: Várszegi Kornélia

Objectives of the subject, its place in the medical curriculum:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behavior.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Gymnasium, Artificial football court, Artificial tennis court
University’s Centre for Physical Education and Sports 1107 Budapest Zágrábi utca 14.

Successful completion of the subject results in the acquisition of the following competencies:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the „beginner swimming” course, one will acquire water-confident swimming skills.

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba
1 x 90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2, 4 x 3 hrs. and 1x 2 hrs. session packages: Hiking 1, Hiking 2.
2x90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball
Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

P.E. Teachers:
Doharné Buczkó Anikó
Farkas Dominika
Kalmus Dániel
Lehel Zsolt
Sótonyiné Hrehuss Nóra
Várszegi Kornélia
Weisz Miklós

Requirements for participation in classes and the possibility to make up for absences:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)

There is no mandatory control during the term.

Requirements for signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate
2. does sports regularly and submits a certificate of association and federation

until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
SUMMER (SURGERY) PRACTICE

Credit point: 2
Total hours: practical: 160
Type of course: compulsory
Responsible for course: Dr. Szijártó Attila
Workplace, contact details: 1st Department of Surgery, phone: +36-1-333-5343
Position: university professor, director
Date and number of habilitation: 2015.06

Aim of the course, its position in the medical curriculum:
The main aim of the fourth semester surgery practical is introduction to the general symptomology, diagnostics, and specifics of therapeutic decisions of surgical conditions. In addition to the basics of surgery, students learn about surgical conditions of the organ systems, their diagnostics and surgical treatment. Our primary task is to teach an approach of cooperation with accompanying specialities, we guide students through the process of outpatient specialist treatment through surgery to postoperative care.

Acquired competences after successfully completing the course:
Education of surgery starts in the 4th year, and it embraces the whole curriculum until the 4th year comprehensive surgery exam, providing the framework of clinical training. During this time our main goal is to blend the knowledge provided by theoretical courses and accompanying clinical specialities with the surgical approach and decision making.

Prerequisite(s) for admission to the course:
- According to the Study and Examination Policy.
- Student enrolment requirements (minimum, maximum), method of student selection:
- Based on registration in the Neptun system.

How to apply for course:
In Neptun system

Detailed syllabus:
The surgery summer practical, based on “block” syllabus education for the 4th year, provides practical knowledge involving students in daily patient care.

Recommended practical activities:
- Examination of acute surgical patient
- Examination of elective surgical patient
- Wound care
- Participation in the work of the surgical outpatient clinic
- Surgery assistance
- Surgery administration
- Postoperative care, medication

Cross-border issues of the given course related to other courses (compulsory and elective). Possible overlaps in curriculum:
- internal medicine – gastroenterology, endocrinology
- oncology
- anaesthesiology and intensive therapy
- radiology

Special study work required to complete the course:
none
Requirements for participation in classes and opportunities to make up for absences:
There is an attendance register for the practical.
According to Chapter 3, Section 17 § 7 of the Organisational and Operational Rules of the Semmelweis University, attendance at min. 75-75% of lectures and practices is compulsory.
Further general information on attendance at lectures and practical can be found in the Studies and Exams Code (Section 17 § 7; 8) of the Semmelweis University.

Examination of acquired knowledge during term:
There is no intermediate exam during the short practical time. The interactive features of the practical and consultations provide an opportunity to continuously assess students’ knowledge.

The criteria for end-of-term signatures:
Attendance at min. 75% of classes.

Type of exam:
Practical exam based on previously defined syllabus

Exam requirements:

Practical exam items:
Knowledge of the below exam items will be tested based on information acquired from literature and practical:
1. What is vital indication?
2. How can free abdominal air be detected by means of percussion?
3. What are the most common complications of thyroid surgery?
4. What is a fundoplication?
5. What can cause dysphagia?
6. With what tissue can the oesophagus be replaced?
7. Draw the Billroth’s gastric resections.
8. List the blood supplying vessels of the stomach.
9. Draw/describe the Calot’s triangle.
10. What are the 3 main signs of cholangitis, what is the name of the triad?
11. What are the surgical indications of a benign liver tumour?
12. What are the blood supplying vessels of the liver?
13. What imaging diagnostic(s) is necessary to diagnose a liver tumour?
14. What are the pillars of the diagnosis of acute pancreatitis?
15. Name the typical symptoms of chronic pancreatitis.
16. Which laboratory parameter indicates obstructive jaundice?
17. What is the Courvoisier sign? What is the Murphy sign?
18. With which surgical process can a caecal tumour be removed?
19. Why is “short” bowel resection the aim in case of a Morbus Crohn?
20. When is a rectum extirpation performed?
21. What is an indirect inguinal hernia?
22. Which is the most common benign breast tumour?
23. What is a sentinel lymph node?
24. What is a Hartmann surgery?
25. What is an R0 resection?
26. Name 3 precancerous signs in surgery.
27. What is a neoadjuvant therapy?
28. What is pseudomembranous colitis?
29. When is nasojejunal feeding applied?
30. Where is the McBurney’s point?
31. What are the indirect signs of acute appendicitis?
32. List the conditions of wound healing.
33. Define the phases of wound healing in chronological order.
34. How can nosocomial infections be prevented?
35. What is the difference between an abscess and a phlegmon?
36. List the inflammatory conditions (min. 3) of the skin and cutaneous annexes.
37. What is a relative indication?
38. What is the difference between a curable and a resectable case/tumour?
39. How is a bite wound and a gunshot wound to be treated?
40. What is the LES?
41. What is diastasis recti?
42. What are (surgical) complications of peptic ulcers?
43. What is the surgical relevance of a Meckel’s diverticulum?
44. What are surgical indications in inflammatory bowel diseases?
45. Which perianal diseases are emergency surgical conditions?
46. What vaccination is necessary in case of a planned splenectomy?
47. What causes haematemesis?
48. What causes haematochezia?
49. What are the 3 groups of ileuses based on aetiology?
50. Which is more critical, urgent: ileus of the small or large intestine?

Method and type of class marks:
Practical test of one exam item

How to apply for the exam:
In Neptun system

Opportunity to repeat the exam:
As described in the Study and Examination Policy

The list of printed, electronic and online notes, textbooks, study aids and literature to be used to learn the curriculum (in case of online sources, html address):
Sebészet Horváth, Örs Péter - Oláh, Attila (editors)
Sebészet (10th edition) Gaál, Csaba (editor)
Sebészeti műtéttan Boros, Mihály (editor)
Littmann Sebészeti műtéttan Horváth, Örs Péter - Kiss, János

ELECTIVE SUBJECTS

Detailed programs see in the 5th year Study Program of Medicine!
CLINICAL MODULE
STUDY PROGRAMME

Fifth Year in the 2022/2023 academic year

4th and 5th Years (7th-10th semesters)

Teaching is done in “clean” blocks: Theory + Practice + Exam. (Practices are taught by “shadowing”)
The time span of each block depends on the credit value of the subjects: 1 to 5 weeks

For example: based on a subject of 2 credits:
• 2 credits × 14 lessons = 28 lessons (1 semester consists of 14 weeks. The number of credits are equal with the lessons in a week)
• Education is provided as 8 lessons in a day: 4 days x 8 lessons = 32 lessons
• the training and the exam must be completed in 2 weeks
• approx. 40 students will be trained by providing 4 days of training and 2 days of exams within 10 working days.

9th and 10th semester

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Medicine (Hematology, Infectology, Immunology, Rheumatology)</td>
<td>2 5,5 7</td>
<td></td>
<td>Internal Medicine I., Laboratory Medicine, Medical Imaging</td>
<td>examination</td>
</tr>
<tr>
<td>Forensic Medicine</td>
<td>16 16 2</td>
<td></td>
<td>Pathology II., Genetics and Genomics, Pharmacology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Obstetrics and Gynecology</td>
<td>2 4 6</td>
<td></td>
<td>Pharmacology II., Medical Imaging, Surgery I-II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>2 6 8</td>
<td></td>
<td>Internal Medicine I., Laboratory Medicine, Medical Imaging</td>
<td>examination</td>
</tr>
<tr>
<td>Urology</td>
<td>1 2 3</td>
<td></td>
<td>Pharmacology II., Surgery I-II.</td>
<td>examination</td>
</tr>
<tr>
<td>Intensive Therapy and Anesthesiology</td>
<td>1,5 2,5 4</td>
<td></td>
<td>Cardiology, Heart Surgery, Angiology, Vascular Surgery, Clinical Pharmacology, Emergency Medicine and Oxylogy</td>
<td>examination</td>
</tr>
<tr>
<td>Neurology and Neurosurgery</td>
<td>4 72 6</td>
<td></td>
<td>Internal Medicine I., Medical Imaging</td>
<td>examination</td>
</tr>
<tr>
<td>Psychiatry and Psychotherapy</td>
<td>2 4 6</td>
<td></td>
<td>Pharmacology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Sports Medicine</td>
<td>0 2 2</td>
<td></td>
<td>Internal Medicine I., Cardiology, Heart Surgery, Angiology, Vascular Surgery</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Genetics</td>
<td>20 8 2</td>
<td></td>
<td>Pharmacology II., Genetics and Genomics, Pathology II.</td>
<td>examination</td>
</tr>
<tr>
<td>course name</td>
<td>hours</td>
<td>credit</td>
<td>prerequisite(s)</td>
<td>examination</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>lecture (h/week)</td>
<td>pratice (h/week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Rehabilitation</td>
<td>0</td>
<td>2</td>
<td>2 Cardiology, Heart Surgery, Angiology, Vascular Surgery, Orthopedics</td>
<td>examination</td>
</tr>
<tr>
<td>Public Health</td>
<td>3</td>
<td>4</td>
<td>7 Cardiology, Heart Surgery, Angiology, Vascular Surgery, Oncology and Plastic Surgery, Medical Statistics, Informatics</td>
<td>examination</td>
</tr>
<tr>
<td>PE IX</td>
<td>0</td>
<td>1</td>
<td>0 PE VIII.</td>
<td>signature</td>
</tr>
<tr>
<td>PE X</td>
<td>0</td>
<td>1</td>
<td>0 PE IX.</td>
<td>signature</td>
</tr>
</tbody>
</table>

LIST OF TEXTBOOKS (The list may change!)

10. Lindsay, Bone, Callender: Neurology and Neurosurgery Illustrated. Churchill Livingstone

Recommended textbooks:

4. Silver, Kempe Bryn and Fulginiti’s Handbook of Pediatrics. Appleton and Lange. ISSN 0440-192
10. Duus: Topical Diagnosis in Neurology. Thieme Medical Publishers
INTERNAL MEDICINE – Hematology, Infectology, Immunology, Rheumatology

Dept of Internal Medicine and Hematology

Tutor: Katalin Keltai, MD

Lecture: 2 hours per week
Practice: 5,5 hours per week
Credit: 7

Internal Medicine II. is taught in a block system. During the 5-week block, students spend 14 days (8 hours/day) in the Department. Theoretical and practical (bedside) classes are taught. Students are assigned into groups for bedside practices, case discussions and consultations that are held in rotation resulting in fewer students learning about a given topic at a time.

According to the topics below, classes are taught also dependent on the available patients.

Hematology

Topic list of the lectures:
- Aplastic anemia. Agranulocytosis. Hemopoetic stem cell transplantation.
- Acute myeloid leukemia. Myelodysplastic syndromes
- Chronic myeloproliferative diseases: CML, myelofibrosis, polycythemia rubra vera, essential thrombocythemia
- Regulation of hemopoesis. Differential diagnosis of anemias
- Thrombocytopenias and thrombocytopathy. Hemophilies
- Increased coagulation (thrombophilies). Disciplines and practice of anticoagulant therapy.
- Plasmacytic dyscrasias. Acute lymphoid leukemia.

Topic list of the practices:
- Neutropenic fever
- Palliative and curative treatment of acute leukemia
- NHL low-grade / NHL high-grade / Hodgkin’s disease
- CLL
- Myelodysplasia
- Bone marrow sampling.

Topic list of the consultations:
- Ph-negative myeloproliferative diseases
- Anemia – differential diagnostics
- Anemia – case based discussion
- CML
- Hemophylia
- Thrombophilia

Infectology

Topic list of the lectures:
- Emergencies in infectology
- Differential diagnosis of fever
- HIV/AIDS
- Multiresistant pathogens, infection control and antimicrobial stewardship
- Fungal infections
- Vaccinations

Topic list of the practices:
- Urinary tract infections
- Airway tract infections
- Skin and soft tissue infections
- Infectological situations in practice (sepsis, meningitis, Lyme, pharyngitis)

Topic list of the consultations:
- Introduction to infectology
- Intraabdominal infections
- Infective endocarditis
- Application of antibiotics in the practice, stewardship
Immunology

Topic list of the lectures:
- HANO
- Primary and secondary immundeficiencies

Topic list of the practices:
- SLE
- Vasculitides
- Rheumatoid arthritis
- Spondylarthropathies
- Gout, arthrosis
- Allergic diseases

Each course is concluded by a practical skill oriented oral exam. During the exam the students are required to answer questions based on the knowledge acquired during practical sessions and by reading the compulsory chapters of the theoretical curriculum, by elaborating on 3 themes of the titles below:

Hematology
1. Investigation of an anemic patient
2. Iron-deficiency anemia
3. Macrocytic anemia
4. Anaemia associated to chronic diseases
5. Hemolytic anemia 6. Aplastic anemia
7. Checking of the coagulation system
8. Evaluation of thrombosis
9. Acquired thrombophilies
10. Antiphospholipid syndrome
11. Hereditary hemophilies (Hemophylia A and B)
12. Von Willebrand disease
13. Anticoagulant therapy (indications, implementations)
14. DIC
15. Investigation of a thrombocytopenic patient
16. Thrombocytosis
17. TTP/HUS

18. ITP
19. Symptomatology of the lymphoproliferative diseases
20. Evaluation of lymphadenopathy
22. Follicular lymphoma
23. Diffuse large B-cell lymphoma
24. Chronic lymphocytic leukemia/ Small lymphocytic lymphoma
25. Myeloma multiplex
26. Hodgkin-lymphoma
27. Symptomatology of myeloproliferative diseases
28. Acute myeloid leukemia
29. Acute lymphoid leukemia
30. Ph-negative myeloproliferative neoplasia (PV, ET, MF)
31. Chronic myeloid leukemia
32. Myelodysplasia syndroma
33. Autologous stem cell transplantation
34. Allogenic stem cell transplantation
Infectology
1. Basic principles of infectology and antimicrobial therapy (infectious disease anamnesis, history and physical examination, targeted, empirical and prophylactic therapy, importance of source control, blood stream infections)
2. Common antibiotics, groups of antibiotics and their clinical use (penicillins, cephalosporins, carbapenems, glycopeptids, metronidazol; bacteriostatic and bactericid antibiotics, expected susceptibility – natural resistance; important factors: host, pharmacokinetics, mechanism of action) penicillinek, cephalosporinok, Semmelweis University Dept of Internal Medicine and Hematology
3. Common antibiotics, groups of antibiotics and their clinical use (lincosamids, macrolids, rifampin, tetracyclins, fosfomycin, nitrofurantoin, fluoroquinolones: bacteriostatic and bactericid antibiotics, expected susceptibility – natural resistance; important factors: host, pharmacokinetics, mechanism of action)
4. FUO – fever of unknown origin
5. Upper respiratory tract infections (sore throat, pharyngitis, otitis media, sinusitis, acute bronchitis)
6. Mononucleosis syndrome

Immunology/rheumatology
1. SLE clinical picture
2. SLE diagnostics and treatment
3. Rheumatoid arthritis clinical picture
4. Rheumatoid arthritis diagnostics and treatment
5. Seronegative spondylarthritides
6. Gout
7. Vasculitis of the small arteries
8. Vasculitis of the middle and great arteries
9. Polycysteroid nodosa
10. Sjögren’s syndrome
11. Autoimmune myopathies
12. Progressive systemic sclerosis
13. Primary and secondary immunodeficiencies
14. Allergy
15. Differential diagnosis of arthritis
OBSTETRICS AND GYNECOLOGY

Dept. of Obstetrics and Gynecology
Tutor: Dr. Gyula Richárd Nagy

Lectures and Practices in blocks

- Normal labor and delivery. Obstetrical examinations.
- Changes in maternal anatomy and physiology during pregnancy.
- Prenatal care. Symptoms and signs of pregnancy.
- Abnormalities of pregnancy.
- Abnormalities of labor and delivery.
- Monitoring of the fetus.
- Hypertensive disorders in pregnancy.
- Premature delivery. Intrauterine growth retardation (IUGR).
- Neonatology.
- Twin pregnancy. Operative delivery.
- Normal and abnormal puerperium.
- Major issues in current obstetrics.

- Gynecological endocrinology. Menstrual disorders.
- Inflammatory diseases in obstetrics and gynecology.
- Sterility, infertility. Assisted reproduction.
- Cervical cancer.
- Tumors of the ovary.
- Tumors of the vulva, vagina and corpus uteri.
- Principles of cancer therapy.
- Endometriosis. Polycistic ovary syndrome (PCOS).
- Genetic Counseling.
- Prenatal genetic diagnosis.
- Fetal anomalies. Dysmorphology.
- Perimenopause.
- Genital prolapse. Urogynecology.
- Vital statistics. Medical legal problems in obstetrics and gynecology.
- Occasionally the topics are interchangeable.
PEDIATRICS

1st Dept. Tutor: Dr. Dóra Krikovszky
2nd Dept. Tutor: Dr. Klára Horváth

Credits: 8
Total duration: 112 hours, lectures: 28 hours, practices: 84 hours
Prerequisites: Internal Medicine I., Laboratory Medicine, Medical Imaging

Aims: To introduce students to the most common diseases of the pediatric population.

Curriculum:

The 5th year Pediatric course is organized in the framework of the new block structure. Students spend 3.5 weeks in our department, 1.5 weeks are reserved for home study and the oral exam.

LECTURES IN PEDIATRICS FOR 5th GRADE MEDICAL STUDENTS

Location:
I. Department of Pediatrics, Budapest VIII, Bokay J. u. 54. I. floor
II. Department of Pediatrics, Budapest IX, Tűzoltó u. 7-9.

1. Introduction to Pediatrics, Growth and development
2. Development, screening, immunisation
3. Pediatric emergencies
4. Pulmonology
5. Neonatology // Cardiology
6. Infectious diseases
7. Gastroenterology, hepatology
8. Nephrology
9. Neurology
10. Endocrinology
11. Surgery // Traumatology
12. Dermatology // Immunology
13. Psychiatry
14. Genetics // Inborn errors of metabolism

Practices

Location:
I. Department of Pediatrics, Budapest VIII, Bokay J. u. 53–54.
II. Department of Pediatrics, Budapest IX, Tűzoltó u. 7-9.

Practices at 1st Department of Pediatrics:
- Physical examination of children
- Communication with families
- Cardiology
- Diabetology
- Emergency
- Gastroenterology
- Hepatology
- Hematology (at 2nd Department)
- Infancy
- Neonatal Intensive Care Unit
- Neonatal surgery
- Nephrology
- Neurology
- Pulmonology
- SKILL (Pediatric Basic Life Support)
- Surgery
Practices at 2nd Department of Pediatrics:

- Physical examination of children
- Pediatric Basic Life Support
- Foreign body airway obstruction
- Rheumatology
- Neurology
- Hematology
- Endocrinology
- Cardiology
- Communication with families
- Gastroenterology
- Oncology
- Surgery
- NICU (at 1st Department of Pediatrics and at the Obstetrics and Gynecology Departments)

Requirements (1st Department):

Attendance: according to Semmelweis University regulations, students may not miss more than 25% of their scheduled sessions (including practices, seminars and lectures). Students will be provided an opportunity to make up missed sessions at the end of the semester. Students should bring their own gown and stethoscopes to the practices.

Examination (1st Department):

Practical exam will be scheduled at the end of the pediatric blocks. Practical exams are not graded. Grades will be given based on the result of the oral exam.

Requirements (2nd Department):

Students should bring their own stethoscopes to the practices. Attendance: students have to attend all practices with making up for all absences according to university regulations. 25% of the lectures and 25% of the consultations can be missed.

Examination (2nd Department): The final grade consists of the average grade of the practical and the oral exams (50-50%), students should pass both parts with a minimum grade of 2. The practical exam is organised to the last day of the block. If the final average is between two grades, we round the final grade towards the mark of the oral exam.

Type of exam: Bedside practical exam and oral exam.

5th year semifinal topic list

1. Definitions in perinatology, gestational and mortality data, birth related concepts
2. Aspects of newborn care, Apgar scoring system
3. Physiologic growth, anthropometric features, normal development from newborn to school age
4. Nutrition and feeding of a healthy infant and child, nutrition and feeding of premature babies, energy needs. Physiologic growth of a healthy infant
5. Newborn and genetic screening, prevention
6. Chromosomal abnormalities
7. Neonatal respiratory adaptation disorders and lung disease
8. Neonatal infections
9. Neonatal jaundice
10. Complications of prematurity (BPD, ROP, NEC, IVH)
11. Sudden infant death syndrome (SIDS), infant mortality, demographic data
12. Neonatal and infant CPR (cardiopulmonary resuscitation)
13. Meconium ileus, intestinal atresia, pyloric stenosis, diaphragmatic hernia
17. Coagulopathies
18. Anaemia: signs and symptoms and evaluation
19. Leukaemia.
21. Signs of sepsis. Management of sepsis in the first few hours
22. Herpes virus infections
23. Measles, rubella, scarlet fever
24. Systemic autoimmune disease
25. Allergic disease in infancy and childhood. Definition of atopy
26. Diseases affecting the ear
27. Rhinitis, adenoiditis, tonsillitis, bronchitis.
28. Pneumonia. Age related most common pathogens
29. Cystic fibrosis.
30. Obstructive bronchitis, asthma bronchiale, acute subglottic laryngitis
31. Alarming signs of CNS diseases. Necessary examinations. Lumbar puncture
32. Inflammatory disease of the nervous system
33. Facial nerve palsy
34. Seizures in childhood. Febrile seizure
35. Diabetes mellitus. Treatment of diabetic ketoacidosis
36. Congenital adrenal hyperplasia
37. Disease of the thyroid gland
38. Endocrine disorders of calcium and phosphate metabolism. Rickets.
39. Growth disorders (short stature, tall stature)
40. Disorders of pubertal growth and sexual maturation
41. Henoch-Schönlein purpura
42. Kawasaki syndrome, MISC.
43. Urinary tract infection. (localization, course of the disease, treatment, complications)
44. Congenital disorders of the kidney and urinary tract
45. Glomerular kidney disease
46. Nephrosis syndrome
47. Cyanotic congenital heart disease
48. Acyanotic congenital heart disease
49. Malabsorption. Celiac disease
50. Cholestatic liver disease in childhood
51. Hepatitis in childhood
52. Most common infectious enteritis
53. Inflammatory bowel disease: ulcerative colitis, Crohn’s disease
54. Alarming signs of abdominal diseases
55. Enuresis. Polyuria and polydipsia
56. Oedema
57. Acid-base homeostasis, treatment of acid-base balance disorders
58. Fever, management of fever, antipyretics

Note concerning the 6th year’s rotations: Only legibly, completely and accurately filled out, institutionally sealed, original acceptance letters are recognized!
PSYCHIATRY, PSYCHOTHERAPY

Semmelweis University, Faculty of General Medicine
Name(s) of the Institute(s) teaching the subject: Department of Psychiatry and Psychotherapy
Name of the subject: Psychiatry, Psychotherapy
Credits: 7 (two semesters)
Total number of hours: 140 (two semesters) lectures: 42 practices:98 seminars: none
Type of the course (mandatory/elective): Mandatory (compulsory)
Academic year: 2022-2023
Code of the course: AOKPSI762_1A
Course director (tutor): Prof. János Réthelyi MD, PhD
Contact details: Department of Psychiatry and Psychotherapy 1083 Budapest Balassa u. 6.
Tel.: 061 210 0336
Position: Head of the department
Date of habilitation and reference number: 24 June 2015, registration number: 05/2015.

Aim of the subject and its place in the curriculum:
The aims of the subject of Psychiatry I-II. is to acquire in-depth knowledge about the diagnostics, symptoms and treatment of psychiatric disorders at the level of a general medical practice. It is expected from students to be able to identify the basic elements of psychopathology and the conditions requiring emergency psychiatric interventions. Furthermore, students’ communication skills are developed in order to be able to examine patients and explore psychiatric conditions independently.

Psychiatry I-II. is taught in the semesters of 9-10 within the curriculum.

Location of the course (lecture hall, practice room, etc.):
The location of Psychiatry lectures and practice session are within the premises of the Department of Psychiatry and Psychotherapy (i.e. Lecture hall and rooms for education)

Competencies gained upon the successful completion of the subject:
- Recording the patient’s history (general, somatic, psychiatric, pharmacological and family history)
- Complex psychiatric examination (assessing the consciousness, perception, orientation, thought, intellect; emotional and memory functions; mood, and psychomotor functions of the patient; assessment of attitude towards examiner, motivation system and personality functions)
- Suicide risk assessment
- Family consultation to uncover the patient’s problems
- Exploration of patients after suicide attempts or in crisis situations.
- Interpretation of the Mini Mental State Examination results
- Indication of psychiatric inpatient treatment
- First steps of emergency psychiatry care
- Identification of different intoxications
- Recognition of somatic disorders underlying psychiatric symptoms
- Management of immediately dangerous behaviours
- Psychoeducation (regarding the disorder, therapy, prodromal signs, patient care)
- Differential diagnosis of psychiatric disorders; making a diagnosis
Prerequisite(s) for admission to the subject:
For Psychiatry, Psychotherapy: Pharmacology and Pharmacotherapy II., Neurology I.

Minimum and maximum number of students registering for the course: We instruct the entire fifth year, therefore, there is no limit on number of subscribing students in the Neptun System.

Student selection method in case of oversubscription:
How to register for the course:
Registration for the course is possible in the Neptun system within the rotations of the block practice system.

Potential overlap(s) with other subjects:
Behavioural sciences, Medical communication, Medical anthropology, Medical sociology, Psychotherapy in medical practice, Pharmacology and pharmacotherapy, Neurology

Special training activities required\(^3\): None.

Policy regarding the attendance and making up absences:
Similar to other subjects, the course is considered to be completed if the absences do not exceed 20% of practice sessions each semester. Practice teachers record absences on an attendance sheet at each practice occasion together with the following data: the ID number of the group, topic of the practice sessions, the demonstrated diagnosis. It is not possible to certify absences. Therefore, making up missing practice time is compulsory either by coming to practice sessions with a different group or performing extra tasks such as writing a case report that is examined and signed by one of our practice teachers. In the case of mass absences because of exceptional cases (i.e. grave disease) the permission of the head of the department is necessary.

Means of assessing the students’ progress during the semester\(^4\): There are not any mid-semester tests or oral reports in Psychiatry but on the last day of the first week of the practice (Thursday) there are three specific questions to be answered in writing during the block practice session.

Requirement for acknowledging the semester (signature):
The semester is acknowledged if the student has actively participated at the practice sessions which cover the theory and practice of examining a patient and case discussions attached to demonstrations. The sheet entitled The Register of Psychiatric Conditions must be downloaded from our website in the fifth year and submitted with the required signatures certifying the observed psychiatric disorders. This sheet of paper must be submitted at the final exam of Psychiatry in the six year.

Type of the examination:
At the end of the first semester there is a semi-final exam, while a practice mark must be acquired at the end of the second semester. The semi-final exam is a written exam containing 50 multiple choice questions. Some of them are related to case vignettes within the body of the test paper.

Exam requirements\(^5\):
The material should be acquired by regular patient examinations during the practice sessions, by studying the e-learning material available also on our website and by studying from the designated text books. Preparation for the semi-final exam includes presence at the lectures, text books and the drafts and PowerPoint presentations of lectures made available for students on the website of the Department of Psychiatry and Psychotherapy.

Type and method of grading\(^6\):
In the first semester, the semi-final exam can be passed by answering a written test of 50 items. An oral semi-final exam is only allowed by permission from the head of the department in the case of subsequently failing two written exams in Psychiatry. In the second semester, a practice mark can be gained by considering the following factors: the students’ performance exhibited within the semester during the prac-
practice sessions, the quality of their written case report submitted to their own practice teacher and the oral performance related to the topics of practice sessions.

How to register for the exam:
Exam registrations can be made in the Neptun system within the time limits permitted by the Rule Book of Study and Exams of Semmelweis University.

Opportunities to retake the exam:
Retake of the semi-final exam are permitted within the boundaries set by the Book of Study and Exams of Semmelweis University. There are two occasions of passing attempts in the form of a written exam. The third attempt to correct the failed exams can be oral.

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):
Text books and lecture materials available on the website should be consulted while preparing for examination:

Detailed thematic of the course:*

Lectures

<table>
<thead>
<tr>
<th>1st week MONDAY</th>
<th>Lecturer</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory lecture: What we teach in psychiatry, curriculum, objectives, exams. The history of psychiatry. Psychiatric epidemiology.</td>
<td>Professor János Réthelyi</td>
<td>in person</td>
</tr>
<tr>
<td>1st week TUESDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture: Classification of mental disorders.</td>
<td>György Szekeres</td>
<td>in person</td>
</tr>
<tr>
<td>1st week WEDNESDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture: Schizophrenia and other psychotic disorders</td>
<td>Professor János Réthelyi/Professor István Bitter</td>
<td>in person</td>
</tr>
<tr>
<td>Lecture: Affective disorders: diagnosis and treatment</td>
<td>Professor Zoltán Rihmer</td>
<td>in person</td>
</tr>
<tr>
<td>1st week FRIDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture: Neurocognitive disorders disorders: diagnosis and treatment. Geriatric Psychiatry</td>
<td>Zoltán Hidasi / Máthé Fullajtár</td>
<td>in person</td>
</tr>
<tr>
<td>Lecture: Emergency psychiatry. Legal and ethical issues in psychiatry . Suicide</td>
<td>Brigitta Baran / Ferenc Ádám Szabó</td>
<td>in person</td>
</tr>
<tr>
<td>2d week MONDAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture: Introduction to psychotherapy. Definition, indications, effects, main trends, basic competencies of psychotherapy</td>
<td>Professor Zsolt Unoka</td>
<td>in person</td>
</tr>
<tr>
<td>Title of the lecture</td>
<td>Lecturer</td>
<td>Mode</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lecture: Stages of motivational interview and behaviour change: addictions, eating</td>
<td>Professor György Purebl</td>
<td>in person</td>
</tr>
<tr>
<td>disorders, lifestyle changes required due to chronic diseases, management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of compliance problems. Sleep disorders: diagnosis and treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture: The cognitive model: anxiety disorders, depression, somatization, sleep</td>
<td>Professor Dóra Perczel-Forintos</td>
<td>recorded</td>
</tr>
<tr>
<td>disorders, psychotherapeutic approach to sexual disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture: Suicide prevention, crisis intervention, aggressive, psychotic, psycho-</td>
<td>Bálint Hajduska-Dér</td>
<td>recorded</td>
</tr>
<tr>
<td>therapeutic approach for patients with personality disorders</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2d week TUESDAY (second part of the rotation)

| Lecture: Neuropsychology, Clinical Psychology (Theoretical Introduction) | Éva Jekkel / Xénia Gonda | in person |
| | | |

2d week WEDNESDAY

Lecture: Pharmacotherapy in psychiatry	Professor István Bitter / Gábor Csukly	in person
Transcultural psychiatry	Gyöngyi Szilágyi	in person
Consultation lecture of the online learning material	lecturer will be appointed later	in person
Lecture: Posttraumatic stress disorder, Somatoform disorders, Somatization and	Professor János Réthelyi	recorded
Conversion disorders, Hypochondriasis		
Lecture: EEG and event related potentials in psychiatry	Pál Czobor	recorded
FORENSIC MEDICINE

Semmelweis University, Faculty of Medicine
Name of the managing institute (and any contributing institutes):
Department of Pathology, Forensic-, and Insurance Medicine
Name of the subject: Forensic Medicine
Credit value: 2
Total number of lessons: 28 lecture: 0 practical course: 10 seminar: 18
Subject type: compulsory course
Academic year: 2022/2023
Subject code: AOKIGS754_1A
Name of the course leader: Dr. Kiss András
His/her workplace, phone number: Department of Pathology, Forensic and Insurance Medicine, phone: 061-215-6921
Position: director
Date and registration number of their habilitation: 30th May 2007, reg. number: 248

Objectives of the subject, its place in the medical curriculum:

Forensic medicine is a science forming a bridge between medicine and law, aiming to communicate medical findings in order to aid jurisdiction. In our course we go beyond morphology and diagnoses, and try to reveal the underlying causes of the current state of a body, through providing a foundation for the understanding of changes, injuries and disease states at the molecular, cellular, tissue, organ, and organism levels.

The purpose of the subject is to achieve the qualities of a medical doctor, within the framework of forensic medicine, and for the students to become (a) independent, (b) critically thinking, (c) able to make decisions, and (d) take further necessary actions, (e) recognize emergency situations and (f) respects the boundaries of their competency.

During this course our goal is to pass over the knowledge substantial in everyday clinical practice, making the main objective of this subject to help acquire the following practical skills:

I. Attain the skillset of on-scene inspection of cadavers, and familiarize with the procedure of processing cases of the deceased.

II. Examining injuries, and injury-patterns in the clinical practice, with the ability to individually evaluate, and professionally document them.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Hegedűs Gyula Room, Harsányi Hall, Autopsy Room, Digital Hystopathology Practice Room, Kenyeres Hall
All premises above are located under our main address, at 93. Úllői street 1091 Budapest.
Successful completion of the subject results in the acquisition of the following competencies:
Successfully completing the subject will result in the attainment of the following practical skills and knowledge:

Sufficient data about basic disease reactions and organ specific reactions so that you can:
- Interpret signs and symptoms appearing in a patient’s history and create a differential diagnosis.

Sufficient knowledge of forensic pathology and histopathology at large so that you can:
- Interpret findings at autopsy
- Interpret reports of forensic pathology
- Intelligently review forensic pathology slides and images with a consulting forensic pathologist

Awareness of the role of autopsy in medicine.

Course prerequisites:
Pathology, Genetics, Pharmacology

Number of students required for the course (minimum, maximum) and method of selecting students:
The announcement of the courses is based upon the orders of the Dean’s Office of General Medicine.

Maximum headcount of the course: 26
Minimum headcount of the course: 10

How to apply for the course:
Applying for the course takes places via the NEPTUN system, regarding the instructions of the Study and Exam Committee (TVSZ) and the Dean’s Office of General Medicine.

Detailed curriculum:
The course is organized in the block-based education system, throughout 40 weeks, in blocks of 2 weeks. Practical classes are preceded by short theoretical preparation sessions, followed by a gradual introduction to the clinically oriented practices, emphasizing the importance of examination of cadavers for every student. During the sessions we organize the students into small groups, challenging them to examine and process cases, while the theoretical preparation classes are held in bigger groups. Regular oral and written contribution of the students (case reports, and independent documentation) is substantial during the course. All sessions are required to contain feedback elements. At the end of the course an oral exam is conducted on the second week (see details below).

Detailed schedule

Week A
Monday (A/I)
- Introduction to Forensic medicine. Violent death and post mortem changes (2 periods – Dr. Almádi Zsófia)
- Types and patterns of injuries (2 periods – Dr. Törő Klára)
- Electrical fatalities, burns and scalds (1 periods – Dr. Németi Balázs)
- DNA analysis (1 periods – Dr. Németi Balázs, Dr. Lászik András)
- Sudden death (number of classes: 1 period – Dr. Bokor János)
- Head trauma (1 period – Dr. Csáki Erzsébet, Dr. Almádi Zsófia)

Tuesday (A/II)
- Autopsy room practice (2 periods – Dr. Marcza Boglárka, Dr. Almádi Zsófia, Dr. Csáki Erzsébet)
- Examination on the scene of death (1 period – Dr. Marcza Boglárka)
- General toxicology (1 period – Szabó-Kócs Tamara)
- Documentation of injuries (2 periods – Dr. Almádi Zsófia)
- The role of histopathology in forensic medicine (1 period – Dr. Hegedüs Panna, Dr. Danics Krisztina)
- Asphyxia and drowning (1 period – Dr. Csellár Lilla, Dr. Törő Klára)
Wednesday (A/III)
- Autopsy room practice (2 periods – Dr. Bokor János, Dr. Németi Balázs, Dr. Misnyovszki Péter)
- Medico-legal aspects of traffic accidents (1 period – Dr. Misnyovszki Péter, Dr. Almádi Zsófia)
- Firearm injuries (1 period – Dr. Misnyovszki Péter, Dr. Almádi Zsófia)
- Identification (2 periods – Dr. Magyar Lóránt)
- External examination practice (2 periods – Dr. Magyar Lóránt, Dr. Marcza Boglárka, Dr. Németi Balázs, Dr. Misnyovszki Péter, Dr. Hegedüs Panna)

Friday (A/IV)
- Autopsy room practice (2 periods – Dr. Magyar Lóránt, Dr. Csellár Lilla, Dr. Danics Krisztina)
- Clinical toxicology, commonly misused drugs (2 periods – Dr. Zacher Gábor)

The names of tutors listed above is given for information purposes only, the actual roster of tutors may change in accordance with the rules for substituting tutors on classes.

Week B
Wednesday
- Oral exam

Friday
- Oral exam

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
- Neurology – head injuries
- Traumatology – injuries of bones and soft tissues
- General practice – examination of cadavers
- Radiology – radiological results as proof
- Gynaecology – sexual offences
- Internal medicine – toxicology

Special study work required to successfully complete the course:
Successfully completing the subject does not require additional instructional occupation.

Requirements for participation in classes and the possibility to make up for absences:
Students are required to be present on 75% of all classes, and thus allowed to miss 7x45 minutes of education, provided that they attend at least one autopsy room practice during their rotation. The names of students listed on the attendance sheet or make up sheet of practices, signed by the appointed instructor of the class classifies as a proof of their verified presence on the session.
Making up for absences can be done by joining other, subsequent groups in which case missed classes must be made up for in accordance with their original topics. Attending another group has to be arranged with the resident educational advisor of the department in advance!
The make-up classes have to be registered and presented to the secretary of the department by 2 days before the exam at latest. Presenting a written certificate of the makeup classes is the responsibility of the students attending the course! If the number of missed classes exceeds 7, and the make-up classes have not been verified, the subject cannot be completed.
The rules above may vary in accordance with rules and regulations due to the pandemic situation.
Methods to assess knowledge acquisition during term time:
No mid-term examination takes place, and homework is not given. Assigned groups all take their exams on the B week of their periods, on the given specific days provided above.

Requirements for signature:
Attendance will be monitored on each class of the course individually and registered on the attendance sheet at the beginning or end of classes. Taking attendance is the responsibility of the tutor.
Students with the required amount of attendances (see segment Requirements for participation in classes and the possibility to make up for absences for more information) will be given signature by the end of the first week of their rotation.

Type of examination:
The subject concludes with an oral exam. Students are required to pick two randomly chosen topics from the list below and talk about them after a brief preparation time.
The preparation time only applies if the exam is held in person.

Requirements of the examination:

List of topics

1. Definition of death. Post mortem changes.
2. The early post-mortem interval.
6. The autopsy.
7. Methods of identification. Identification of decomposed or skeletonized remains.
8. Sudden death of cardiovascular disorders.
9. Sudden death of respiratory and gastrointestinal disorders.
10. Sudden infant death.
15. Head and neck injuries.
16. Spinal, chest and abdominal injuries.
17. Gunshot injuries.
18. Differentiation of accident, suicide or murder in gunshot injuries.
19. Sexual assault: examination requirements, evidential samples and documentation.
21. Road traffic injuries.
22. Railway injuries, aircraft fatalities.
24. Types of mechanical asphyxial mechanism.
27. Injury caused by heat. Cold injury, hypothermia.
30. Commonly misused drugs and drug related death.
32. Scene examination and evidence recovery. Examination on the scene
33. Forensic DNA analysis.

Method and type of evaluation:
Students are being evaluated based on their presentation of their assigned topic, and on their answers to the follow-up questions.
The students will then be graded on a scale of 1-5, with a 1 resulting in a fail.

How to register for the examination:
Via the NEPTUN system, according to the general rules of the Study and Exam Regulations (TVSZ).
Possibilities for exam retake:
Via the NEPTUN system, according to the general rules of the Study and Exam Regulations (TVSZ).
Successful exams may be repeated up to 1 time.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
- Lecture notes of forensic medicine. Semmelweis Publisher. 2008.
- www.forensicmed.co.uk edited by: Richard Jones

Signature of the habilitated instructor (course leader) who announced the subject:
Signature of the Director of the Managing Institute:

Hand-in date:
UROLOGY

Tutor: Dr. András Horváth

UROLOGY

Head of Department: Prof. Dr. Péter Nyirády
Tutor: Dr. András Horváth

Aim of education: Our aim is to teach our students for a basic knowledge in urology (the most important differential diagnostic steps, urological physical examination, imaging techniques, different treatment options) and also to educate them to perform the most important, minor urological procedures (like urethral and suprapubic catheterization).

Syllabus:

- Embryology of the urological tract
- History of urology, Symptoms, Diagnostic Measures
- Urolithiasis. Diagnosis and Treatment
- Incontinency, Neurogenic Bladder
- Benign Prostatic Hyperplasia
- Prostate Cancer
- Renal Tumours
- Tumours of the Urinary Bladder
- Injuries to the GU Tract
- Testicular and Penile Tumours
- Male Infertility
- Endoscopic Urology (Endourology)
- Emergency in Urology
- Paediatric Urology
- Nonspecific Infections of the GU Tract

Attendance

Lectures: 1 lecture weekly

Practice: 2 weeks course in rotation system at the Department of Urology. During practices all parts of urology are covered and as many as possible physical examinations and procedures are shown.

Absence from practice: 20% absence is accepted, in case of more absence it has to be compensated by joining another group’s practices.

Exam: oral exam, topics are available at our website. The mark depends on the practice score given by the tutor of the student and also on the oral exam result.

Absence from the exam: Only an official medical certificate is accepted.

Exam sign up: Through the Neptun system.

For updated information please contact the department.
INTENSIVE THERAPY AND ANESTHESIOLOGY (ITO)

Tutor: Dr. András Kállai
Dr. Dóra Konczig

Lectures:

1. **Introduction**
 Basics of intensive therapy and anesthesiology. Diseases requiring intensive therapy. Patient safety. Psychological methods (hypnosis, suggestive communication) in anesthesiology and intensive therapy

2. **Acid-base balance. Fluid - electrolyte homeostasis. Metabolic disorders in diabetes mellitus**

3. **Disorders of salt - water homeostasis. Disorders of electrolyte homeostasis, hypokalaemia and hyperkalaemia. Enteral and parenteral nutrition**

4. **Basics of respiratory failure. Obstructive pulmonary diseases. ARDS: definition, classification, diagnosis and therapy**

5. **Principles of ventilatory support. Postoperative respiratory failure. Weaning**

6. **Shock states: pathophysiology, classification, diagnosis and therapy**

7. **SIRS, sepsis and septic shock**

9. Cardiopulmonary resuscitation (CPR, BLS, ALS), the periarrest period and the Post Cardiac Arrest Syndrome (PCAS). Chain of survival. In-hospital BLS and ABCDE-approach. Managing ALS (defibrillation, 4H-4T, iv./io., drugs) and PCAS. Importance of non-technical skills (task management, team work, situation awareness, decision making, communication). Organizing CPR. CPR on CPR-Bas and CPR-Sim practices

10. **Pulmonary embolism. Stroke. Disseminated intravascular coagulation (DIC)**

11. **Polytrauma: Emergency and Intensive care management**

12. **Preoperative risk stratification, preconditioning, premedication. Cardiopulmonary protection. Perioperative approach of heart and lung transplantation**

14. **Regional (spinal and epidural) anaesthesia: anatomy, techniques, indications, practice and complications. Local anaesthetics. Pain management**

Lecture attendance:
Recommended. Attendance will not be taken.

Practices:

ICU bed side practices:
1. Introduction, ABCDE-approach (BEV)
2. Respiratory intensive care practice 1 (RespInt 1)
3. Respiratory intensive care practice 2 (RespInt 1)
4. Shock practice 1 (Shock 1)
5. Shock practice 1 (Shock 1)
6. Gastrointestinal bleeding and metabolic disorders (GIVMET)
7. Anesthesiology practice (ANE)
8. Anesthesiology and intensive care of trauma patients (TraumIA)

Simulation practices:
9. CPR-Basic
10. ABC-skills
11. ALS-Sim1 (CPR Simulation 1)
12. ALS-Sim2 (CPR Simulation 2)
13. HiFi-Sim (High Fidelity Simulation)

Problem based learning practices:
14. Perioperative care
15. Pain management
16. Homeostasis
17. Case report
18. Consultation
Attendance criteria and absences:
In order to complete Intensive Therapy and Anesthesiology you need to be present on **13 out of the first 17 practices**. Also you need to pass a practical exam in In-Hospital Basic Life Support (CPR) and ABC-skills.
Bed-side practices will be held at the Intensive Care Unit of the new building “Központi Betegellátó Épület” (Klinikák metro station, Bp. 1082 Üllői út 78., building section “B”, 4th Floor). TraumIA practices will be at the Trauma-ICU (1081. Budapest, Fiumei út 17., 7th floor). Simulation practices will take place at Simulation Center (Bp. IX. Ernő u. 7.). The PBL practices will be held via Zoom. Practice schedule will be uploaded in Moodle.
Keep in mind that before the HiFi-sim and CPR-sim practices you need to pass a 5-minute “pre-practice test” in order to attend.
For bed-side practices we kindly ask you to have a stethoscope on you. For changing clothes please use the wardrobe located under the escalator at the entrance of the 2nd Dept. of Gyne/Obs. (In the case of TraumIA practices our colleagues on the 7th floor will give you coats for the practice.)
In case of a missed practice you have two options. You can find another group (on a different week) in Moodle with the same theme as the practice you have missed and join them (please note that the group limit is 7 students). Or at the end of the semester you can join the extra practices we will hold, but please note that the capacity of these practices will be limited to 7 person just like the ones during the semester.

Grading:
1. Written (multiple choice test)
2. Retaking of the written exam is also possible. Repeating of the examination can be taken in the form of oral exam.

Type of exam: written (multiple choice test)
Make-up exam: written or oral

Exam requirements:
The knowledge of the given textbook, lecture and practice material.

If there is anything we can help you with feel free to contact us via int.ane.edu@gmail.com.
OPHTHALMOLOGY

Dept. of Ophthalmology
Tutor: Dr. Miklós Resch

24 theoretical lessons, 32 practical lessons in 3-week blocks

Educational materials: pre-recorded, available in the Moodle
E: 60 minute blocks of lectures; 70x 10-20 minutes lectures
ES: case presentation seminars 12x; 5 minute case presentations (total of 80-100 cases);
Pre-recorded lectures (in Kaltura) can be viewed in the Media Gallery.

The students should attend 20 classes at our Department
Contact consultation (CC); 8x 45 minutes
PP: patient presentation, 12x 45 minutes (9x 60 min)

In 1 block: 18-24 students, 6 teachers
DAY 1: basic knowledge, preparation of patient examination
students divided into 3 groups, i.e. 6-8 students / lecturers; 3 working hours / instructor
DAY 2-7: patient examination
students are divided into 6 groups, i.e. max. 2-4 students / lecturers; 9 working hours / instructor
Colloquium from DAY 8 (test exam)

For students:
• at least 75% attendance in practical sessions: the instructor signs each contact consultation or patient examination class in the student’s attendance document. According to new regulations of the University, the missed practical sessions need to be retaken. There is an opportunity for delayed completion in case of absence, at the time of on-call shifts, by appointment with the block leaders.
• successful partial tests
 o partial test: opens on Day 1 in the morning, can be tried several times, longer writing time. Target: to reach min. 90% satisfactory result
 o Exam I.: Lectures 1-7. and contact consultations 1-6.
 must be completed till Day 2, 9am
 o Exam II.: Lectures 8-37. and case presentations 1-6.
 must be completed till Day 8, 13pm
 o Exam III.: Lectures 38-70. and case presentations 7-12.
 must be completed till Day 8, 13pm
• practical exam: on Day 7.
• Colloquium (test): from Day 8

Contact consultations
2. General ophthalmic physical examination, exploration of conjunctival sac, eversion of the eyelids, estimation of the intraocular pressure with palpation, applanation tonometry. Anterior segment: focal light (pupil lamp) and slitlamp; examination of eye movements, pupil reactions.
3. Red reflex, indirect ophthalmoscopy using an eye model, methods of fundus Examination; eye drops, bandage; kötés; Hertel exophthalmometer; colour vision (Ishihara, Farnworth), contrast sensitivity; critical fusion frequency (CFF).
4. Vision tests: visual acuity (automatic refractometry, eye charts, ophthalmic trial lens set), visual field (confrontational, Goldman, automatic), electrophysiology testing.
5. Fluorescein staining of the cornea, diagnostic tools of the anterior segment (demonstration), lasers.
6. OCT, invasive angiographies, ophthalmic ultrasound: demonstration of diagnostic tools.
7. Consultation
8. Practical exam
Checklist for practical lessons:

Vision, refraction:
- automatic refractometry, keratometry
- eye charts
- handheld eye-chart (Csapody)
- ophthalmic trial lens set

Physical examination of the anterior segment:
- slit lamp
- Hertel exophthalmometer
- fluorescein dye
- Schirmer paper
- eversion of the upper eyelid
- bindings

Glaucoma:
- Goldmann applanation tonometry; non-contact tonometry
- automatic perimetry

Functional examinations:
- perimetry
- critical fusion frequency (CFF)
- Color vision (Ishihara, Farnworth)

Posterior segment:
- direct ophthalmoscope
- Volk lens
- macula OCT, angiography
- ultrasound
- laser

Eye movements:
- cover test
- guided eye movements

Basic skills in Ophthalmology

In practice:
1. Assessment of near and distance visual acuity in adults and in children
2. Confrontal visual field testing
3. Color vision test
4. Examination of eye movements in the six cardinal directions
5. Checking ocular alignment, screening for amblyopia
6. Examination of the pupil: pupil size, reactions
7. Examination of the eyelids, lacrimal apparatus, conjunctiva, cornea, anterior chamber, iris, and the pupil with pupil lamp
8. Fluorescein staining of the cornea
9. Estimating intraocular pressure with palpation
10. Examination of the upper tarsal conjunctiva by eyelid eversion
11. Red reflex examination
12. Examination of the papilla, posterior segment, retinal vessels by direct ophthalmoscopy

In theory:

Diagnostics:
1. Differential diagnosis of red eye (conjunctivitis, keratitis, scleritis, anterior uveitis, acute glaucomatous attack).
2. Papilla oedema
3. Hemianopic visual field loss
4. Acute cranial nerve III, IV and VI palsy
5. Leukocoria
6. Orbital cellulitis
7. Retinal tear, suspected retinal detachment
8. Suspected postoperative endophthalmitis
9. Sudden visual impairment
10. Mechanical eye injuries, symptoms of blow out fracture

Therapy:
Conjunctivitis (viral, bacterial, allergic)
Hordeolum

Emergency care: chemical burns, injuries, conjunctival foreign body removal
Management of acute angle closure glaucoma

Conditions requiring ophthalmology specialist care:
When should a patient be referred urgently to an ophthalmologist?
Ophthalmic screening in adulthood and in childhood
Interpretation of an ophthalmic medical record

For updated information please contact the department.
NEUROLOGY – NEUROSURGERY

General information
Tutor: Dr. Róbert Debreczeni
Tel.: 210-0330, Fax: 210-1368

Office hours at the Department of Neurology: Monday 13:00-14:00 Friday 10:00-12:00
Responsible Secretary: Andrea Kovács (Andi)

Official textbooks for 5th year:
2. Lindsay, Bone, Callender: Neurology and Neurosurgery Illustrated. Churchill Livingstone

Other suggested books:
2. Duus: Topical Diagnosis in Neurology. Thieme Medical Publishers

Hours per week: The two-semester curriculum for fifth-year neurology education is given in 4-week block training. For the first three weeks of the block, there is one day off a week to prepare. There are 32 practical lessons in the first week, 26 practical and 6 theoretical lessons in the second week, 24 practical lessons and 8 theoretical lessons in the third week. In the fourth week of the block, you will have to take both practical and theoretical exams. The detailed schedule will be given to students on the first day of the block.

Form of tuition: lecture, bedside practice

Lecture title
- Basic principles of neurological diagnosis. The anamnesis. The connection between symptoms, localization and causes of neurological diseases.
- Patient examination I. Cranial Nerves (part 1).
- Patient examination III. Motor system (part 1)
- Patient examination IV. Motor system (part 2)
- Patient examination II. Cranial Nerves (part 2)
- Patient examination V. The sensory system
- The spinal cord. The peripheral nervous system.
- The brainstem. The thalamus
- The cerebellum
- Altered states of consciousness
- Organization of speech, language
- The temporal and the parietal lobe
- Control of behaviour. Memory and related structures
- Neuroradiology (CT, MRI, angiography)
- Classification and treatment of cerebrovascular disorders
- Tumors of the central nervous system
- Dementias
- Movement disorders
- Diagnosis and treatment of epilepsy
- Neurological Emergencies
- Neurosurgical aspects of Neurology
- Neuromuscular disorders. Myopathies. Neuropathies
- Motoneuron diseases.
- Multiple sclerosis
- Neurological consequences of craniospinal traumas
- Alcohol related nervous system disorders
- Headaches and neuralgias
- Inflammatory neurological disorders. AIDS.
Block Practice

- Signs of meningeal irritation.
- Examination of the I. and II. Cranial nerve. The visual fields.
- Examination of the III., IV., VI. Cranial nerves. The eye movements. Gaze disorders.
- The V cranial nerve. The facial nerve palsy. The nystagmus. Dizziness and vertigo. The vestibular system.
- Motor functions of cranial nerves. Bulbar, pseudobulbar and suprabulbar paresis.
- Assessment of the paresis. Examination of muscle tone and trophy.
- The mono- and polysynaptic reflexes. The pyramidal signs. The upper and lower motoneuron lesion.

Neurology Examination Question List for 5th year Students

I. Neuroanatomical, physiological and biochemical basis of neurology

1. The visual system
2. Innervation of extraocular muscles. The oculomotor nuclei.
3. Gaze control. Gaze disturbances
5. Trigeminal nerve
6. Facial nerve
7. The vestibular system
8. Hearing
9. Glossopharyngeal, vagus, accessory and hypoglossal nerves
10. Organization of motor control
11. Sensory systems
12. Gross anatomy of the hemispheres
13. Basal ganglia and the thalamus
14. The limbic system
15. The cerebellum
16. Blood supply of the hemispheres. Cerebral metabolism
17. Blood supply of the brainstem, cerebellum and the spinal cord
18. The cerebrospinal fluid

II. Basic Neurology

1. Classification of reflexes (stretch, superficial, abnormal and primitive reflexes)
2. Characteristics of upper and lower motoneuron lesion
3. Paresis syndromes according to the site of lesion
4. Symptoms of spinal cord damage
5. Medulla oblongata (bulbar) syndromes caused by circulatory disorders
6. Pontine syndromes caused by circulatory disorders
7. Mesencephalic syndromes caused by circulatory disorders
8. Muscle tone control
9. Nystagmus
10. Vertigo and dizziness; peripheral and central vestibular syndromes
11. Symptoms of cerebellar lesions
12. Symptoms of frontal lobe damage
13. Symptoms of temporal and occipital lobe damage
14. Symptoms of parietal lobe damage
15. Symptoms of occipital lobe damage
16. Thalamic syndromes
17. Clinical examination and types of aphasia
18. Structural basis and types of unconsciousness
19. Physical examination of the unconscious patient
20. Increased intracranial pressure, brain herniations, hydrocephalus
21. Hyperkinesia
22. Gait disturbances
23. Bladder and bowel dysfunction
24. Symptoms of intervertebral disc herniation
25. Lesions of the peripheral nerves of the upper extremity. Tunnel syndromes on the upper limb.
26. Lesions of the peripheral nerves of the lower extremity.
III. Neurological Disorders

1. Classification of ischaemic cerebrovascular disorders
2. Intracranial bleedings, subarachnoid hemorrhage
3. Symptomatology of Parkinson’s disease
4. Classification of headaches. Trigeminal neuralgia
5. Focal epilepsies
6. Generalized epilepsies
7. Meningitis. Examination of the CSF in inflammatory neurological diseases
8. Encephalitis
9. Diagnosis of polyneuropathies
10. Emergency in neurology
11. Traumatic CNS diseases
12. Diagnosis of dementia
13. Multiple sclerosis: signs and diagnosis
14. Intracranial tumors
15. Spinal tumors
16. Disorders of the nervous system due to alcoholism
17. Myasthenia gravis
18. Guillain-Barre syndrome
19. Encephalopathies
20. The motor neuron diseases
21. Muscular dystrophies
SPORTS MEDICINE

Lecture: Sportsphysiology, Sports surgery, Sports Nutrition
Practice: ECG, Spiroergometry, Echocardiography, MRT, Patient examination, Sport surgery- operating room, ambulance, rehabilitation, physiotherapy
Credit: 2

Examination:
The aim of sports medicine education is to provide a wide range of up-to-date, usable basic knowledge of sports medicine and to account for the future generation of doctors within the framework of general medical education. Students interested in sports medicine should be provided with advanced training.

Detailed topics:
1. Physiological bases and energy sources of muscle function.
2. Motion control, motion learning. Warming up, dead center, fatigue, muscle fever.
7. The role of physical activity in the primary and secondary prevention and treatment of internal medicine diseases. Obesity, hypertension, diabetes and sports.
9. Imaging procedures in sports-related cardiac remodeling.
10. The importance of sports cardiology screening. Sudden cardiac death in athletes.
11. The concept, division, etiology, prevention and diagnosis of sports injuries. General principles for the treatment of acute and overload sports injuries. One head, one neck, one chest and one have sports injuries.
12. Typical sports injuries and injuries of the upper limb.
13. Typical sports injuries and injuries of the lower limb.

The aim of sports medicine education is to provide a wide range of up-to-date, usable basic knowledge of sports medicine and to account for the future generation of doctors within the framework of general medical education. Students interested in sports medicine should be provided with advanced training.
CLINICAL GENETICS

Institute: Institute of Genomic Medicine and Rare Disorders
Location: Semmelweis University Central Patient-Care Unit (Korányi Tömb, Központi Betegellátó Épület) 1082 Budapest Üllői Str. 78/B Building „A” (Radiology Wing) 4th floor
Course lecturer: Prof. Dr. Mária Judit Molnár
Course tutor: Dr. Viktor Molnár
Exam type: multiple choice test
Participation: min. 75% is obligatory

Aim of the subject and its place in the curriculum:
The Clinical Genetics course introduces medical students to the clinical significance of human genetic variations, covering the principles of diagnosis and treatment of rare diseases, mainly through the presentation of cases, clinical situations and demonstrating correct communication. In addition to diagnosis of monogenic diseases and chromosomal abnormalities, genetic tests are now used to predict susceptibility to certain diseases or the efficacy and side effects of certain therapeutic options (pharmacogenomics) or delineate disease prognosis. The role of the physician in the management of hereditary diseases and the practice of good decision making will also be addressed. The discipline is one of the most rapidly developing field and it is presumably going to be an important component of the future medicine.

Competencies gained upon the successful completion of the subject:
- Students meet the typical clinical scenarios requiring genetic-genomic knowledge for diagnostic, predictive, preventive and pharmacogenomic questions, as well as they are introduced into most common diagnostic, therapeutic decision-making, management and ethical dilemmas of the field.
- Students gain insight into practice how to elicit, document, and act on relevant family history pertinent to the patient’s clinical status, how to choose the right genetic or genomic testing to guide patient management and how to use genomic information to make treatment decisions.
- Through problems represented by several real and synthetic/standardized clinical cases and through getting involved into the patient flow of in- and outpatient units, they will learn
 - how to gather information from appropriate information resources,
 - how to employ artificial intelligence-based decision-making systems for phenotype pattern recognition a problem-based manner.
- how to communicate with the patients and families with hereditary diseases by playing the role of a counselee (genetic counselling), and
- how to work together as a team if they are encountered with real-world diagnostic challenges.

Overview of the blocked course with thematic learning modules (2×45 minutes each):

Seminars:
- Clinical genetics in medicine
- The significance and diagnostic potential of congenital genetic disorders
- Genetic disorders of public health significance
- Personalised medicine
- Small group work:
 - Case presentation part 1
 - Case presentation part 2
- Bedside practice: inpatient department
- Bedside practice: neurogenetic clinic
- Team competition (decision-making simulation)

Workshops:
- Web-based search methods in clinical genetics
- Developing genetic diagnostic skills
- Management of patients with a rare disease
- Genetic counselling
- Ethical problems, pre-exam consultation
REHABILITATION

Institute: Department of Rehabilitation Medicine, National Institute for Medical Rehabilitation
Location: National Institute for Medical Rehabilitation, 1121 Budapest, Szanatórium utca 19. Tel: +36 1 391 19 03.

Course director: Dr Zoltán Dénes
Tutors: Dr Orsolya Masát, Dr Mihály Fórián Szabó
Coordinator: Gabriella Tápay

practical training: 32 hours

Aim of the subject and its place in the curriculum:
Special medical knowledge required for recognizing and managing disabilities is summarized in the field of Rehabilitation Medicine. According to WHO about 10% of the world’s population lives with some form of disability. All medical students need to gain a basic knowledge of Rehabilitation Medicine for completion of the graduate program and to practice later as a physician. For this purpose, two theoretical lectures (one in Neurology and one in Traumatology) and one practical seminar in Orthopedics are held during the graduate years on the topic. According to the new curriculum, fifth year students will participate in a one-week clinical rotation in Rehabilitation Medicine.

Detailed thematic of the course:
The course will be one week long and consist of lectures on basics followed by clinical practice. Students will participate in daily clinical activities, such as bedside visits and multidisciplinary team meeting. Moreover, they will perform patient assessment, physical examination and write medical reports under supervision. Getting familiar with basic rehabilitation methods is part of the course: physiotherapy, physical and other treatment modalities, occupational therapy, psychotherapy, speech therapy, neuropsychology, sport therapy, hydro therapy. Students will also gain experience in ambulatory care.

Detailed schedule:
1. Rehabilitation Medicine (RM): core competencies, the field of RM, definition, philosophy, objectives and methods, concept of ICF, quality of life.
2. Clinical and functional assessment in RM.
3. Interventions in RM: medical treatments, physical and other treatment modalities, therapeutic exercises, orthoses and prostheses.
4. Musculoskeletal and orthopedic rehabilitation: upper limb dysfunctions (including hand- and nerve injuries), lower limb dysfunctions (including nerve injuries and amputation).
6. Rehabilitation in other disabling conditions: geriatric-, pediatric-, cardiovascular- and pulmonary rehabilitation and rehabilitation in malignancy.
PUBLIC HEALTH

Institute: Department of Public Health
Location: NET building, 1089 Budapest, Nagyvárad tér 4., 13th floor.

Phone: 061 210-2930, extension 56313
E-mail: horvath.ferenc@med.semmelweis-univ.hu

Course lecturer: Dr. Zoltán Ungvári
Course tutor: Dr. Horváth Ferenc

Location of the course (lecture hall, practice room, etc.):
Semmelweis University, NET building
1089 Budapest, Nagyvárad tér 4.

How to register for the course: via Neptun system

Detailed thematic of the course
- Health promotion programs – basics, situation mapping, identification of needs, action plan
- Mental health / Prevention. Illegal drugs use and their prevention
- Handicapped population / public health programs for the vulnerable groups
- Aging population / gerohygiene. The elderly as a vulnerable group. Social situation of the elderly. Role play with ability tools
- Epidemiology: basic statistics, morbidity measurements. Types of epidemiologic studies. Clinical decision making.
- Interventional studies, screening. Epidemiology test.
- Epidemiology of communicable diseases. Epidemiologic measures in outbreak investigation
- Infection control / epidemiology of communicable diseases
- Critical reading, evaluation of scientific articles (STROBE / PRISMA / CONSORT statement)
- Alcohol use, public health significance. Brief intervention for alcohol use. Role play studying
- Environmental medicine. Air / soil / water hygiene. Climate change. Chemical safety.
- Occupational medicine, work risk assessment
- Smoking. Brief intervention for smoking cessation. Role play studying.
- Physical activity, possible therapies. Brief intervention for sports, role play studying
- Structure of healthcare, healthcare financing.
- Quality assurance in healthcare

Policy regarding the attendance and making up absences:
Participation on the contact hours is mandatory. Catch up classes are possible based on discussion with the tutor of the course.

Requirement for acknowledging the semester (signature): participation on practicals and lectures and finishing the e-learning material

Type of the examination:
Combined exam, which consists of oral and written (test) performance evaluation. The exam is successful if both performance assessments reach at least a satisfactory level. The final grade is the average of the two exams. You must register for the test in the Neptun system.
PHYSICAL EDUCATION IX-X.

Department of Physical Education
Subject: Physical Education IX.
Type of Subject: Compulsory
Code of Subject: AOKTSI009_9A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behavior.

The syllabus (preferably a week and numbered):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), students can also choose the “Other” course category, where they record their weekly physical activity independently. The student who completes the course either individually is also supposed to attend 10 classes (once a week) and record their participation in the weekly sent UniPoll questionnaire.

Free of charge:
2×90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence can not be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in ten classes (for trainings 15 times!) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
Department of Physical Education
Subject: Physical Education X.
Type of Subject: Compulsory
Code of Subject: AOKTSI009_10A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behavior.

The syllabus (preferably a week and numbered):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), students can also choose the “Other” course category, where they record their weekly physical activity independently.
The student who completes the course either individually is also supposed to attend 10 classes (once a week) and record their participation in the weekly sent UniPoll questionnaire.

or

Free of charge:
2×90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence cannot be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in ten classes (for trainings 15 times!) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
ELECTIVE SUBJECTS

(basic/pre-clinical/clinical modules) – curricula
It is compulsory to choose one subject each semester.

BASIC CELL BIOLOGY – Department of Genetics, Cell- and Immunobiology

OBLIGATORY ELECTIVE COURSE FOR MEDICINE I. II. III. YEARS

Course Director: Dr. Valéria László Ph.D.
Prerequisite subject: Anatomy, Cell, Histology and Embryology I.
Credit: 3
Lectures (2 hours per week)

First semester

1. Intracellular transport mechanisms
2. Endoplasmic reticulum. Vesicular transport
3. Secretion and Golgi
4. Endocytosis. Endosomal – lysosomal system
5. Nuclear envelope and nuclear lamina. Nuclear pores and gated transport
6. Functions and malfunctions of some nuclear components
7. rRNA synthesis. Telomerase
8. Endosymbiotic cell organelles. Mitochondrion
9. Peroxisome
10. Cytoskeleton. Microtubules
11. Microfilaments and intermediate filaments
12. Cell – cell and cell – ECM adhesion and junction
13. Regulation of cell cycle I
14. Cell aging and death

Important notes: No possibility to make up of absences.
There are no mid-term exams.
Attendance of 75% of lectures is necessary for the end-term signature.
Requirement: practice grade based on the result of the written or oral exam.
(depending on the number of students).

Core text:
Lecture presentations are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
CLINICAL CARDIOVASCULAR PHYSIOLOGY

Institute of Translational Medicine

Credit value: 2
Number of lessons per week: lecture: 2 seminar: 2
Subject type: elective course
Academic year: 2021/2022
Subject code: AOVTLM828_1A
Name of the course leader: Dr. Zoltán Benyó
Position: professor, head of department

Objectives of the subject, its place in the medical curriculum:
To refresh and extend – in selected topics – the basic knowledge related to normal and pathological functions of the human circulatory system.
To integrate the latest scientific results related to different organization levels – from molecular mechanisms to system physiology – of the cardiovascular system.
To discuss and demonstrate measurement principles and techniques, as well as physiological and pathophysiological mechanisms related to the application of state of the art non-invasive cardiovascular diagnostic procedures in the clinical practice.
Researchers as well as skilled clinical practitioners have also been included among the lecturers to provide a translational point of view and help the transition of the students’ theoretical knowledge to modern clinical cardiovascular medicine.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Centre of Theoretical Medicine

Successful completion of the subject results in the acquisition of the following competencies:
After completion of the subject, students will deepen their knowledge of the physiology and pathophysiology of the cardiovascular system, better understand the pathological processes that occur during the most common cardiovascular diseases and the potential therapeutic options. Completion of the course thus helps and establishes the acquisition of cardiovascular pharmacology, cardiology-angiology and cardiovascular surgery with sufficient detail.

Course prerequisites:
Completion of Physiology II.

Number of students required for the course (minimum, maximum) and method of selecting students:
Min: 5 students
Max: 80 students (in case of more applicants, the first 80)

How to apply for the course:
In the Neptune system.
Detailed curriculum:

- Hemodynamic background of normal and pathological cardiovascular functions; “hemodynamic exercise” and prevention of diseases (Dr. Anna Monori-Kiss)
- Modern methods for measuring and monitoring arterial blood pressure (Dr. Ákos Jobbágy), Cardiovascular effects of hypersensitivity reactions (CARPA) (Dr. László Dézsi)
- Biomechanical properties of cerebral aneurisms, their computer modeling (Dr. István Nyáry, Dr. Róbert Nagy)
- Physiological mechanisms supporting venous return of blood; orthostatic tolerance, Pathophysiology of chronic venous insufficiency (Dr. Anna Monori-Kiss)
- Investigation of blood pressure regulation by use of transgenic technologies (Dr. Zoltán Benyó)
- Cardiovascular implications of the healthy and the diseased kidney (Dr. Péter Hamar)
- Age related changes in the vascular system, role of sexual hormones. Interventional radiological procedures on arteries and veins (Dr. György Nádasy, Dr. Viktor Bérczi)
- Ultrasonic investigation of the human heart: theoretical background; 2D-, M-, Doppler-mode, color Doppler imaging, echocardiography; diagnostics of valve insufficiency and coronary diseases. Duplex ultrasonic investigation of large vessel function: measurement of vessel wall elasticity, Doppler-indexes (Dr. Domonkos Cseh, Dr. Adrienn Sárközi)
- Coronary circulation. Physiological background of the treatment of myocardial ischemia (Dr. Tamás Ivanics, Dr. Gergely Szabó)
- The cardiovascular risk and the protection of menopausal women. Alterations of the cardiovascular system in pregnancy and polycystic ovary syndrome (Dr. Gabriella Masszi, Dr. Szabolcs Várbiró)
- Role of endothelial mechanisms in clinical symptoms (Dr. Zsolt Pécsvárady)
- Visit to the MRI Cardiovascular Diagnostic Unit of the Semmelweis University Heart Center (Dr. Attila Tóth)
- Vascular cognitive impairment (Dr. Zoltán Ungvári)
- Written examination

(Guest lecturers are underlined)

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:

- Cardiology
- Medical Imaging
- Obstetrics and Gynecology
- Vascular Medicine
- Pathophysiology

Requirements for participation in classes and the possibility to make up for absences:
It is compulsory to attend the seminars. Students are not allowed to miss more than 3 seminars (6 lessons), otherwise the semester cannot be accepted.

Methods to assess knowledge acquisition during term time:
Theoretical knowledge will be assessed by a written test on the 14th week.

Requirements for signature:
Regular attendance (max. 3 missed seminars) of classes and successful written exam. No more than three absences from seminars are allowed; otherwise the course will not be credited.

Type of examination:
The semester performance is assessed by the result of the written test (10-15 questions based on the material of the seminars) on the 14th week.

Requirements of the examination:
The question pool for the written test is available for the registered students. The question pool contains 2 short assay-type questions and 5-10 multiple choice questions per seminar.
Method and type of evaluation:
The grade is based on the result of the test written on the 14th week. The written test will be evaluated as follows:

- 90-100% – honor (5)
- 80 – 89 % – good (4)
- 70 – 79 % – fair (3)
- 51 – 69% – pass (2)
- < 51% – fail (1)

How to register for the examination:
There is no exam in the exam period.
The exam is organized on the last seminar of the semester.

Possibilities for exam retake:
For students who cannot attend the exam for reasonable excuses, we provide extra occasions to make up for the practical exam.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

- Emil Monos: Physiology of the venous system, Second edition, Semmelweis Kiadó, 2010

Material of the lectures and supplementing literature provided by the lecturers.
CLINICAL PHYSIOLOGY OF RESPIRATION AND RESPIRATORY DISEASES

AOVTLM768_1A

Elective course for medical students in the 3rd, 4th and 5th years.

The aims of the course are to strengthen knowledge on basic physiological principles related to respiration, summarize the most important aspects of cardiorespiratory adaptation in sport activities and also its changes in respiratory diseases and to provide integrated information about the physiological and pathophysiological background of the most important respiratory disorders in light of results from cutting edge research.

Program:

1. COVID-19 from the frontline
2. COVID-19 outcome stats
3. Personalized medicine in lung cancer
4. Asthma
5. Bronchiectasis, COPD.
6. Obstructive sleep apnoea
7. Hypoventilation syndromes
8. Translational research, biomarkers, drug development, machine learning
9. Cystic fibrosis-case presentation
10. Pneumonia
11. Invasive ventilation and intensive care, ECMO, particular aspects of COVID-19
12. Chest imaging I - Screening
13. Chest imaging II- Lung Fibrosis-COVID score, Ultrasound
14. Exam

Acknowledgement of the course: regular attendance (maximum 3 absences) is required; signature in the Neptun, and 2 credit points will be provided after a successful written exam.
CARDIORESPIRATORY AND NEUROPHYSIOLOGICAL MEASURING METHODS

Institute of Translational Medicine

Subject type: optional
Subject code: AOSTLM770_1A
Credit value: 2

Name of the course leaders:
Prof. Dr. Zoltán Benyó, Department Head,
Dr. Habil. László Dézsi, Research Associate Professor, Course Director, Semmelweis University
(Invited Lecturers: Dr. Iván Füzes, Dipl. Electrical Engineer, Master Teacher, Semmelweis University
Prof. Dr. Ákos Jobbágy, Professor Emeritus in Electrical Engineering, Budapest University of Technology and Economics,
Dr. György L. Nádasy, Associate Professor, Semmelweis University)

Academic year: 2021/2022/1st semester

Objectives of the subject, its place in the medical curriculum:
The purpose of the course: To review the theory and practice of modern measuring methods in experimental and clinical medicine, and providing practical knowledge to medical and pharmacy students on cardiorespiratory and neurophysiological measurements. The course based on and further extends the material of the course of Medical physiology. Throughout the lectures, we put an emphasis on potential methodological errors of measurements and examinations, discussing how to avoid them.

Successful completion of the subject results in the acquisition of the following competencies:
The course offers practical knowledge to medical and pharmacy students on cardiovascular, respiratory and neurophysiological measurements based on, but further extending the course material of Medical physiology. Involving engineers into teaching, students receive real technological knowledge on a basic level. Throughout the lectures we put an emphasis on potential methodological errors of measurements and examinations, discussing how to avoid them, and so we utilize a critical approach.

Detailed curriculum:
Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks).
1. Introduction. Biomedical engineering. Design and safety requirements of biomedical equipment
2. General metrology. Basics of measurement and control theory
3. Computerized data acquisition and analysis. Telemetry systems
4. Sampling of continuous signals. Digitizing analogue signals
5. Home monitoring of cardiovascular health status. Determination of blood glucose and tissue glucose concentrations
7. Investigating the electrical activity of the heart. Design of ECG amplifiers
8. Direct and indirect methods to determine cardiac output and peripheral blood flow
9. Neurophysiological measurements (action potentials, brain stem evoked potentials). Objective studies in audiology
10. Adaptive processes in the cardiovascular system. Investigative methods in experimental angiology
11. Measuring blood pressure in the lab and clinics (invasive and noninvasive methods)
12. Complement-related immunological and cardiopulmonary responses (CARPA)
13. Studying brain function by functional imaging systems. The linear CT method
14. Experimental methods to study pain and nociception

Requirements for participation in classes and the possibility to make up for absences:
Regular attendance is required, which will be registered. In case of absence make up of material is possible based on lecture sketches.
Methods of verification of absence from classes or the exam:
Absence can be verified by medical notice only.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
From the course material, no midterms are written.

Requirements for signature:
Signature will be awarded upon regular attendance of the lectures.

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
Marks are based upon the result of the written exam. Students will be graded on a 5-grade-scale:
0-49 % - 1, 50-64 % - 2, 65-79% - 3, 80-89% - 4, 90-100% - 5.

Type of examination:
Written exam + 2 re-takes

How to register for the examination:
Personal registration by the Course Director.

How to modify the registration for the examination:
Personal notice by the Course Director.

Possibilities for exam retake:
Upon obstacles (medical notice, or parallel exam) or failure of the exam, two re-takes are possible.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
2. Fonyó Attila: Principles of Medical Physiology, Medicina Kiadó, 2002
3. Lecture sketches of course tutors https://drive.google.com/drive/folders/0B5lj4aPM88ChLU9mR0xobkpOcjg
INTRODUCTION TO THE METHODOLOGY OF CLINICAL RESEARCH I. Observational studies

Number of lessons per week: 2 lecture: – practical course: 2×45 min for 3 weeks seminar: 2×45 min for 11 weeks
Subject type: elective course
Academic year: 2021/2022
Subject code: AOVTLM769_1A
Name of the course leader: Dr. Zoltán Benyó
Institute of Translational Medicine, (+36-1) 210-0306
Position: professor, head of department

Goals of the course:
Nowadays most physicians will inevitably be involved in clinical research during their careers. Many of them will participate actively in clinical research programs, while others will get in contact with clinical studies via the literature or by interpreting new clinical guidelines. Therefore, at the time of graduation physicians of the 21st century must possess skills which enable them to join research programs and critically interpret scientific evidence. The ultimate goal of the course is to prepare future doctors for these challenges by offering a curriculum which helps to acquire these skills during the academic years of their gradual studies.
The course aims to give a comprehensive insight into the methodology of clinical research. The broad spectrum of methodological approaches will be presented in 2 separate courses built on each other. The course „Introduction to the Methodology of Clinical Research I.” will focus on observational studies. Accordingly, the course will:
describe the types of observational studies and the pros and cons of their application
give a deep insight to clinical epidemiology
and to the ethical and legal concepts related to the planning and conduct of these studies;
describe basic concepts of biomarker and genomic research
introduce the background of the application of screening tests.
Beyond these, the course will introduce the students (without showing mathematical formulae) the statistical approaches which are closely related to the analyses of observational studies:
Within the frame of seminars, we will discuss basic biostatistical terms and principles,
and the steps of basic regression model building.
Moreover, the practicums of the course will provide opportunity to apply the knowledge acquired on seminars to real-life situations. On these labs we aim to perform 2 types of practical tasks in small student groups:
Performing simple statistical analyses on simulated patient datasets using a comprehensive statistical software package under the guidance of the tutor.
Problem-based discussion of pre-released publications, critical interpretation of the published research.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Seminar: Semmelweis University, EOK, Tűzoltó street 37-47. Hári Pál auditorium
Practicum: Semmelweis University, EOK, Tűzoltó street 37-47. Department of Biophysics and Radiation Biology

Successful completion of the subject results in the acquisition of the following competencies:
After successful completion of the subject the students:
– will be able to join research projects based on observational studies (even as an undergraduate student!),
– will be able to critically comprehend scientific literature related to observational studies,
– will understand the basic aspects of study design and analysis related to observational studies
– will understand the limitations and factors influencing the validity of observational studies,
– will understand the ethical and legal aspects of observational studies,
– will have basic knowledge about the statistical methodology used to properly plan and analyse observational studies

Number of students required for the course (minimum, maximum) and method of selecting students:
Minimum number students: 5
Maximum number students: 60 (the first 60 applicants can attend the course)
How to apply for the course:
Application occurs via the Neptun system

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the seminars and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)

1st week: Types of observational studies (Dr. Monori-Kiss Anna, Institute of Translational Medicine)
- Comparison of observational and experimental studies; types of observational studies, pros and cons of their application (case reports, ecological studies, cross-sectional studies, cohort studies, case-control studies)

2nd week: Introduction to biostatistics I. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Types of variables, description of variables (mean, median, percentile, IQR); types of distribution, population vs. sample, sampling procedures, estimating the population mean, confidence intervals

3rd week: Introduction to biostatistics II. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Power, sample size; hypothesis testing; parametric vs. non-parametric probes; revision of known biostatistical tests (t-test, ANOVA, their non-parametric counterparts; Chi square test

4th week: Workshop seminar to introduce the biostatistical analysis software package (STATA) (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Interactive presentation of the most important commands and menu points

5th week: Introduction to epidemiology (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)
- The aim of clinical epidemiology; outcome measures (ratio, odds, incidence, prevalence, incidence-ratio); parameters describing the association between outcome measures and intervention/exposition/risk factors (RR, OR, RR, RD); threats to validity and strategies to handle them (confounding, bias, chance etc.)

6th week: PRACTICUM I. (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)
- Clinical epidemiology. Finding an epidemiology related research question based on a simulated patient dataset and answering the question by performing statistical analysis using STATA statistical software package.

7th week: Ethical and legal aspects of observational studies. (Dr. Szemtártoni Gyöngyvér, Department of Internal Medicine and Oncology)

8th week: Applied regression I. (Dr. Ferenci Tamás, biostatistician, invited lecturer)
- Basic concepts, linear regression

9th week: Applied regression II. (Dr. Ferenci Tamás, biostatistician, invited lecturer)
- Multivariate linear regression, steps of model building

10th week: Applied regression III. (Dr. András Ittzés, biostatistician, invited lecturer)
- Logistic regression

11th week: PRACTICUM II. (Dr. Monori-Kiss Anna, Institute of Translational Medicine; Dr. Veres Dániel, Department of Biophysics and Radiation Biology)
- Steps of multivariate regression model building. The students will build regression models on a simulated patient dataset using STATA statistical analysis software package. They experience how the inclusion of different variables/confounders can affect results and data interpretation.

12th week: PRACTICUM III. (Dr. Szemtártoni Gyöngyvér, Department of Internal Medicine and Oncology)
- Critical interpretation and discussion of a pre-released publication (original article)

13th week: Biomarker research, genomics. (Dr. Tóthfalusi László, Department of Pharmacodynamics) Screening tests. (Dr. Terebessy András, Department of Public Health)

14th week: Test exam.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Medical statistics, informatics and telemedicine (basic terms in biostatistics – partial overlap)
Medical ethics, bioethics (7th week seminar – partial overlap)
Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)

Requirements for participation in classes and the possibility to make up for absences:
Students are required to participate on 70% of the seminars and on all practices.
We offer several occasions during the semester to make up for the missed practices.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
Students must arrive well-prepared for the practices. Completion of the prespecified tasks will be checked by the practice tutors.
We will provide opportunities to make up for the missed practices several times during the semester.

Requirements for signature:
Students are required to participate on 70% of the seminars and on all practices.

Type of examination:
Practical exam in the form of a written test at the end of the semester

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)
Written practical exam test taken via the e-learning site (Moodle) of the university.
Students are eligible to take the exam if they have obtained the signature.
The written test will be compiled from problem-oriented multiple choice questions which are based on the on-line available seminar material (digests, slide shows, scripts) and the practical knowledge acquired on lab practices. We will provide sample test questions during the semester.

The test will be graded as follows:
90-100% – (5)
80 – 89% – (4)
70 – 79% – (3)
60 – 69% – (2)
< 60% – (1)

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
The final mark will be a 5-grade practical mark obtained on the practical exam test organized in the last week of the semester.

How to register for the examination?:
There is no exam in the exam period.
The practical exam is organized on the last seminar of the semester.

Possibilities for exam retake:
For students who cannot attend the practical exam for reasonable excuses, we provide extra occasions to make up for the practical exam.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Obligatory:
1. On-line uploaded material (digests, practicum descriptions, scripts, slide shows).

Recommended:
INTRODUCTION TO THE METHODOLOGY OF CLINICAL RESEARCH II. – Experimental studies

Credit value: 2
Number of lessons per week: 2 lecture: 2 × 45 min for 3 weeks practical course: 2 × 45 min for 3 weeks seminar: 2 × 45 min for 11 weeks
Subject type: elective course
Academic year: 2021/2022
Subject code: AOVTLM769_2A
Name of the course leader: Dr. Zoltán Benyó

Goals of the course:
Nowadays most physicians will inevitably be involved in clinical research during their careers. Many of them will participate actively in clinical research programs, while others will get in contact with clinical studies via the literature or by interpreting new clinical guidelines. Therefore, at the time of graduation physicians of the 21st century must possess skills which enable them to join research programs and critically interpret scientific evidence. The ultimate goal of the course is to prepare future doctors for these challenges by offering a curriculum which helps to acquire these skills during the academic years of their gradual studies.

The course aims to give a comprehensive insight into the methodology of clinical research. The broad spectrum of methodological approaches will be presented in 2 separate courses built on each other.

The course „Introduction to the Methodology of Clinical Research II.” will focus on experimental studies. Accordingly, the course will:
● describe the types of experimental studies and the pros and cons of their application;
● discuss the scientific, statistical and economic aspects of experimental study designs;
● discuss the ethical and legal concepts related to the planning and conduct of these studies;
● emphasize the role of clinical trials in the introduction of new therapies to clinical practice and
● give introduction to the background of the application of methodologies related to clinical trials (questionnaires, systematic review, meta-analysis).

Beyond these, the course will introduce the students (without showing mathematical formulae) the statistical approaches which are closely related to the analyses of experimental studies:
● We will emphasize the utilization of basic biostatistical terms and principles we learnt on the first course in clinical trials
● and discuss the principles of survival analysis and analysis of longitudinal studies.

Moreover, the practicums of the course will provide opportunity to apply the knowledge acquired on seminars to real-life situations. On these labs we aim to perform 2 types of practical tasks in small student groups:
● Performing simple statistical analyses on simulated patient datasets using a comprehensive statistical software package under the guidance of the tutor.

Problem-based discussion of informed consent forms and critical interpretation of published research.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Seminar: Semmelweis University, EOK, Tűzoltó street 37-47. Hári Pál auditorium
Practicum: Semmelweis University, EOK, Tűzoltó street 37-47. Department of Biophysics and Radiation Biology

Successful completion of the subject results in the acquisition of the following competencies:
After successful completion of the subject the students:
● will be able to join research projects based on experimental studies (even as an undergraduate student!),
● will be able to critically comprehend scientific literature related to experimental studies,
● will understand the basic aspects of study design and analysis related to experimental studies
● will understand the limitations and factors influencing the validity of experimental studies,
● will understand the ethical and legal aspects of experimental studies,
● will have basic knowledge about the statistical methodology used to properly plan and analyse experimental studies
● will be able to perform simple survival analyses and will understand the problematics of correlated outcomes
Course prerequisites:
Successful completion of Introduction to the Methodology of Clinical Research I. – Observational studies (AOVKIK553_1A)
Number of students required for the course (minimum, maximum) and method of selecting students:
Minimum number students: 5
Maximum number students: 60 (the first 60 applicants can attend the course)

How to apply for the course:
Application occurs via the Neptun system

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)

1st week: Experimental studies (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)

- comparison of observational and experimental studies; types of experimental studies, pros and cons of their application, the methods of randomization

2nd week: Ethical aspects of clinical trials. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology)

- ethical issues, ethical approval, the informed consent

3rd week: Issues related to study design and implementation. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology, Dr. Monori-Kiss Anna, Institute of Translational Medicine)

- elements and importance of the research protocol, factors influencing the study design

4th week: PRACTICUM I. (Dr. Szentmártoni Gyöngyvér, Department of Internal Medicine and Oncology)

- critical interpretation of the informed consent process using sample forms

5th week: Correlated outcomes I. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)

- The problematics of correlated outcomes, characteristics of longitudinal data

6th week: Correlated outcomes II. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)

- Analysis of correlated outcomes with LME models

7th week: PRACTICUM II. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)

- Analysis of simulated longitudinal datasets with correlated outcomes using STATA statistical software package.

8th week: Survival analysis. (Dr. Veres Dániel, Department of Biophysics and Radiation Biology)

- Clinical application of survival analysis. Statistical methods related to survival analysis (log rank test, hazard ratios, Cox regression)

9th week: PRACTICUM III. (Dr. Miklós Zsuzsanna, Institute of Translational Medicine)

- Construction of Kaplan-Meyer survival curves, log rank analysis and Cox regression analysis on simulated patient datasets using Stata statistical software package

10th week: Supplementary methodologies. Big data (Dr. Monori-Kiss Anna, Institute of Translational Medicine)

- How to make a perfect questionnaire. The features and analysis of Big Data.

11th week: The clinical phase of drug development (Dr. Tóthfalusi László, Department of Pharmacodynamics)

- Phase I-IV studies. Aims, methods, implementation.

12th week: Economic exploitation of scientific results. (Dr. Lacza Zsombor, Institute of Translational Medicine)

- patents, introduction to the market

13th week: From data to evidence. (Dr. Ferenci Tamás, biostatistician, invited lecturer)

- metanalysis, systemic review

14th week: Test exam.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Introduction to the Methodology of Clinical Research I. – Observational studies (prerequisite – some basic concepts are revised)
Medical statistics, informatics and telemedicine (basic terms in biostatistics – partial overlap)
Medical ethics, bioethics (7th week seminar – partial overlap)
Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)

Requirements for participation in classes and the possibility to make up for absences:
Students are required to participate on 70 % of the seminars and on all practices.
We offer several occasions during the semester to make up for the missed practices.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
Students must arrive well-prepared for the practices. Completion of the prespecified tasks will be checked by the practice tutors.
We will provide opportunities to make up for the missed practices several times during the semester

Requirements for signature:
Students are required to participate on 70 % of the seminars and on all practices.

Type of examination:
Practical exam in the form of a written test at the end of the semester

Written practical exam test taken via the e-learning site (Moodle) of the university.
Students are eligible to take the exam if they have obtained the signature.
The written test will be compiled from problem-oriented multiple choice questions which are based on the on-line available seminar ma-
terial (seminar digests, slide shows, scripts) and the practical knowledge acquired on lab practices. We will provide sample test questions
during the semester.

The test will be graded as follows:
90-100% - (5)
80 – 89 % - (4)
70 – 79 % - (3)
60 – 69% - (2)
< 60 % - (1)

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
The final mark will be a 5-grade practical mark obtained on the practical exam test organized in the last week of the semester.

How to register for the examination?:
There is no exam in the exam period.
The practical exam is organized on the last seminar of the semester.

Possibilities for exam retake:
For students who cannot attend the practical exam for reasonable excuses, we provide extra occasions to make up for the practical exam.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Obligatory:
1. On-line uploaded material (seminar digests, practicum descriptions, scripts, slide shows).
Recommended:
CLIMATE CHANGE AND HEALTH IN SOCIOLOGICAL PERSPECTIVES

Institute of Behavioral Sciences
Lecturer: László Antal Z.
Credit: 2
Code: AOSMAG372_1A

Thematics:
1. week: The history of climate change science
2. week: Climate change and society, sociological perspectives
3. week: Animal and plant health impacts of climate change
4. week: Human health impacts of climate change
5. week: Consumer society and environmental boundaries
6. week: Demographic processes and environmental boundaries
7. week: Climate change and health care
8. week: Adaptation to climate change
9. week: Adaptation to heat waves and to UV radiation
10. week: Adaptation to climate change at local level
11. week: Civil society, social movement and climate change
12. week: Climate communication
13. week: Climate change and the social values
ULTRASONOGRAPHY IN OBSTETRICS AND GYNECOLOGY

(obligatory elective course – 6th semester)

AOVNO1554_1A
Course director: Prof. Dr. János Rigó
Lecturer: Dr. Gábor Szabó PhD
Department: First Department of Obstetrics and Gynecology
Study time: In every second week 2×45 minutes. Advised Semester: between 6. und 12. Semester
Exam: Written test and practical note
Credit: 1
Minimal/maximal participants: (1/5 person)
Application deadline: 1. December
Prerequisite: Completion of second year

The knowledge gained in theoretical basic subjects (anatomy, physiology) can be used by medical students as practical knowledge in the clinic. As a result of more than four decades of experience, ultrasound examination has a fundamental role in modern obstetrical and gynecological diagnostic. The course helps you to acquire skill in this field. Performing obstetrical-gynecological ultrasound tests and assessment of findings can only be learned through appropriate training. This non-invasive procedure is also safe for patients. The modern ultrasound equipment of the Department and the wide range of patients and diseases provide the opportunity for learning. Not only obstetricians and gynecologists, but also other associate colleagues such as clinical genetics, radiologists, gynecological cancer surgeons, anesthetists, and intensive therapists can utilize the knowledge provided by the subject.

Themes:
THE SCALPEL AND THE PARAGRAPH: SPECIAL ISSUES OF MEDICAL PRACTICE IN LIGHT OF THE LAW

elective subject
Lecturer: Prof. Dr. József Kovács
Department of Behavioural Sciences

1st semester

2 hours / week

Within the framework of the course the participants, who have an affinity for Bioethics and Law, will gain insight into the special characteristics of the legal domain and certain fundamental legal concepts and methods that are relevant for a practicing physician, but cannot be sufficiently investigated into within the framework of other compulsory courses. The course considers the general part of medical law governing the legal relationship between medical practitioners and their patients, first by distinguishing between civil law and criminal law and explaining their respective characteristics. The legal position, the customary rights and obligations of physicians and patients are examined, together with the issues of informed consent. Topics will also include the civil and criminal liability of physicians and the issue of malpractice. Selected medico-legal issues over human life are also examined; these will include foetal rights, modern reproductive technologies, various aspects of human genetic research, and certain end-of-life issues such as advance directives and euthanasia. The foregoing topics will be discussed from the perspective of comparative law, by presenting various court cases from the countries of the European Union and the United States of America as well. Attending students will gain the ability to recognise and analyse legal health care issues by engaging in interactive discussions and informative research.

Attending students will gain insight into the special characteristics of the legal way of thinking, the basic concepts of civil and criminal law, and also the approach to the most controversial medico-legal issues in the European Union and the United States.

Students intending to practice in any field of medicine may find the course profitable.

Minimum number of participants: 10
Maximum number of participants: 20; applications are accepted through the „Neptun” system.
Students are to register through the „Neptun” system. No special achievement/prior completion of other course(s) is required.

Thematics:
1. Introduction: Aims and objectives of the course; presentation of the interdisciplinary method (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
2. The concept of „law”; the branches of law particularly relevant for medical practice (civil/private law; criminal law) (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
3. The human being and the law. Legal personhood and capacity to act. Man as a subject to fundamental human rights. (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
4. The parties to a medical legal relationship: doctor and patient. The legal position of the physician and the patient; their principal rights and obligations in the various legal systems (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
5. Creating a doctor-patient relationship: informed consent in the member countries of the European Union and in the USA (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
6. Various legal models of the doctor-patient relationship (mandate agreement, service agreement, treatment agreement etc.) (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
7. The physician and civil liability: malpractice/liability for damages in the member countries of the European Union and in the USA (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
8. The physician and criminal liability: specific criminal offences that can be committed by a physician/health care specialist (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
10. The beginnings of human life and the law: surrogacy and the legal issues generated by the recent developments in assisted human reproduction in Europe and in the world (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
11. The issues of medical research on humans: the framework set up by law (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
12. End-of-life decisions and the law: the “living will” and other forms of advance directives in the various legal systems; the refusal of lifesaving treatments (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
13. End-of-life decisions and the law: euthanasia in the member countries of the European Union and in the USA (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).
14. Review of the semester; suggestions, observations and proposals (instructor: dr.iur. Orsolya Marta Peter PhD, Lecturer).

Participants will meet weekly (2 hours/week) as a discussion/seminary group. Participating students are required to prepare and hold an oral presentation (15-20 mins) about a preferred medical legal issue, to be previously approved by the instructor. A suitable schedule for such presentations will be worked out together with the students. Students are required to attend at least 75% of the meetings; a maximum of 4 (four) absences is acceptable. Attendance will be verified at the beginning of each meeting. In the event of more than 4 (four) absences an additional oral presentation or an essay will be required, provided such excessive absence is unjustified.

No medical certificate/other proof is required up to the maximum number (4) of excused absences. In the event of more than 4 (four) absences an authentic proof of justifiable absence is accepted.

„Aláírás“ (the instructor’s „signature” indicating the fulfilment of the term requirements) will be granted as follows:
1. Preparation and actual holding of an oral presentation.
2. Proper attendance (max. 4 absences; proper justification or additional work in the event of more than 4 absences)

The performance of participating students will be graded as follows:
1. Excellent (5): less than four absences; active and constructive participation in group discussions; an oral presentation of outstanding quality.
2. Satisfactory (3): regular attendance; an oral presentation of good quality.
3. Insufficient (1): more than four absences without proper justification; no presentation or presentation of an inferior quality.

Participants will be given a „gyakorlati jegy” (term mark) at the end of the semester; no further examination is required.

Recommended reading materials:
See also the extensive bibliography in Kuhse-Singer
ANTIBIOTIC THERAPY AND INFECTOLOGY

Held in both semesters.
Lectures: 2 hours/week
Credits: 2
Exam type: multiple choice test
Participation: min. 70% is obligatory

Obligatory elective subject for medical students already trained in microbiology, pharmacology and basic clinical subjects.
The subject gives an overview on the basic principles and practice of antimicrobial therapy. The antibiotics represent one of the most important classes of drugs that are prescribed practically in all branches of clinical medicine. It seems easy to use them and that is why we abuse them. Discussing the most important clinical features of the frequent infections, the subject shows the optimal approach to patients with infectious diseases and antimicrobial treatment.
The first two lessons discuss the specific features of antimicrobial therapy, the basic principles of empiric treatment and the pharmacokinetic/pharmacodynamic concept that substantiates the application of antimicrobials in term of choice, dosage and combination. The following seven lectures deal with the specific features of the most important infections, such as respiratory tract infections, urinary tract and intraabdominal infections, endocarditis, meningitis, sepsis. Obviously, the lecturers bring into focus the considerations concerning antibiotic therapy. In the second half of the course, some of the nosocomial infections, infections of immunocompromised hosts and zoonoses are discussed, followed by the problems of antibiotic prophylaxis and antibiotic policy.
The course is organized only in the first semester
Course director: Prof. Dr. Endre Ludwig.

The venue of course: Szent László Hospital
1097 Budapest, Gyáli út 5-7. Building N. 19 Lecture Room

Textbooks:
4. Material of the lectures online availability

Lectures:
- Basic principles of antimicrobial therapy. Microbiological diagnosis, as the basis of antimicrobial therapy. The concept of “drug of choice”
- Diagnosis of infectious diseases: clinical relevance of the various diagnostic tests
- Optimisation of antimicrobial therapy. The pk/pd approach, correlation of dosage and clinical efficacy.
- Infectious diseases with exanthemas
- Upper respiratory tract infections (common cold, acute and chronic rhinosinusitis, acute otitis, tonsiliopharyngitis). Epidemiology, the influence of age. Theoretical considerations and practice.
- Community acquired pneumonia. Epidemiology, the difficulties of etiological diagnosis. The impact of emerging bacterial resistance on the clinical efficacy of antibiotics. The modern approach and practice based on it
- Intraabdominal infections (primary and secondary peritonitis, cholecystitis). Urinary tract infections.
- Central nervous system infections. Meningitis, etiological diagnosis, antimicrobial treatment.
- Tropical diseases. HIV and AIDS.

Important note:
Attendance at 70% of the lectures is compulsory. The end semester grade is the result of the multiple choice test.

Recommended textbooks:
2. Szalka A., Tímár L., Ludwig E., Mészner Zs. (Szerk.): Infektológia. Medicina, Budapest, 2005.
4. Figures of the lectures are available electronically
BASICS OF MEDICAL CHEMISTRY

Department of Medical Chemistry, Molecularbiology and Pathobiochemistry

Lecturer: Prof. Dr. Gábor Bánhegyi

Lectures: compulsory

Credit: 1

Topics:
1. Basics of atomic and molecular structure, periodic table, bondings.
7. Electrochemistry. Oxidation and reduction, redox systems in the living cells.
12. The most important groups of organic compounds. Aliphatic and aromatic skeletons, their reactions. Repetitions of their structures.
13. The most important groups of organic compounds according their functional groups, their reactions. Repetitions of their structures.
14. Closing test. 30 multiple choice questions and 10 structures

Exam: closing test. 30 multiple choice questions and 10 structures

Note: Material of the lectures is available on the website of the Department.

Max. 3 absences are allowed.
VALUE OF ULTRASONOGRAPHY IN THE CLINICAL DIAGNOSTICS

(Lecturer: Dr. Ágnes Szebeni M.D., D. Sc.)

1. a) Basic physics of medical ultrasound
 b) Demonstration of the ultrasound laboratory; technique of ultrasound scanning.
2. a) Sonography of the liver, the spleen, the gallbladder and the bile ducts.
 b) Patient demonstrations and training
3. a) Sonography of the pancreas and the lymph nodes.
 b) Patient demonstrations and training
4. a) Invasive sonography (US guided biopsies and punctures, endosonography, intraoperative sonography).
 b) Videodemonstrations.
5. a) Urogenital sonography.
 b) Patient demonstrations and training
6. a) Small part scanning.
 b) Patient demonstrations and training
7. a) Vascular sonography
 b) Patient demonstrations and training

INTRODUCTORY LECTURES OF TRADITIONAL CHINESE MEDICINE

The topics:
1. Chinese way of thinking about medicine – Introductory lecture
2. Basic principles in Chinese anatomy and physiology (Yin-yang, Chi, meridian, points, cun, etc.) – 1 lecture
3. The twelve meridians and their points (locations and indications) – 6 lectures
4. The rules of the point selections – 2 lectures
5. The five-element theory, future trends in research and in the clinical use – 1 lecture
LIBRARY INFORMATICS – AOVKPK088_1A

Lecturer: Dr. Lívia Vasas PhD. – Central Library
Institute: Semmelweis University Central Library, 1088 Budapest
Duration: One semester, 30×45 minutes (10×3 lessons)

SUGGESTED SEMESTER 5-10.

Exam-form: Practical mark
Credit-value: 3 credit-points
Minimum/maximum group-size: 8/200

The aim of the subject:
Teaching students how to use/search in literature sources of medicine, analyse the result of their work supporting the proper competencies.

Thematic:
Medical e-catalogues, e-books, e-libraries, databases, scientific resources of internet

Assistant lecturer: Anna Berhidi, Edit Csajbók, Skultéti Attila, Szluka Péter

Student records officer:
Application deadline: September 4 -8, 2019
Precondition: There isn't.

1. Introduction, technical details, VPN access, technical details, about the history of the Central Library’s
 Homepage: www.lib.semmelweis.hu and its facilities, UpToDate, ClinicalKey, HS talks: Biomedical & Lifesciences Collections,
 EBSCOhost, ProQuest, Pharmacopoeia, Turnitin
 Dissertations: Dart Europe, Open dissertations, OATD

2. Catalogs: books, online books
 Semmelweis University catalog Hunteka: http://hunteka.lib.semmelweis.hu/search
 Online book catalog: https://lib.semmelweis.hu/nav/ekonyvek
 National Library of Medicine (Bethesda, USA)
 Worldcat: https://www.worldcat.org/
 Copac: https://copac.jisc.ac.uk/
 Books PPT

3. Scientific publishers and periodicals:
 printed/electronic/open access
 - Browser and matching searching, archive and the newest editions Characterization of periodicals/reviews/journals, ISSN, DOI, Cross-
 mark, Article metrics - Online attention
 - Publishers: Springer, LWW, Wiley, video journal: JOVE
 - Nature: https://www.nature.com/
 - BMC https://www.biomedcentral.com/
 - PLOS https://www.plos.org/, DOAJ https://doaj.org/, etc.
4. **New routes: Open Science, Open Access**
 The dangers of publishing on Open Access https://lib.semmelweis.hu/nav/open_access_general_information
 Support for Open Access Communication at Semmelweis University https://lib.semmelweis.hu/nav/open_access_tamogatas
 The Semmelweis repository https://repo.lib.semmelweis.hu/
 The concept of plagiarism, its forms of appearance, Plagiarism Search: Turnitin, Copyright questions

5. **NLM databases**: history, OpenI: https://openi.nlm.nih.gov/
 value added services: registration, advances search.
 MeSH, PMC, etc.
 Dictionary: https://www.merriam-webster.com/

6. OVID databases, online books, electronic periodicals, Evidence Based Medicine databases: the role of the EBM in research, full text journals in Ovid databases MEDLINE, PsycINFO, subject heading systems, value-added services, access to the full text version, WHO https://www.who.int/

7. Bibliographic and citation databases, search engine: Web of Science platform, Google Scholar; citations, general searching in the databases, bibliographic and citation searching on keywords, using Boolean operators, value-added services
 Scientometrics: quality of journals: Clarivate Analytics InCites JCR (Science Edition and Social Science Edition), IF: calculating Impact factor; SCImago: SJR

8. Reference Manager: EndNote, EndNote Online; the role of reference softwares in modern publishing, Literature searching: Importing and exporting records (from Web of Science, OVID Medline, PubMed) creating own records search facilities within our records and from PubMed; data handling: creating groups, filtering duplicates
 Semmelweis Knowledgebase, Scientific Discovery of the Internet: find medical information you can trust, Building search strategies, Google Scholar, Medworm

9. **Summary of the course, Test writing**

10. **Consultation, Retake the 1st/2nd test OR Renewal opportunity for each tests**
INTRODUCTION TO CLINICAL ANATOMY

Semmelweis University, Faculty of Medicine
Department of Anatomy, Histology and Embryology

Credit value : 2
Number of lessons per week: 2 lectures: 2 practical course: 0 seminars: 0
Subject type: compulsory course elective course
Academic year: 2021/2022 (2nd year 2nd semester)
Subject code: AOVANT458_1A
Name of the course leader: Dr. Székely Andrea Dorottya (associate professor)

His/her workplace, phone number: Semmelweis University, Department of Anatomy, Histology and Embryology, +36-1-459-1500/53601
Position: Course Director of the English program, Associate Professor

Date and registration number of their habilitation: 2016.06.17. 8/2016 (SzIE/ÁOTE)

Objectives of the subject, its place in the medical curriculum:
Detailed discussion of special anatomical topics with relevance to clinical subjects. Introduction to topographical anatomy with regards to imaging methods. The course is organised parallel or prior to the beginning of the clinical studies. Teaching is done in the form of lectures.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University, Department of Anatomy, Histology and Embryology
Budapest 1094, Tűzoltó utca 58.

Successful completion of the subject results in the acquisition of the following competencies:
Clear understanding of the macroscopical composition of the human body together with the position and topographical relation of organs. Identification of surface landmarks.
Recognition of anatomical entities during physical examination or medical/surgical interventions. Acquiring knowledge of surface features and/or sectional anatomy forming basis for clinical diagnostics (palpation, auscultation, etc.) and the use of radiological imaging methods. The deeper understanding and restoration of morphology&function in line with therapies and/or rehabilitation.

Course prerequisites:
Successful completion of Macroscopic Anatomy I-II. together with Microscopic Anatomy and Embryologyn I-II. (valid marks from the final examinations at the end of the 3rd semester). Good command of English.

Number of students required for the course (minimum, maximum) and method of selecting students:
Elective course, voluntary registration for students via the NEPTUN system.
Minimal headcount:10, maximal headcount: 120 students
Detailed curriculum:

REMARK:
The order of topics may change according to the availability of lecturers.

List of lectures (the exact order or topic may change upon availability of lecturers)

1. week: General introduction, surface anatomy
2. week: Anatomical aspects of radiology
3. week: Anatomical aspects of orthopedic surgery
4. week: Restorative surgery of the organs of the viscerocranium
5. week: Anatomical relevances of vascular diseases, hypertonia
6. week: Anatomical relevances of assisted reproduction
7. week: Anatomical aspects of general and local anaesthesia
8. week: Anatomical correlates of general surgery
9. week: Clinical anatomy of the mammary gland, lactation
10. week: Anatomy and neonatology, with special reference to pre-term birth
11. week: Anatomical aspects of peripheral nerve diseases
12. week: Anatomical background of angiology
13. week: Neuroanatomy of memory formation, drugs of abuse
14. week: Consultation, exam competition

Other subjects concerning the border issues of the given subject (both compulsory and optional courses). Possible overlaps of themes:
Morphological subjects including: Macroscopic Anatomy I-II., Microscopic Anatomy and Embryologyn I-II.; Physiology

Requirements for participation in classes and the possibility to make up for absences:
Weekly lectures are held regularly; lecture notes should be downloaded from Moodle. Missed classes cannot be made up for at a different time.

Type of examination:
A practical mark is earned from a written examination, topics: subject matter of the semester.

Requirements of the examination:
The examination is composed of theoretical questions on the basis of the lecture topics together with the content of the study aids uploaded in Moodle. The written theoretical examination is done using an e-learning module.
TOPIC LIST FOR CLINICAL ANATOMY (written test in moodle)

HYPERTENSION
- The most prevalent risk factor of global mortality
- The prevalence of high blood pressure in the Western countries
- The threshold of high blood pressure in Europe by home blood pressure monitoring
- BP variability types
- Reasons for measuring more then 20/10 mmH BP difference between the arms
- The most frequent form of thoracic outlet syndrome
- Paget-Schroetter syndrome
- The types of non-endocrine secondary hypertension
- Renovascular stenosis

ANGIOGRAPHY
Who is the angiographic puncture technique named after?
- In case of coughing up blood, which blood supply area is the most commonly implicated?
- What is the most effective way to test bronchial arteries?
- In the case of subclavian steal, in which artery does the flow reverse?
- How is the puncture site selected for angiography?
- Which diagnostic methods can replace angiography?
- Which blood vessels are connected by the pancreatico-duodenal arcade (or lesser arc of Riolan)?
- Which vessels are connected by the (greater) arc of Riolan?

THORAX
- Landmarks on the ventral surface of the trunk
- Bony structures limiting the superior inlet to the thorax
- Planes and levels in the thorax
- Position of the nipple
- Layers to be penetrated in thoracocentesis
- Types of pneumothorax
- “Triangle of safety” in chest drain
- Separation of the two pleural cavities
- Heart sounds
- Pericardiocentesis

MAMMA
- Structures limiting the sub (retro-)mammary space
- Tissue composition changes within the mammary gland with aging
- Montgomery glands
- Cutaneous nerves implicated in axillary block dissection
- Malignant tumor locations of the breast
- Radical mastectomies according to Halsted and Patey
- Elongation/growth of lactiferous ducts (hormones)
- Clinical (metabolic) relevance of high prolactin levels during pregnancy and breastfeeding
- Cellular procedures during involution of the mammary gland (when the breastfeeding)

DENTISTRY
- What is the difference between the anatomical and clinical crowns of a tooth?
- What does heterodontia mean?
- Which tooth has the longest root?
- What is a diastema?
- Structures present in both the peri-implant and/or peridental space
- ENT
- What innervates the tympanic membrane?
- What could decrease the width of the bony external acoustic meatus?
- Cochlear implant (placement)

DRUGS OF ABUSE
- How does drug dependence develop?
- Select the drugs of abuse
- Which dopaminergic pathway (system) is implicated in reward mechanism?
- Which of the following drugs acts via Na+ ion channels?

ORTHOPEDICS
- Which diseases belong to the field of Orthopedics?
- What causes club foot?
- Which muscle is implicated in congenital torticollis?
- What is the consequence of the presence of the omovertebral bridge?
- What is the positive effect of wearing the Pavlik harness in case of congenital hip dislocation?
- The most frequent secondary neuromuscular symptoms of cerebral palsy

NEONATOLOGY
- How long is the neonatal period?
- Classification of the neonates according to gestational age.
- How long is lanugo present?
- What is the vernix?
- Typical posture of a term infant (see the table/picture)
- What is the amniotic fluid?
- What causes oligohydramnios?
- What is the function of the surfactant?
- What are the clinical signs of a respiratory distress?
- How does the pulmonary perfusion change immediately after delivery?
NEUROLOGY
- Elements of the peripheral nerves
- Connective tissue layers surrounding a nerve fascicle
- The ratio of fascicles versus connective tissue elements
- Main types of peripheral nerve damage
- Main symptoms of peripheral nerve damage
- Perineurial barrier function
- Which cells play a crucial role in axon regeneration?
- Proximal and distal lesions in the peripheral nerves
- The carpal tunnel syndrome
- Terms in segmental innervation (dermatome, myotome)
- C8-Th1 segmental damage
- Segmental damage at L5

ASSISTED REPRODUCTION
- Definition for infertility
- Prevalence of infertility at 20-24 years of the age
- Etiology of female infertility
- Types of ovulatory infertility
- Reasons for anatomical infertility in females
- Pretesticular causes for male infertility
- Testicular causes for male infertility
- Histerosalpingography (HSG)
- Normal spermiogram
- Azoospermia, oligospermia, etc. (see table)
- Forms of assisted reproduction (in the broad sense)
- Source of therapeutical urogonadotropins
- Which endocrine centres/glands may be implicated in the hormonal treatment of anovulatory infertility?
- When was the 1st test tube baby born (i.e., the 1st successful IVF procedure done)?
- What does ICSI stand for?
- Indications of preimplantation genetic diagnosis
- Success rate of IVF

Method and type of evaluation:
The result of the examination (i.e. a practical mark) is calculated on the basis of the scores of the test using a 5 scale grading system. Passing level: 51%

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
To be downloaded from the homepage of the Department of Anatomy, Histology and Embryology (http://semmelweis.hu/anatomia) or from Moodle.
CLINICAL GENETICS

1st Dept. of Obstetrics and Gynecology
First Semester

- The fundamentals of classical genetics
- Polygenic inheritance, multifactorial determination
- General cytogenetics
- Basic principles of embryology and teratology
- Clinical molecular genetics
- Amniotic fluid cell culture for cytogenetic analysis
- Alphafetoprotein (AFP)
- Genetic amniocentesis
- Pathology of multiple pregnancy
- Genetic counseling
- General aspects of decision making regarding the fate of pregnancy
- Elements of phenotype analysis
- Embryopathology and fetal pathology
- Sphingolipidoses
- Mucopolysacharidoses and mucolipidoses
- Disorders of carbohydrate metabolism
- Diseases of amino acid metabolism
- Haemophilia and other bleeding disorders. Congenital immunodeficiencies. Congenital hypothyroidism. Cystic fibrosis
- Hereditary muscular and neurological diseases
- Congenital disturbances of ossification
- Neural tube defects (NTDs). Hydrocephalus. Other craniospinal malformations
- Thoracic and abdominal malformations
- Cystic kidney disease. Obstructive uropathies
- Down syndrome. Further autosomal trisomies
- Duplication and deficiency (deletion) syndromes
- Fragile X mental retardation syndrome (MartinBell syndrome)
- Disturbances of sex differentiation.
- Prenatal screening for fetal malformations and trisomies
ANESTHESIOLOGY AND INTENSIVE THERAPY

Dept. of Anesthesiology and Intensive Therapy

First Semester

Lectures

1. Central venous access and other invasive procedures: indications, performance and pitfalls
2. Advanced cardiac and hemodynamic monitoring. Swan-Ganz catheter, PiCCO, measured and calculated parameters, relevancies (45’)
 Advanced antiarrhythmic therapy: decision between electric and pharmacological treatment (45’)
3. Polytrauma, head trauma, chest trauma
4. Ultrasound: stethoscope of the 21st century (45’)
 Ultrasound in regional anesthesia (45’)
5. Acute pancreatitis (45’)
 The confused patient: principles of management (45’)
6. Pathophysiology of thermoregulation: malignant hyperthermia, NMS, hyper- and hypothermia syndromes, fever in the ICU (45’)
 Anesthesia for one-day-surgery (45’)
7. Principles of antibiotic therapy in the ICU (45’)
8. Principles of antibiotic therapy in the ICU (45’)
9. Difficult airway management (45’)
 Special respiratory therapy: high frequency and jet ventilation (45’)
10. Organ transplantation. End stage organ failure, long term mechanical support, organ transplantation, donor management
11. (Respiratory) Physiotherapy in the ICU
12. CRM: aviation safety and human factors in healthcare
13. Obstetrical intensive therapy: toxaemia, HELLP, Mendelson’s syndrome, pulmonary embolisation, amniotic fluid embolisation (35’)
 Pediatric anesthesia (35’)
 MCQ test (compulsory!) (20’)

Topics may change depending on lecturers’ availability.
NEONATOLOGY

Course Director: Prof. Dr. Istvan Seri

Second Semester

Credits: 2
Lessons: 28
- Principles of patient care in the NICU
- Resuscitation of the newborn
- Neonatal respiratory pathology: Pathophysiology
- Neonatal respiratory pathology: Diagnosis/Treatment
- Neonatal shock: Diagnosis and treatment
- Complications of severe prematurity: P/IVH & PVL
- Perinatal asphyxia/Neonatal Follow-up
- Congenital heart disease: Diagnosis and treatment
- Surgical conditions of the neonate
- Fluid-electrolyte & acid-base homeostasis
- Neonatal imaging
- Closing Session/Exam

Aim of the subject and its place in the curriculum: The Neonatology Elective course introduces basic information on neonatal physiology, pathophysiology and the diagnosis and clinical management of the most common neonatal conditions. The course deepens the knowledgebase of the students in pediatrics in general and neonatology in particular.

Competencies gained upon the successful completion of the subject: Recognition of the most common neonatal conditions based on clinical, laboratory and imaging information and gaining a basic knowledge on neonatal resuscitation.

Prerequisite(s) for admission to the subject: Ongoing enrollment in or completed session of the pediatric curriculum.

Minimum and maximum number of students registering for the course: 8-30

Requirement for acknowledging the semester (signature): Attendance of 60% of lectures.

Type of the examination: Multiple-choice written test exam at the end of the course.

Type and method of grading: Pass (60% of questions correctly answered) or fail (<60% of questions correctly answered) at the final exam. Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material): Uploaded presentation slides on the university website following the lectures.
COURSE ON HUMAN LACTATION & BREASTFEEDING – THEORY, SUPPORT AND PROMOTION

Credits: 2
Lessons: 28
Requirement: Medical Physiology II.
Academic teachers:
Miklos Szabo MD, PhD, Med Habil Neonatologist, Chief of neonatal services
Erzsébet Várady MD Neonatologist, IBCLC

Background and importance of the topic
Optimal infant feeding is one of the most efficient interventions to improve child health and psychosocial wellbeing of mother and child. The gold standard of infant feeding is exclusive breastfeeding/human milk feeding for the first 6 months and while introducing complementary feeding at around 6 months, continuing breastfeeding at least in the first year of life, preferably until 2 years of age.
To achieve this goal, it is paramount, that all health professionals, regardless of their subspecialty are equipped with sufficient knowledge, competence and skills to help families in their decision on infant feeding, establishment, maintenance and support of breastfeeding and treatment of breastfeeding complications. The WHO, UNICEF and the Academy of Breastfeeding Medicine has called for action, that theory and evidence-based practice of breastfeeding should be incorporated into the medical school curricula.

Topics of the 14 session course

1. The importance of breastfeeding/human milk feeding for the child, the mother and the society. Risks of not breastfeeding and less than optimal breastfeeding. Definitions related to breastfeeding. Hungarian data on breastfeeding rates, international goals. Communication skills from the aspect of the breastfeeding mother.
5. The golden hour – skin to skin (S2S) contact between mother and infant immediately after birth. Facilitation of S2S care in the delivery room or operating room. Beneficial effects and safety issues. Observation during the golden hour. Sudden unexpected postnatal collapse (SUPC) – risk factors, prevention.
7. Consultation, in small groups and elaboration of homework mini reviews.
12. Maintenance of lactation during separation (illness, returning to employment/school). Methods of breast milk expression (hand
expression, using breast pump, “hands on pumping”, “power pumping”). Cleaning breast pump kits and infant feeding items. Handling and storage of breastmilk.

13. Preparing to breastfeed during pregnancy. Topics to share with the mother (individual counseling by health professional and breastfeeding class). Contraception for the breastfeeding mother. Lactation amenorrhea method – conditions of efficacy.

14. Consultation, in small groups and elaboration of homework mini reviews and virtual practical session: online participation in streaming of lactation consultation with patients

Aim of the course: the student acquires the following theory and practice-based competencies:

Theory based competencies

1. Knowledge about the basic anatomy (normal and pathological) and physiology (including hormones related to breastfeeding) of the breast and the mechanism of breast milk production and secretion.

2. Describe contraception related to breastfeeding.

3. Describe the mechanism of sucking on the breast and compare the mechanism of breast and bottle feeding.

4. Understand, what is the role of breastfeeding and human milk feeding in maintaining health and prevention of illnesses in the mother and child and the potential problems related to artificial (formula) feeding.

5. Understand, why exclusive breastfeeding is important and what is it’s association with optimal health outcome.

6. Understand the advantages of S2S contact immediately after birth. Describes preventive measures for SUPC.

8. Knowledge about potentially adverse outcomes of the infant, mother and society in those cases, when the infant is not breastfeeding.

10. Understand the possible impact of medical interventions and drugs during labor and childbirth on the outcome of breastfeeding. The student is aware of it, how to support the mother in breastfeeding after caesarean section.

11. Understand the role of behavioral, social, cultural and environmental factors in the breastfeeding-related decision and practice.

Skill based competencies

1. Obtain detailed breastfeeding history and perform breastfeeding-related examination of the breast.

2. Describe the effect of intrapartum interventions and drugs on breastfeeding. Advise the mother on breastfeeding after caesarean section.

3. Facilitation and support of the golden hour.

4. Recognize the correct position, attachment on the breast, the signs of milk transfer and can suggest corrections, if needed.

5. Counsel mothers about establishing and maintaining lactation in case of separation (illness, returning to school/employment).

6. Counsel mothers on the normal course of lactation and on the prevention of potential complications (not enough breast milk, painful nipple, jaundice, etc.).

7. Discuss family planning options with the breastfeeding mother.

8. Describe signs of adequate milk intake by the infant and guide the mother, in case she has the perception not to have enough milk.

9. Understand the need to encourage the mother to breastfeed after introduction of complementary feeding and after one year of age.

10. Understand the normal growth pattern of the breastfed infant.

11. Discuss with the pregnant women the beneficial effects of breastfeeding for baby and mother, share with her information on the expected care in the birthing facility and give practical advice on breastfeeding.

12. Explain, why is the Code protecting breastfeeding and how to follow the Code in the birthing facility.
Exam:
Written – Test
Grading:
 88 % – 100 % Excellent
 76 % – 87 % Good
 64 % – 75 % Satisfactory
 51 % – 63 % Pass
 Under 51% – Fail

We intend to check the efficacy of the course with pre and posttest.

Resources:
CLINICAL ENDOCRINOLOGY

2nd Department of Internal Medicine

Second Semester

Lectures

- Introduction to clinical endocrinology. Case Presentations.
- Use of hormone measurements in the diagnosis of endocrine diseases.
- Molecular genetics of endocrine diseases.
- Radiological imaging methods of endocrine organs.
- New developments in surgical treatment of endocrine tumors.
- Case presentations: pituitary gland disorders.
- Case presentations: adrenal gland disorders.
- Case presentations: thyroid gland disorders.
- Case presentations: parathyroid gland disorders.
- Sex determination and its disorders.
- Hormone-replacement therapy
- Inherited disorders presenting with endocrine tumors.
- Osteoporosis.
- Endocrine hypertension.
EMERGENCY IN SURGERY

Course Director: Prof. Dr. Pál Ondrejka

Second Semester

Purpose of the subject: In the practice of surgery is very important the early detection of emergency cases. For this reason the collaboration with the representatives of other medical professions is indispensable. The goal of our lectures is to present the appropriate procedures of physical examination, laboratory and radiological findings in order to recognize the correct diagnosis; to know what is necessary, what is possible and what is enough to do in a case of surgical emergency; when to ask for a consultation for adequate therapy.

The inborn errors, injuries, inflammations and tumors of the organs are also presented. In order to make the lectures more interesting we are going to review the relevant episodes in history of medicine and final arts.

Main topics:

- Introduction, life threatening disorders in surgery, emergency in gastrointestinal surgery,
- acut abdomen.
- Gastric, duodenal, small bowel emergencies.
- Peritonitis acuta.
- Abdominal trauma.
- Surgery of the wound, infections, anaerob infections in surgery (MRSA, Furnier, tetanus, anaerob)
- Small bowel obstruction, large bowel obstruction.
- Esophageal emergencies.
- Biliary emergencies.
- Complications of peptic ulcer.
- Gastrointestinal bleeding.
- Pancreatitis acuta.
- Pancreatitis chronica.
- Appendicitis, diverticulitis, sigmoiditis, typhlitis.
- Surgical infections.

Minimum 80% attendance rate for getting the signature is obligatory.
CLINICAL HEMATOLOGY

2nd Dept. of Internal Medicine

Course Director: Prof. Dr. Tamás Masszi

Second Semester

Topics of interest in the field of hematology, state of the art of various hematological and hemato-oncologic diseases

2 hours per week

Main topics:

1. Place and significance of hematology. Normal blood production, basics of hematologic diagnosis.
2. Classification of anemias, diagnosis.
3. Myelodysplastic syndromes.
4. Diagnosis and treatment of acute leukemias.
5. Acute leukemias of the childhood.
6. Classification and treatment of lymphomas I.
7. Classification and treatment of lymphomas II.
 Prophylaxis and treatment of venous thrombosis.
10. Dermatologic manifestations of hematological diseases and hematological symptoms of dermatologic diseases.
11. Immunocytopenias.
14. Infectious complications of hematological diseases
The history of medical science, considered as a part of the general history of civilization, helps us to describe and understand how people in different times and cultures experienced and dealt with these fundamentals of human existence. This knowledge can inform debate about the present and the future, and help to bring medicine and science to a wide audience. All human societies have medical beliefs that provide explanations for birth, death, and disease. Many cultures in ancient times treated illnesses with magic and herbal remedies. Ancient Egyptians thought that their gods healed them. The ancient Greeks pursued medicine as a science. Hippocrates, the most famous physician of the time (c. 400 B.C.), believed that diseases had natural causes, not supernatural ones. By the Middle Ages, Europe was hit with a terrible epidemic that killed millions of people called the plague, or Black Death. The Renaissance marked a new period of interest in art and science throughout Europe. Despite new medical discoveries, many doctors still practiced old ways. Most sick people could not afford to see a trained physician. Instead, they consulted midwives who assisted with childbirths and made herbal remedies to treat illnesses. Minor surgeries were not done in the hospital but at the local barbershop. Medical research and training improved in the 18th century but there were still no cures for diseases like smallpox, a disease that killed millions of people over thousands of years. Middle Eastern doctors gave people mild doses of the smallpox to combat the disease. The portrayal of the history of medicine becomes more difficult in the 19th century. Discoveries multiply, and the number of eminent doctors is so great that the history is apt to become a series of biographies. Nevertheless, it is possible to discern the leading trends in modern medical thought. In the beginning of 20th century the research and technology have expanded medical knowledge and improved medical practices like surgery. Today, doctors are able to perform less invasive surgical procedures. The science of medicine has progressed dramatically in just the last 50 years. Career opportunities in health care have also expanded. There is a need for more skilled medical professionals, not only in hospitals, but in dentist and doctors’ offices, research labs, rehabilitation centres, mental health clinics, nursing homes and even schools.

Topics/week

13. Consultation

Important: 3 absences are allowed. Doctor’s certificate is required to certify absence from the exam.

Exam requirement: written test

Textbook:
CLINICAL CARDIOVASCULAR PHYSIOLOGY

AOVKIK102_1A

Elective course for medical students in the 3rd, 4th and 5th years.

The purposes of the course:
- To refresh and extend – in selected topics – the basic knowledge related to normal and pathological functions of the human circulatory system
- To integrate the latest scientific results related to different organization levels – from molecular physiology to system physiology – of the cardiovascular system.
- To discuss and demonstrate measurement principles and techniques, as well as physiological and pathophysiological mechanisms related to the application of modern non-invasive cardiovascular diagnostic procedures in the clinical practice.

Program:
1. Investigation of blood pressure regulation by use of transgenic technologies
2. Complement-related immunological and cardiopulmonary responses (CARPA). Modern methods for measuring and monitoring arterial blood pressure
3. Hemodynamic background of normal and pathological cardiovascular functions
4. Pathophysiology of chronic venous insufficiency
5. Physiological mechanisms supporting venous return of blood; orthostatic tolerance
6. Recent results in control of cerebral blood supply, physiological and clinical aspects
7. Clinical physiology of the microcirculation
8. Interventional radiological procedures on arteries and veins
9. Age related changes in the vascular system, role of sexual hormones
10. Role of endothelial mechanisms in clinical symptoms
12. Biomechanical properties of cerebral aneurisms, their computer modeling
13. Visit to the MRI cardiovascular diagnostic unit of the Semmelweis University Heart Center
14. Ultrasonic investigation of the human heart: theoretical background; 2D-, M-, Doppler-mode, color Doppler imaging, echocardiography; diagnostics of valve insufficiency and coronary diseases. Duplex ultrasonic investigation of large vessel function: measurement of vessel wall elasticity, Doppler-indexes

Students who meet the following criteria will receive 2 credit points: regular attendance of classes and successful written exam. Material for the exam includes lecture topics and textbooks suggested by the lecturers.
Elective course for medical students in the 3-6th years
Course director: Dr. Habil. László Dézsi, Private Professor of Physiology, Semmelweis University

The purpose of the course: To review the theory and practice of modern measuring methods in experimental and clinical medicine, and providing practical knowledge to medical students on cardiorespiratoric and neurophysiological measurements. The course is based on but further extends the material delivered during the course of Medical physiology. Throughout the lectures we put an emphasis on potential methodological errors of measurements and examinations, as well as how to avoid them.

Detailed Program:
1. Introduction. Biomedical engineering. Design and safety requirements of biomedical equipments
2. Computerized data acquisition and analysis. Telemetry systems
3. General metrology. Basics of measurement and control theory
4. Home monitoring of cardiovascular health status. Determination of blood glucose and tissue glucose concentrations
5. Sampling of continuous signals. Digitizing analogue signals
6. Direct and indirect methods to determine cardiac output and peripheral blood flow
8. Significance of objective studies in the practice of audiology. Neurophysiological measurements (action potentials, brain stem evoked potentials)
10. Measuring blood pressure in the lab and clinics (invasive and noninvasive methods)
11. Complement-related immunological and cardiopulmonary responses
12. Studying brain function by functional imaging systems
13. Experimental methods to study nociception
14. Investigating the electrical activity of the heart. Design of ECG amplifiers

Acknowledgement of the course: Prerequisite of the course is the completion of the first 2 years (Theoretical module). Regular attendance (maximum 3 absences) is required. Signature in the Index and 2 credit points will be awarded after successful exam. Source: material of the lectures, supplementary literature will be provided by the lecturers.

Applications: via Neptun system. Contact person: Dr. László Dézsi (e-mail: dezsi.laszlo@richter.hu; phone: 06-1-431-4823; phone/fax: 06-72-536-019). The application of min. 5 students is required.
CLINICAL PHYSIOLOGY OF RESPIRATION AND RESPIRATORY DISEASES

AOVKIK099_1A

Elective course for medical students in the 3rd, 4th and 5th years.
The aims of the course are to strengthen knowledge on basic physiological principles related to respiration, summarize the most important aspects of cardiorespiratory adaptation in sport activities and also its changes in respiratory diseases and to provide integrated information about the physiological and pathophysiological background of the most important respiratory disorders in light of results from cutting edge research.

Program:

1. Physiological function of the respiratory system
2. Smoking, e-cigs, supporting cessation
3. Lung development
4. Inhalation therapy
5. Sleep related respiratory disorders.
6. COPD and COPD exacerbation
7. The lung in systemic diseases
8. Cystic fibrosis
9. Pulmonary circulation
10. Bronchoscopy
11. Cardiovascular exercise testing, COPD
12. Asthma bronchiale
13. Non-invasive ventilation
14. Chest imaging

Acknowledgement of the course: regular attendance (maximum 3 absences) is required; signature in the Index, and 2 credit points will be provided
MEDICINAL, EPIDEMIOLOGICAL, AND SOCIAL ASPECTS OF DRUG ABUSE

Department of Pharmacology and Pharmacotherapy
Course director: Prof. Dr. Susanna Fürst

Second semester
Credit: 2

Topics:

- **Psychomotor stimulants.** Pharmacological action of amphetamine, its derivatives (methamphetamine, MDMA-“Ecstasy”, etc.) and cocaine. Role of the dopaminergic transmission in the drug abuse.
- **Hallucinogens. Ethanol.** Pharmacological action of hallucinogens, (LSD, mescaline, phencyclidine, etc.). Role of the serotonergic transmission in hallucination. Characteristics of ethanol dependence.
- **Marihuana (hash, THC).** Pharmacological action of cannabinoids. Cannabinoid receptors and their endogenous ligands.
- **Epidemiological data.** Significance of epidemiological data collection. Forms of questionnaires. Tendency of drug abuse, national (Hungarian) and international data. High risk groups.
- **Psychotherapy.** Individual and group therapy. The problems of long-term rehabilitation. Counselling.
- **Drug abuse and society.** Legal issues. Statutory rules and regulations. Human rights.
- **Role of public and civil crystalline.** Role, task and potential of governmental and non-governmental crystalline in the prevention of drug abuse.
- **Detection of drug consumption.** Laboratory analysis of blood and urinary samples. The role of objective laboratory control in prevention and reduction of drug abuse.
- **Psychosocial questions of drug abuse.** Psychosocial aspects. Self-destructive attitudes. Psychological and social background. Role, task and possibilities of the medical doctor.

Absence: Maximum number of absences is 25 percent of the lectures in the semester
Absence justification: Medical certificate is accepted
There is no midterm

Requirement: Participation at the lectures

Evaluation: On the base of the scores of the written test

Exam: written test
The written test is on the last lecture, registration has to be done through the NEPTUN system

How to modify the exam date: Personal discussion for another appointment

Exam absence justification: Medical certificate is accepted
BASICS OF FAMILY MEDICINE

Department of Family Medicine

Director: Dr. Péter Torzsa

Family medicine as a specialty
Past and present of family medicine in Hungary
Daily routine of family doctor
 Dr. Kalabay László
Doctor-patient relationship in family practices. Communication skills
 Dr. Torzsa Péter
Emergency care in family practice
 Dr. Szabó János
Cardiology and prevention in family practice
 Dr. Simon Judit
Diabetes mellitus in family practice
Optimal treatment of diabetes mellitus
 Dr. Dani Vilmos
Prevention program in family practice
Optimal treatment of hypertension
 Dr. Torzsa Péter
Primary care in cities
 Dr. Torzsa Péter
Primary care in the countryside
 Dr. Szabó János
Care of gipsy patients
 Dr. Horváth Péter
Medical ethics and law
 Dr. Vajer Péter

Continuing home care
Rehabilitation
Terminal illnesses
Summary
 Prof. Dr. László Kalabay
 Dr. Péter Torzsa
HISTORY OF THE MEDICAL PROFESSIONALISM

Lecturer: Dr. Péter Balázs

Class Sessions: Medical professionalism as an ethical norm is an ancient behavioural pattern and theoretical construction alike based on sacral calling. Consequently, roots of the modern professional mythology may be traced back to the late Neolithic age, but the whole framework was systematized first in the old Egyptian and Mesopotamian culture. Since the Hippocratic era, the medicine was based on teachings of natural sciences and the Middle Age joined the medicine to the university faculties, but only the Enlightenment provided first the social environment for a de-sacralized professionalism, nevertheless it copied mutatis mutandis exactly the ancient religious patterns. General part of the topic is concerning the onset of professionalism while discussing different manifestations and transitions related to ideologies, socio-economic circumstances and scientific teachings from the Neolithic age down to the latest market economies. Specific part demonstrates milestones and historic ages, which were decisive in this proceeding: Old Egypt, Mesopotamia, old age Judaism, early and consolidated Christianity, impact of Islam on Europe, Reformation of the Roman Catholic church, Enlightenment, the Communist ideology and the social market economy.

Attendance at lectures, options for additional lectures:
Basic requirement: attendance at 8 sessions. In case of vis maior non-attendance of more students at a specific session, additional lecture is available.

Justification for non-attendance at lectures
Up to 2 sessions no need for any certificates, missing more than 3 sessions, means automatic dropping from the course.

Justification for non-attendance at the exam
Irrelevant item as the exam is writing an 2000 words essay or holding a 10 minutes presentation during the classes.

Control of knowledge acquired within the time-frame of sessions
No control during the session period

Requirements for confirming the session attendance
Attendance sheet has to be signed at all sessions.

Preliminary and final marks
There are no preliminary marks only final marks at the end of the course.

Type of exam
There are two options
1) 2,000 words essay sent to lecturer by the last teaching day of the semester.
2) Short oral presentation (10 minutes) held during the last 3 sessions of the course.

Entering for examination
There is no need to register for exam in the Student Administration System (NEPTUN)

Modification of data entered for examination
There is no need to register for exam in the Student Administration System (NEPTUN)

Justification for non-attendance at the exam
Irrelevant because of type of exams detailed above.

Note on readings
Basic course information is available as ppt-file for all attending students together with links of suggested electronic sources via Internet.
HEALTH INFORMATICS

Institute of Digital Health Sciences

Credit: 2
Lecture: 2 hours/week

<table>
<thead>
<tr>
<th>Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Classification and Coding Systems</td>
</tr>
<tr>
<td>2. ICD-10 Coding System</td>
</tr>
<tr>
<td>3. Electronic patient's Record</td>
</tr>
<tr>
<td>4. Electronic patient's Record</td>
</tr>
<tr>
<td>5. DRG System</td>
</tr>
<tr>
<td>6. Hospital Information Systems</td>
</tr>
<tr>
<td>7. WEB 2.0</td>
</tr>
<tr>
<td>8. WEB 2.0 Solutions in Health Care</td>
</tr>
<tr>
<td>9. Introduction to Health Databases</td>
</tr>
<tr>
<td>10. Oncology Database</td>
</tr>
<tr>
<td>11. Evaluation of Country data. Presentation</td>
</tr>
<tr>
<td>12. Evaluation of Aggregated data</td>
</tr>
<tr>
<td>13. Principles of Documentation Making</td>
</tr>
<tr>
<td>14. Documentation of Breast cancer: case study</td>
</tr>
</tbody>
</table>

Self work: Stomach Cancer Documentation (data collection, evaluating, presentation, documentation) Deadline: half semester. Sending: via Internet
JEWISH MEDICAL ETHICS I - II.

Institute of Behavioral Sciences
Course Director: Rabbi Baruch Oberlander

Credit: 4 credits (2 credits for each semester; I and II)

Attendance at 75% of lectures is compulsory. Missed lectures cannot be made up for. In case of missing more than 25% of lectures (3 lectures) a note from a healthcare professional is required.

Semester grade requirement: A written report (paper) based on list of topics and recommended reading material.
Successful completion of semester I is the prerequisite of signing up for semester II.

Obligatory: Handouts given during lectures
Recommended:
Fred Rosner: Pioneers in Jewish Medical Ethics, Jason Aronson, New Jersey, 1997
Rabbi Moshe Tendler-Fred Rosner: Practical Medical Halachah, Association of Orthodox Jewish Scientists, New Jersey 1990
Fred Rosner: Medicine and Jewish Law II, Jason Aronson, New Jersey, 1993

Semester I.

1-2. Lecture: The religious orders and the duty of saving a life
3-4. Lecture: Doctors and God – The function of healing and prayer in Jewish ethics
5-6. Lecture: Euthanasia – The questions of death and dying in society
7-8. Lecture: Smoking and use of light drugs from the aspect of Judaism
9-10. Lecture: Medical malpractice in the light of Jewish law and ethics
11-12. Lecture: The possibilities for artificial insemination in Jewish law
13-14. Lecture: The advantages, disadvantages and conditions of cloning

Semester II.

1-2. Lecture: Genetics and Jewish law – What rights do we have over our gene pool?
3-4. Lecture: Genetics and Jewish law – The problem of the gene manipulated food products
5-6. Lecture: Siamese twins – The question of valuation between two living persons
7-8. Lecture: Parasolvency – What is the best method to compensate the doctor?
9-10. Lecture: Contraception in Jewish law
11-12. Lecture: Permitted and prohibited methods of organ transplantation
13-14. Lecture: The questions of DNA identification in Jewish law
CLINICAL ONCOLOGY

– elective for students in the 4th and 5th year
Course Director: Prof. Dr. Zsolt Tulassay

2 hours/week, 2 credits

2nd Department of Internal Medicine

- Basic principles of clinical application of chemotherapy, principles of immunotherapy and endocrine therapy.
- Cancer screening: principles, gastrointestinal, gynecologic, breast, lung.
- Specialized techniques in cancer management: vascular access, interventional radiology, RFA photodynamic therapy, molecular imaging and functional imaging of cancer.
- Cancer of head and neck: molecular epidemiology, treatment and rehabilitation.
- Cancer of the lung: molecular biology, NSCLC, SCLC.
- Cancer of esophagus and stomach: stage directed multimodality treatment.
- Pancreatic cancer: clinical presentation, evaluation, treatment of resectable and advanced diseases.
- Cancer of the liver: etiology, screening populations, clinical management, systemic therapy, regional therapy, radiotherapy.
- Cancer of unknown primary site: histologic types of CUPS, management of CUPS.
- Immunosuppression related malignancies: AIDS, transplantation, chemotherapy.

The lecturers of the elective are the oncologists of Semmelweis University.
ORGAN TRANSPLANTATION

First Semester

Department: Faculty of Medicine, Department of Transplantation and Surgery

Time: 14x90 minutes
For semesters: 7, 9
Type of exam: written
Credits: 2
Minimum/maximum number of students: 20/140

Course thematics:
1. Introduction - History, Terminology, Organ Donation
2. Pediatric Kidney Transplantation
3. Histocompatibility, Immunologic Aspects and Immunsuppression
4. Kidney Transplantation Indication, Operation, Results, Complications
5. Liver Transplantation
6. Pediatric Liver Transplantation, Hepatocyte Transplantation
7. Follow-up of the Transplant Patient
8. Small Bowel and Multiorgan Transplantation
9. Pancreas and Islet Cell Transplantation
10. Lung Transplantation
11. Heart Transplantation
12. Radiological Aspects of Transplantation
13. Ethics of Transplantation - Case reports
14. Terminal Examination

Sign up: through the Neptun system
Deadline of sign up: September 1
INFLAMMATION BIOLOGY

Department of Genetics, Cell and Immunobiology

Course director: A. Kristóf Fülöp, PhD

Prerequisite subject: Immunology, Molecular Cell Biology II.

Credits: 2

In Every Second Academic Year

Lectures (2 hours per week):

- The place of inflammatory processes in the immune response and in the health science
- Molecular mechanisms in the induction of acute inflammation
- Inflammatory cells I.
- Inflammatory cells II.
- Chemotaxis and chemokines in the inflammation
- The systemic acute phase reaction and the termination of inflammation
- Histaminology
- The systemic inflammation
- Chronic inflammatory diseases I.
- Chronic inflammatory diseases II.
- Genomics of inflammation and asthma bronchiale
- Inflammation, regeneration and tumorigenesis
- Inhibition of inflammation, biological therapies
- Review and consultation

Attendance of a minimum of 75% of the lessons is necessary for the end-term signature.

Exam: written test in the exam period.

Literature: see on the homepage

Homepage: http://gsi.semmelweis.hu
GENETICS OF SEX

Department of Genetics, Cell and Immunobiology

Course director: Dr. Sára Tóth
No Prerequisites
Credits: 2

Second Semester

Lectures (2 hours per week):

1. Genetic background of sex determination; asexual and sexual reproduction; reproductive strategies.
2. From sex determining gene to sex chromosome
3. Male and female sex determination
4. Abnormalities in sex determination I.
5. Abnormalities in sex determination II.
6. Abnormalities in sex determination III.
7. Mechanism and role of X inactivation
8. Epigenetic effects; genome imprinting.
9. Causes of male infertility. Y chromosome mutations and ICSI.
10. Importance of Y chromosomal and mitochondrial polymorphisms in population genetics
11. Influence of sex on heredity
12. Aggressivity and sex
13. Genetics of sexual orientation
14. Ecology and sex; role of endocrine disruptors

Attendance of a minimum of 75% of the lessons is necessary for the end-term signature. No possibility to make up of absences.

Exam: no midterms, practice grade

Core texts: Chapters from Strachan & Read: Human Molecular Genetics 2nd Ed. and Gilbert: Developmental Biology 8th Ed. Both are downloadable from Pubmed Bookshelf.

Lecture presentations and additional texts are available on the homepage: www.dgci.sote.hu

Homepage: http://gsi.semmelweis.hu
EPIGENETICS

Department of Genetics, Cell and Immunobiology

Course directors: Dr. Sára Tóth
Credits: 2

First Semester

Lectures (2 hours per week):

1. Timeline of epigenetics; levels of epigenetic changes; targets of epigenetics
2. DNA methylation; de novo and maintenance methylation; Dnmt interactions
3. Histone modifications; histone code; histone modifying enzymes
4. Polycomb and trithorax complexes; Methylated DNA binding proteins
5. Transposons, and non-coding RNAs in epigenetic regulation; RNAi
6. Genome imprinting; skewed X inactivation their connection to DNA methylation
7. Epigenetic changes during early development and gametogenesis; Epigenetic consequences of cloning and ART
8. Transgenerational epigenetics; epigenetics of endocrine disruptors; maternal behaviour and its epigenetic consequences
9. Paramutation, transvection and mitotic bookmarking
10. Role of epigenetics in carcinogenesis; epigenetic therapy in cancer
11. Epigenetics in aging and autoimmunity
12. Epigenetic changes in diseases of the central nervous system
13. Methods used for the detection and analysis of epigenetic alterations.

Important notes:
Only for third and upper year students. There are no midterm exams. Attendance of 75% of lectures is necessary for the end-term signature. Exam: Written or oral exam (depending on the number of students).
No possibility to make up of absences.

Lecture presentations and additional texts are available on the homepage: www.dgci.sote.hu
Homepage: http://gsi.semmelweis.hu
CHEMOTAXIS – its significance in biology and clinical sciences

Department of Genetics, Cell and Immunobiology

Course director: *Dr. László Köhidai*

Credits: 2

Second Semester

Lectures (2 hours per week):

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Migratory responses of cells – General significance of chemotaxis in biology</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>2.</td>
<td>Phylogeny of signaling molecules and their receptors with special respectial to chemotaxis</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>3.</td>
<td>Chemotaxis in invertebrates and vertebrates</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>4.</td>
<td>Chemotaxis in Inflammatory cells I.: Antigen presenting cell, monocytes-macrophages, eosinophils and neutrophils</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>5.</td>
<td>Chemotaxis in bacteria - A well studied signaling pathway</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>6.</td>
<td>Genetical backgrounds of bacterial chemotaxis</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>7.</td>
<td>Inflammation and chemotaxis</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>8.</td>
<td>Immunological aspects and their clinical implications in general</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>9.</td>
<td>Phagocytosis: the target reaction of chemotaxis</td>
<td>Szabó Rita, PhD</td>
</tr>
<tr>
<td>10.</td>
<td>Chemotactic ligands – Characterization of their genomics and proteomics</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>11.</td>
<td>Chemokines</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>12.</td>
<td>The optimal chemotactic ligand</td>
<td>Kohidai László, MD, PhD</td>
</tr>
<tr>
<td>13.</td>
<td>Clinical approaches – Tumor biology</td>
<td>Láng Orsolya, MD, PhD</td>
</tr>
<tr>
<td>14.</td>
<td>Does persist ‘Life’ without ‘Chemotaxis’?</td>
<td>Kohidai László, MD, PhD</td>
</tr>
</tbody>
</table>

Important notes:

Prerequisite: Medical Chemistry.

Max. allowed absences: 3. Attendance of 75% of lectures is necessary for the end-term signature.

One individual oral presentation (not for grade) is compulsory.

Exam: oral for practice mark

Possibility to make up of absences from the material on the website: www.chemotaxis.usn.hu and www.dgci.sote.hu

Homepage: http://gsi.semmelweis.hu
NEUROSURGERY

Semmelweis University, Faculty of Medicine
Name of the managing institute (and any contributing institutes):
Department of Neurosurgery
Name of the subject: Neurosurgery
Credit value: 2
Number of lessons per week: 2 lecture: 14 practical course: - seminar: -
Subject type: elective course
Academic year: 2022/2023
Subject code: AOVIDS279_1A
Name of the course leader: Prof. Péter Banczerowski
His/her workplace, phone number: SE- Dept. of Neurosurgery, 1145 Bp., Amerikai út 57.,
+361-467-9325
Position: Head of Department
Date and registration number of their habilitation: 2010, reference number: 289

Objectives of the subject, its place in the medical curriculum:
Neurosurgery is a medical specialty concerned with the prevention, diagnosis and treatment of complex neurological disorders. Neurosurgeons deal with pathologies of the central and peripheral nervous system. There are several subspecialties in neurosurgery. In neurotraumatology, cranial and spinal injuries caused by an external mechanical forces are treated. Neuro-oncology is an important and developing field in neuroscience, that primarily deals with diagnosis and treatment of both primary central nervous system tumours and complications of systemic cancer. Vascular neurosurgery involves the treatment of abnormalities of blood vessels of the brain and spinal cord. Neurological spine surgeons treat several degenerative, neoplastic and vascular pathologies involving the bony spine or the neural structures. Neurological spine surgeons rather use minimally invasive operative techniques in order to minimize hospital stay and tissue damage. Functional neurosurgery involves the restoration of neurological condition and function. Pediatric neurosurgery is also a subspecialty and it aims to treat children with operable disorders of the nervous system.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
SE- Dept. of Neurosurgery, 1145 Bp., Amerikai út 57., Library

Successful completion of the subject results in the acquisition of the following competencies:
In our institute students can experience the various clinical presentations of central and peripheral nervous system abnormalities. We are able to introduce the diagnostic algorithm and special operative techniques with which they gain practical knowledge about neurology and neurosurgery.

Course prerequisites:
Medical Imaging

Number of students required for the course (minimum, maximum) and method of selecting students:
10/80

Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)
1. Introduction to neurosurgery: history of neurosurgery. – Prof. Dr. Nyáry István
2. Basics of micro-neurosurgical anatomy. – Dr. Balogh Attila
3. Neurological investigation of the neurosurgical patient. – Prof. Dr. Bereczki Dániel
4. Increased intracranial pressure. Hydrocephalus. – Prof. Dr. Nyáry István
5. Head and injury and neurotrauma basics. – Prof. Dr. Banczerowski Péter
6. Spine and spinal cord injuries. – Prof. Dr. Banczerowski Péter
7. Spinal tumors. – Prof. Dr. Banczerowski Péter
8. Brain tumors, neurooncology. – Dr. Bagó Attila
9. Vascular malformations of CNS. – Prof. Dr. Nyáry István
10. Degenerative spine diseases. – Dr. Nagy Gábor
11. Epilepsy surgery and investigations. – Dr. Erőss Loránd
12. Functional neurosurgery and stereotactic procedures. – Dr. Erőss Loránd
13. Radiosurgery. – Dr. Nagy Gábor
14. Visiting the operating theatre and examination.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:

- Neurology
- Anesthesiology and Intensive Care
- Radiology
- Neuroradiology
- Traumatology

Special study work required to successfully complete the course:
(E.g. field exercises, medical case analysis, test preparation, etc.)

Requirements for participation in classes and the possibility to make up for absences:
To take part on lectures every Monday. In case of absences the lectures will be find in Moodle system.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)

Requirements for signature:
To gain knowledge from the lectures

Type of examination:
written essay and/or written test

Requirements of the examination:
Lectures of the topics of the curriculum

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark)
The students will be graded from 1 to 5.
offered mark: the students have opportunity to get offered mark, if they write an essay the end of the semester (until a predetermined deadline).
-written multiple choice test: written test comprises 15 multiple choice quiz questions.
Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material
- online notes: https://semmelweis.hu/idegsebeszet/english/education/
- Schmidek & Sweet’s operative neurosurgical techniques / Alfredo Quinones-Hinojosa - 62. publishing (Notes: II/412 és II/413)
SOCIAL MEDIA IN MEDICINE

Institute of Behavioural Sciences

Course leader: Prof. Dr. Ferenc Túry
Presenter of the course: Dr. Bertalan Mesko

credit: 2 credits; elective course

Second Semester

Course objectives:
To present the role of web 2.0 or social media, the new generation of web services, in a medical practice, medical education and communication through specific examples, case studies and practical solutions.

Course Syllabus:
Week 1: Introduction: Web 2.0 or social media
The role of social media in medicine

Week 2: Medical search engines
The Google phenomenon

Week 3: Being up-to-date with RSS
How to follow your field of interest online?

Week 4: Medical communities online
Facebook from the physician’s perspective

Week 5: Patients on the web
The era of e-patients

Week 6: The medical blogosphere
From the first comment to blog carnivals: Step by step

Week 7: Everything you have to know about Wikipedia
Medical wikis

Week 8: Second Life: Virtual medicine I.
Second Life: Virtual medicine II.

Week 9: Managing a medical practice online
Should medical professionals use social media?

Week 10: Education online: medical resources
Week 11: Podcasts and medical videos
The era of new media

Week 12: A new way of collaboration: Google Docs

Week 13: Dangers of social media
Describing topics requested by the students

Week 14: Future: is there a web 3.0?
The results of the surveys
Participation and making up for absences:
A signature will be given with the prerequisite of participation (minimum 75% of the lectures and seminars). It is possible to make up for an absence by participating in another seminar group the same week. One absence can be overlooked by the teacher if the student writes an essay. The topic of the essay must be discussed with the seminar leader in advance.

Justification of the absence in the lectures and examinations:
Participation list will be recorded at the end of every lecture/seminar. In case of absence medical certificate has to be presented within three workdays to the course leader.

Checks during the semester (reports, written checks) :
One written exam on week 12. It can be made up during the semester.

Requirements for the signature at the end of the semester:
Regular participation on the lectures and seminars, filling in two surveys online (week 2 and 12). One written exam (week 12)

Method of the calculation of marks:
- Written exam: 60 points
- Two surveys: 30 points
- Work during classes: 10 points

Categories:
5: 85-100 points
4: 75-84 points
3: 65-74 points
2: 50-64 points
1: 50 points

Requirements for the exam: fulfilment of the requirements of the semester
Application for the exam: Through the Neptun system.
Changing the application for the exam: Through the Neptun system.
Justification of the absence from the exam: Medical certificate has to be presented within three workdays to the course leader.

Course and recommended text books:

http://www.med20course.com
http://www.scienteroll.com
CULTURE IN MEDICINE, CULTURE OF MEDICINE – Popular Themes of Current Clinically Applied Medical Anthropology

Institute of Behavioral Sciences
Course Director: Prof. Dr. Ferenc Túry
Lecturer: Dr. László Lajtai

Credit: 2

Second Semester

Weekly topics of the seminars:
1. „We have never been modern?” – An initiation to critical approaches to evidence base in medicine – How to respond? / Discussion of the semester: Requirements and timescale.
2. Alternatives 1: Narratives and explanatory models – Confusions and the lay perspective
3. Alternatives 2: Complementary medicine – Competition at our doorstep
4. Alternatives 3: Healing and folk medicine – Wisdom or beliefs?
5. Alternatives 4: Biomedicine for anthropology, or the twist of perspectives
6. Challenges 1: Migrants, refugees and minorities
7. Challenges 2: Reproduction, sex, age, death and other trends in „western” medicalization
8. Challenges 3: Nutrition and taboos - biopower and social body
9. Challenges 4: Placebo, pharmaceuticals and the rule of pharmaceutical industry
10. Challenges 5: Public medicine, private medicine and the reproduction of inequities
11. Favourite themes 1: Alcohol, drug, and AIDS at crossroads of culture and law
12. Favourite themes 2: Shrinks and madness – CBS and the mirage of the normal
Recapitulation, feedback and evaluation.
ART OF LEARNING

Institute of Behavioral Sciences
Course Leader: Dr. János Kollár

First and Second Semester

Objectives of the subject, its place in the medical curriculum:
Improving students’ learning and presentation skills, increasing their performance in the acquisition of study materials.

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Seminar room.

Successful completion of the subject results in the acquisition of the following competencies:
- knowledge of creativity development practices,
- increase in educational and presentation skills (including the development of individual skills and knowledge of technical innovations),
- knowledge of mnemonic methods,
- knowledge of the wide application of the possibilities offered by the Internet (information search, communication),
- knowledge of the theory and practice of relaxation.

Course prerequisites:
None.

Number of students required for the course (minimum, maximum) and method of selecting students:
Minimum: 3, maximum: 10.

How to apply for the course:
By using Neptun.

Detailed curriculum:
1. Meeting 1: Keys of Originality - participants can learn simple but effective methods that can be used on a daily basis to develop their creativity.
2. Meeting 2: Lecturing technique - mastering the basic rules of presentation, acknowledging modern presentation methods developed in recent years and their application. Rules for developing and exercising confident performing skills.
3. Meeting 3: Learning technique - Acquiring mnemonic methods and appropriate time management to support learning.
4. Meeting 4: Advantages on the Internet - learning the application of RSS, doing own research by using RSS. Mapping Internet resources that can be used for learning and research. Relaxation: Learning the basics of relaxation, mastering the creation of body-soul-spirit harmony.
5. Meeting 5: Exam - Participants present their own presentation by using their knowledge acquired in the course, receive feedback from each other and from the course leader.

Lecturer: Dr. János Kollár

Requirements for participation in classes and the possibility to make up for absences:
Out of the 20 hours of the 5 meetings, a maximum of 4 hours of absence is accepted.

Methods to assess knowledge acquisition during term time:
The course ends with an exam at the 5th meeting.
Requirements for signature:
1. Making a presentation at an appropriate level.
2. Active participation, respect for the work of fellow students and active support.

Type of examination:
Practical grade based on the above mentioned requirements.

Requirements of the examination:
Preparing a presentation based on the topics discussed during the course at an appropriate level.
Method and type of evaluation:
5 grade evaluation.
Excellent: Active and constructive participation, high quality performance of tasks. Completing the exam presentation to a high standard.
Good: Active and constructive participation, good performance of tasks. Completing the exam presentation to a good standard with minor errors.
Satisfactory: Passive participation, completion of the exam presentation at an appropriate level.
Failed: Passive participation, failure to present or failure to complete the exam presentation.

How to register for the examination:
The exam is a part of the course. Special registration is not required.

Possibilities for exam retake:
In case of failure, the student will be given a one-time opportunity to improve his/her presentation.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Books:
DISRUPTIVE TECHNOLOGIES IN MEDICINE

Supervisors: Dr. Mária Judit Molnár
Dr. Bertalan Meskó

Code: AOSGRI374_1A
Credit: 1

Disruptive technologies bring groundbreaking changes to medicine and healthcare. While medical students are being prepared for the present conditions, medical technology is going to add different values and require new skills by the time students graduate, therefore modern medical education must prepare them for a world they will have to face in their professional lives. This course was designed to present and analyze today’s medical challenges with tomorrow’s technologies in a meaningful way addressing skills that students will be able to implement in their everyday practices.

Second Semester

Topics

I. Introduction
II. Personalized medicine and point of care diagnostics
III. Personalized medicine - Genomic health
IV. Personalized medicine - Imaging health
V. Social Media and Medicine - Introduction
VI. Social Media and Medicine - Filtering online
VII. Social Media and Medicine - Sharing information
VIII. Harnessing big data in healthcare
IX. Mobile health and telemedicine
X. Biotechnology and gene therapy
XI. Regenerative medicine
XII. Medical robotics, bionics, virtual reality
XIII. Future of medical technologies

Textbooks:
Social Media in Clinical Practice, Springer, 2013
The Guide to the Future of Medicine http://scienceroll.com/2013/10/30/whitepaper/
INTRODUCTION TO PHARMACOLOGICAL RESEARCH

Semmelweis University, Faculty of Medicine
Name of the managing institute (and any contributing institutes):
Dept. Pharmacology and Pharmacotherapy
Name of the subject: Introduction to pharmacological research
Credit value: 2
Number of lessons per week: 2 lecture: 2 practical course: seminar:
Subject type: optional course
Academic year: both semesters in each academic year
Subject code: AOSFRM919_1A
Name of the course leader: Dr Zoltán Zádori
His/her workplace, phone number: Semmelweis University, School of Medicine, Dept. Pharmacology and Pharmacotherapy; 459-1500/56392; 20/666-3319
Position: associate professor
Date and registration number of their habilitation: 2017; 05/2017
Objectives of the subject, its place in the medical curriculum:
The aim of the optional course is to rise the demand of following the recent literature in students. It also aims to improve the capability of critical evaluation and presentation of the information of the articles. To reach these aims, the students will present original articles.
The course will start with the review of the methods of searching original articles on the internet and ways of obtaining the full text version of the relevant papers. In addition, basics of short scientific presentation will be explained. Later on the students will present the papers independently. Tutors, i.e., researchers of the department, will help in selection, processing and presentation of the articles. The audience (researchers at the department and fellow students) will evaluate and improve the mode and quality of presentation. Pharmacological methods, applied at the department, will be demonstrated during the semester.
The course will be available for the Hungarian, English and German students of the Basic-, Preclinical- and Clinical modules from the 3rd semester. The language of the course is English.
We believe that our effort is highly fit to the new, state-of-the-art training approach of the Faculty of General Medicine, which places great emphasis on students gaining skills in following the literature, interpreting it correctly and acquiring appropriate presentation and discussion skills during their undergraduate training.
Place where the subject is taught (address of the auditorium, seminar room, etc.):
floor IV., room Knoll, NET, Budapest, Nagyvárad sq. 4., 1089 and Zoom
Successful completion of the subject results in the acquisition of the following competencies:
Obtaining the latest and most important knowledge of pharmacology and medical biology; ability of correct interpretation and presentation of the core knowledge; insight into the methodology and latest trends of pharmacological research.

Course prerequisites:
Prerequisite: Medical biochemistry I.
Taking the following courses simultaneously is also considered necessary: Medical biochemistry II., Medical physiology I.

Number of students required for the course (minimum, maximum) and method of selecting students:
Minimal number of students: 10
Maximal number of students: 45
Way of selection: the order of application in Neptun
Detailed curriculum:
(Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks). Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments!
Always attach a CV for guest lecturers!)

<table>
<thead>
<tr>
<th>Class</th>
<th>Title of topics</th>
<th>Tutor/Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Methods of searching the original articles on the internet and ways of obtaining the full text version of the relevant papers. Basics of short scientific presentation.</td>
<td>Dr. Zoltán Varga, sen. res. associate</td>
</tr>
<tr>
<td>3-4</td>
<td>Pharmacological modulation of mitochondrial function in ischemic heart disease.</td>
<td>Dr. Péter Ferdinandy, professor</td>
</tr>
<tr>
<td>5-6</td>
<td>The role of microbiota in health and disease</td>
<td>Dr. Zoltán Zádori, associate prof.</td>
</tr>
<tr>
<td>7-8</td>
<td>Perspectives in the research of antipsychotic agents.</td>
<td>Dr. Júlia Timár, associate prof.</td>
</tr>
<tr>
<td>9-10</td>
<td>Potentially new therapeutic indications for the RAS modulatory drugs.</td>
<td>Dr. Mahmoud Al-Khrasani, ass. prof.</td>
</tr>
<tr>
<td>11-12</td>
<td>Recent advances in pain research.</td>
<td>Dr. Kornél Király, assistant prof.</td>
</tr>
<tr>
<td>13-14</td>
<td>Pharmacology of exosomes in ischemic preconditioning in the heart.</td>
<td>Dr. Anikó Görbe, associate prof.</td>
</tr>
<tr>
<td>15-16</td>
<td>Cell culture models in the field of cardiology and oncology.</td>
<td>Dr. Zoltán Giricz, sen. res. associate</td>
</tr>
<tr>
<td>17-18</td>
<td>Pharmacological modulation of preconditioning.</td>
<td>Dr. Péter Ferdinandy, professor</td>
</tr>
<tr>
<td>19-20</td>
<td>Opioid analgesics. Which way further?</td>
<td>Dr. Pál Riba, associate prof.</td>
</tr>
<tr>
<td>21-22</td>
<td>Increasing the lifespan. How can pharmacology help?</td>
<td>Dr. Ildikó Miklya, associate prof.</td>
</tr>
<tr>
<td>23-24</td>
<td>New directions in the drug therapy of IBD.</td>
<td>Dr. Zoltán Zádori, associate prof.</td>
</tr>
<tr>
<td>25-26</td>
<td>Unbiased network theoretic target prediction in various diseases</td>
<td>Dr. Bence Ágg, assistant prof.</td>
</tr>
<tr>
<td>27-28</td>
<td>Pharmacology of cognitive enhancers.</td>
<td>Dr. László Hársing, scientific cons.</td>
</tr>
</tbody>
</table>

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:
Medical biochemistry, Medical physiology, Pharmacology. No overlap.

Special study work required to successfully complete the course:
Attending the classes is a basic requirement. In addition, each student must give a presentation per semester, answer the questions raised, participate actively in the discussion, form an opinion on the presentation and ask questions.

Requirements for participation in classes and the possibility to make up for absences:
Attending the classes is mandatory and controlled. Four absences are acceptable. Over that the credit is refused. There is no replacement for missed classes, however, the original publications, the slides of the lectures and the recording of the event (in the case of Zoom meeting) will be available for the students in the Moodle system of the university.

Methods to assess knowledge acquisition during term time:
There is no formal examination during the term time. The presenting student will be, of course, asked to response for the questions and comments of the course leaders, researchers and PhD and fellow students at the department.

Requirements for signature: Successful test exam and no more than four absences.

Type of examination: Single choice test exam.

Requirements of the examination:
There is a test exam at the end of the course. The single choice test questions ask about the actual publication-based lectures during the semester. Accordingly, test questions are updated every semester.
Method and type of evaluation:
Evaluation of the test exam on a scale of 1-5.

Possibilities for exam retake:
In justified cases, we provide an opportunity for a supplementary exam, after oral consultation.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Original publications, slides of the lectures and the recording of the events (in the case of Zoom meeting) will be available for the students in the Moodle system of the university.
HEALTHCARE MANAGEMENT

Course Leader: Dr. habil. Éva Belicza Ph.D.
Prerequisite: Internal Medicine I.
Credit: 2
Lecture: 2 hours / week
Subject code: AOVEMK444_1A

Thematics:
1st week: Introduction: the role of management in healthcare, basics
2nd week: Healthcare economics I.
3rd week: Healthcare economics II.
4th week: Healthcare financing
5th week: Healthcare system models and their international comparison
6th week: Organisational management
7th week: Organisational behavior
8th week: Human resource management in healthcare
9th week: Change management in healthcare
10th week: Patient safety in practice
11th week: Quality management and development in healthcare
12th week: Health politics
13th week: Project and time management
14th week: Summary
MATHEMATICAL AND PHYSICAL BASIS OF MEDICAL BIOPHYSICS

Lecturer: Dr. Miklós Kellermayer
Credit: 1
14 hours lecture in the first four weeks of the semester.

Thematics:
1. Mathematics necessary for understanding biophysical laws
2. Physical quantities and units
3. Kinematics – physics of motion
4. Statics – changes of shape, forces, mechanical stress, pressure
5. Dynamics – work, energy
6. Oscillations, waves
7. Fluid mechanics
8. Thermodynamics
9. Electricity – charges in rest and in motion
10. Magnetism, magnetic induction

The presence in at least 75 % of the lessons is obligatory.

The grade is based on the result of test written on the 5th week. This test should be written by all students irrespective of taking this elective subject. The result of test is expected to be at least satisfactory (2) as a condition for signature in Medical biophysics 1. The elective subject helps in the preparation for this test.

Evaluation: practical grade based on the result of test written on the 5th week.

Textbook: Lecture notes on the homepage of the department.

High school physics textbooks.
MEDICAL GENOMICS

Department of Genetics, Cell and Immunobiology

Lecturer: Prof. Dr. Csaba Szalai

Medical genomics introduces the basic knowledge in medical and human genomics and the associated genomic methods. The main topic of the course is the genetic and genomic background of the most common multifactorial diseases, like asthma, allergy, type 1 diabetes mellitus, type 2 diabetes mellitus, obesity, high blood pressure, atherosclerosis, Alzheimer disease and Parkinson disease. The lectures show the most important genes and genetic variations in these diseases which can influence the susceptibility to the them and how this knowledge can be used to get to know the pathomechanisms of these diseases and to reveal novel therapy and drug targets. There are also lectures about pharmacogenomics and how our genes influence our responses to different environmental effects. As genomics belongs to systems biology, a lecture introduces to basic terms of systems biology, and concentrating on diseases, some examples of the application and utilization of this scientific field are also be shown.

Planned lectures:
- Introduction to genomics, the human genom
- Multifactorial diseases
- Genomic methods
- Asthma, allergy
- Type 1 diabetes mellitus
- Type 2 diabetes mellitus
- Obesity
- High blood pressure
- Atherosclerosis
- Alzheimer and Parkinson diseases
- Gene-environmental interactions
- Pharmacogenomics
- Systems biology

Prerequisite subjects: Medical Biochemistry, Molecular and Cell Biology I, II and III.
SYSTEMS NEUROSCIENCE I–VI.

Faculty of Medicine, Department of Anatomy, Histology and Embryology

Type of course: optional course-unit
credit: 2
Name of the responsible person: Dr. Gábor Gerber

Second Semester

Role of the course in the training of the Department:
The Systems Neuroscience program follows the approach of systems theory in understanding the brain. The aim is to provide students a view of the brain as a whole via unfolding, at least in part, its immense complexity. This is a major challenge of all time, but the right answer should be one that can integrate actual knowledge. As we are in the fortunate period of time when high performance tools (both hardware and software) and large datasets are getting more and more available, systems thinking is inevitable in brain research. Therefore, throughout the course students will learn how different approaches - reductionist, holist and functionalist – are all useful and necessary in understanding the brain.

In one way the course is structured by introducing the students the different levels of organization all being complex systems themselves. After an introductory about the systems science approach of the brain (course 2) we discuss the molecular machineries at the subcellular level (course 3) then turn into the cellular level by learning why and why not the neuron is considered as the unit of brain organization (course 4). In the next step it is shown how billions of neurons make up the cerebral cortex and how this evolutionarily new structure can perform diverse cognitive and other functions (course 5). Finally, whole brain functions and functioning will be approached via its role in behavior (course 6).

In other way, each course will show how the brain functions at lower organizational levels such that synaptic and neuronal populations of different structures as well as a whole. Such holistic approaches have high importance in recent efforts made in deciphering the neurobiological basis of neuropsychiatric and neurological diseases (courses 5,6). Finally, with the closing series of lectures (course 7,8) we aim to provide tools, rules and examples, which help integrating knowledge acquired throughout the courses and also provide an outlook whereby the brain can be compared to other complex systems (course 2). Another notable feature of the Systems Neuroscience program is its interdisciplinary nature: it will introduce the students into several state of the art methods both experimental (molecular biology, cellular and extracellular physiology, different kinds of imaging) and theoretical (data and network analyses, simulation and modelling).

Each course includes visiting the lecturers’ lab.

The course will start with an introductory about the history and culture of the geopolitical region thought as Central Europe.

The program of the course:
Weekly schedule of the Courses
1. Central European Culture
2. Introduction to Systems Neuroscience
4. Single neurons and beyond
5. Neocortex: from structure to function
7. Neuroelectricity
8. Statistics and the Brain

Practical courses: introduction into cutting edge research techniques during the lab visits
Consultations: personally with the actual course leader
Requirements of course participation and options to recover missed hours:
1. Total absence allowed: 10% of the total course hours
2. Recovering missing hours: studying the material provided by the course leaders, consultation

Eligibility: US grade point average (GPA) of 3.0. Students with a GPA lower than 3.0 should inquire with the Directors on the possibility of a waiver.

Justification of absence from course hours or exams:
Hungarian medical certificate

Number and schedule of the examinations:
The course is divided into eight blocks each covering different fields and scheduled in a weekly basis. Each block ends with an exam in the last teaching day of the actual week.

Requirements of the successful completion of the program:
written or oral test in each course material

Marks:
In case of a written test grades are given after obtaining points as follows: 0-50% fail, 51-60% pass, 61-75% fair, 76-90% good, above 90% excellent.

Types of exam: test, essay, verbal

Requirements of the examinations:
Verbal and electronic etc. material provided by the lecturers. Syllabus is available upon opening the program on the web page.

Registration for exams: NEPTUN

Rescheduling the tests:
N/A
Each student has to take an examination in each block of the course.

Justification of absence from the exam:
Hungarian medical certificate (see above).

List of useful literature (books, papers etc):
It is made available for the students two weeks before the first lecture
PRECLINICAL AND CLINICAL NEUROPSYCHOPHARMACOLOGY AND PSYCHOPHARMACOGENETICS

(Hungarian: Preklinikai és klinikai neuropsychofarmakológia és pszichofarmakogenetika)

Name of the Programme: Medicine, uninterrupted graduate programme

Neptun-Code (planned): AOVGYH198_1A

Institute: Department of Pharmacodynamics

Name of the tutor/lecturer: Dr. Gyorgy Bagdy PhD, Dsc.

Phone: +36-1-4591495, +36-1-2104411, +36-1-2102927

E-Mail: bagdy.gyorgy@pharma.semmelweis-univ.hu

Further tutors: Juhász Gabriella Associate Professor, PhD, Lévay György PhD, CSc, Gyertyán István PhD, Gonda Xénia PhD, Ujváry István PhD, Tamási Viola PhD, Vas Szilvia PhD, Eszlári Nóra researcher psychologist (MA)

Number of lectures /week:

blocked course (2X7 lessons)

Credit points: 1

Brief course summary:

The aim of this course is to introduce the function of the central nervous system (CNS), diseases that impact the CNS as well as the (psychiatric, neurological, neurosurgical and addictological) way of their treatment for the interested students. The course creates a bridge between theoretical and clinical subjects. During the course, genetics, molecular sciences, animal models and human investigating methods are demonstrated as well as the possibilities and limits of their application using concrete examples.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>from the 4th semester</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>Spring semester*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter semester*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Both semesters*</td>
<td></td>
</tr>
</tbody>
</table>

Semester program

1. Lecture topics/week

1. **week:** Principles of the function and pharmacological modification of the central nervous system. (György Bagdy) (I-III.)
 Animal models of diseases affecting the central nervous system (György Lévay) (IV-V.)
 The dopamine theory of schizophrenia. Antipsychotic drug research (István Gyertyán) (VI-VII.)
 Experimental studies in learning and memory (István Gyertyán) (VIII.)
 Genetics of behavioural characteristics influencing psychiatric disorders (Nóra Eszlári) (IX.)

2. **week:** Application of neuroimaging techniques in the neuropsychopharmacology (Gabriella Juhász) (X.)
 Pharmacogenetics (Xénia Gonda) (XI.)
 Sleep and behaviour. The neurotransmitter regulation of sleep (Vas Szilvia) (XII.)
 The phenomenon of hallucination: from tribal customs to chemical structures (Ujváry István) (XIII.)
 The role of “omic” methods in the innovation of psychopharmacons (Viola Tamási) (XIV.)
Course requirements

Prerequisites: previous attendance of courses in Biology, Physiology and Biochemistry
Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.)
Attendance of 11 of 14 lectures is required.
Knowledge testing during the semester: -
Requirements of the signature at the end of the semester:
Attendance of 11 of 14 lectures. Repetition of the lessons during the course is not possible.
Individual activity of the student during the semester (protocol, etc.) -
Performance control in the examination period final examination
Performance control in the examination period (written, oral, written and oral) written, correction examination: oral
Prescribed external practice: -

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.)

List of course materials: classroom, projector
Scientific, course related researches, publications/essays:
PATIENT SAFETY

Lecturer: Zsolt Baranyai MD, Ph.D

The patient safety course with the code number BBSEB1 in the Moodle system, in the course category Independent from Faculty with the title „Patient safety from Semmelweis until today”.

The late Ignaz Philipp Semmelweis is the best-known Hungarian physician in the world. Confirming this truth, Semmelweis is among the twelve most innovative individuals commemorated in the Hall of Immortals at the International Museum of Surgical Science (Chicago, IL, USA). In 2013, his discovery was inscribed on the list of the UNESCO Memory of the World Register, where it will remain with us until the end of human history. Tribute is even more important for a university named after Semmelweis; the heritage of our famous ancestor is a source of even greater pride for us. At the same time, however, it also requires us to live up to everything his name signifies for Hungary and the whole world. The value of his life’s work cannot be overstated, because he succeeded – through perseverant work and major conflicts – in discovering the underlying cause the most serious obstetrical infection of his era on one hand, and in its prevention on the other. His achievement is a classical example of eternity and furthermore, his accomplishments have contributed greatly to the improvement of patient safety.

The E-learning course can be studied after registration. The course is successfully accomplished if the online test is solved with at least 60%. Students have 5 opportunities to take the test. At least 3 days have to be passed between each attempt, the system won’t let students enter the interface.

After former request (email: baranyai.zsolt@med.semmelweis-univ.hu) there is a possibility for consultation in groups. Students are welcome who had difficulties to fill in the test or have questions regarding the course.
ULTRASONOGRAPHY IN OBSTETRICS AND GYNECOLOGY

Department: Department of Obstetrics and Gynecology
AOVNO1554_1A

Study time: In every second Semester 2×45 minutes. Advised Semester: between 6. und 12. Semester
Exam: Written test and practical note
Credit: 1
Minimal/maximal participants: (1/5 person)
Application deadline: 1. December
Prerequisite: Completion of second year

The knowledge gained in theoretical basic subjects (anatomy, physiology) can be used by medical students as practical knowledge in the clinic. As a result of more than four decades of experience, ultrasound examination has a fundamental role in modern obstetrical and gynecological diagnostic. The course helps you to acquire skill in this field. Performing obstetrical-gynecological ultrasound tests and assessment of findings can only be learned through appropriate training. This non-invasive procedure is also safe for patients. The modern ultrasound equipment of the Department and the wide range of patients and diseases provide the opportunity for learning. Not only obstetricians and gynecologists, but also other associate colleagues such as clinical genetics, radiologists, gynecological cancer surgeons, anesthetists, and intensive therapists can utilize the knowledge provided by the subject

Themes:

György Bagdy
CARDIAC ELECTROPHYSIOLOGY

Semmelweis University, Faculty of Medicine

Name of the managing institute (and any contributing institutes): Gestor Institute: Department of Physiology

Name of the subject: Cardiac electrophysiology

Credit value: 2

Number of lessons per week: 2 lecture: 2 practical course: seminar:

Subject type: elective course

Academic year: 2022/2023

Subject code: AOVELT856_1A

Name of the course leader: András TÓTH, DSc.

His/her workplace, phone number: Semmelweis University, Department of Physiology; phone: +36-1-459-1500/60436

Position: External lecturer

Date and registration number of their habilitation: 18/2009 (SZTE, ÁOK).

Objectives of the subject, its place in the medical curriculum:

The course is intended to provide up-to-date and extended knowledge based on the latest literature for practically all medical students, especially those planning to be cardiologists or internists in order to meet a predictable future requirement of a strongly established knowledge related to the electrophysiological background and ion channel dependent pathomechanisms of severe, often lethal heart diseases and to facilitate their better understanding of the corresponding scientific literature. Their expected competent knowledge on cardiac electrophysiological mechanisms will significantly help young MDs to introduce novel, highly effective cardiopharmacological agents and/or to select optimal clinical therapeutic strategies. Via providing a detailed introspection into molecular and cellular basis of the electric activity of the heart the course is willing to offer the students an opportunity to collect an important section of these competences during their student years. During the course the motivated students may collect a comprehensive knowledge on:

- the biophysical basis of cardiac electrophysiology; the principles of operation and regulation of major cardiac ion channels
- the kinetic properties and regulation of ion currents generating cardiac action potentials; the significance of the repolarization reserve; the molecular background of substantial differences between atrial and ventricular and among various ventricular action potentials; and the basic pathomechanisms of arrhythmogenesis
- the principles of intracellular Ca^{2+} homeostasis in cardiomyocytes; the major mechanisms of excitation/contraction coupling; functional adaptation of the Ca^{2+}-cycle; pathomechanisms of Ca^{2+}-dependent and Ca^{2+}-facilitated heart diseases and several therapeutic strategies
- common genetic disturbances leading to malfunction of cardiac ion channels
- most important experimental techniques and animal models applied in experimental cardiac electrophysiology and the human/clinical relevance of the collected data

Finally a practical demonstration (13-th week) based on the material of the lectures is organized in order to help realistic, problem-oriented application of the theoretical knowledge via jointly processing experimental data derived from a few running scientific projects

Place where the subject is taught (address of the auditorium, seminar room, etc.):
Semmelweis University; EOK; H-1094 Budapest, Tűzoltó u. 37-47

Successful completion of the subject results in the acquisition of the following competencies:

Understanding of the human physiology which is foundation of medical practice.

Course prerequisites:
Medical Physiology 1 (the course is suggested for 2-4 year students)
Minimum and maximum number of students registering for the course: Minimum 5 and maximum 80 students

Detailed curriculum:

1. week: **Introduction**
 • the role and importance of cellular level cardiac electrophysiology in medical practice
 • historical background

2. week: **Basic contexts of electrophysiology; propagation of stimulus in cardiac muscle**
 • biophysical principles of transcellular ion movements, Nernst equation, Donnan equilibrium, equilibrium potential
 • generation and maintenance of the resting potential
 • generation and propagation of the action potential (AP)

3. week: **Ion channels**

4. week: **Action potentials in the heart; major contributing ion channels/ion currents**
 • generation of the cardiac action potentials, fast and slow AP
 • atrial-ventricular and ventricular regional differences in action potentials and distribution of ion channels
 • Na+ and Ca2+ specific ion channels and -currents
 • properties of various of K+ currents (early/late, ultrarapid/rapid/slow, ATP-dependent, inward rectifying, etc.) and their role in the AP

5. week: **Developmental mechanisms of cardiac arrhythmias**
 • significance of the repolarization reserve, consequences of its decrease
 • mechanisms of generation of afterpotentials; extrasystole
 • ventricular arrhythmias: torsade de point (TdP), ventricular fibrillation
 • atrial fibrillation

6. week: **Experimental techniques in cardiac electrophysiology 1. – Microelectrode based measurements**
 • action potential measurements with conventional microelectrodes
 • ion current determinations using the „patch clamp” technique

7. week: **Ca2+ homeostasis in cardiac cells**
 • intracellular Ca2+ compartments
 • ion transport mechanisms involved in the Ca2+ cycle
 • cardiac Ca2+ transporters, their major characteristics and principles of function
 • the relationship between intracellular Ca2+ movements and AP repolarization

8. week: **The electromechanical coupling (ECc) and its regulation in cardiac cells**
 • regulation of the Ca2+ transport and -homeostasis
 • conditions for steady state activity of the heart
 • mechanisms of functional adaptation of the heart

9. week: **Perturbations of Ca2+ homeostasis and their role in development and progress of a number of heart diseases**
 • Pathomechanisms leading to cellular Ca2+ overload or Ca2+ deficit
 • Ca2+-dependent and Ca2+-facilitated heart diseases
 • afterpotentials and arrhythmogenesis; atrial fibrillation
 • ischemia/reperfusion injury
 • malignant hypertrophy and heart failure

10. week: **Experimental techniques in cardiac electrophysiology 2. Optical techniques**
 • basic principles of the application of fluorescent „tracer” molecules
 • „single” and „multichannel” measurements in isolated cardiomyocytes, isolated heart
 • novel, complex imaging (mapping) experimental techniques

11. week: **Experimental (animal) models and their clinical relevance**
 • the importance of experimental (animal) models in cardiology
 • small animal (mouse, rat, guinea pig) models
 • large animal (dog, rabbit, goat, etc.) models
 • human relevance of data and information derived from animal models
 • significance of human models and samples
12. week: **Genetic background of malfunction of cardiac ion channels**
 - “QT” syndromes and their genetic background
 - consequences of genetics originated disturbances of Ca2+ transporters
 - transgenic animal models

13. week: **Antiarrhythmic drug classes + a few examples from arrhythmia research**
 - Classification of antiarrhythmic drugs provided by Vaughan Williams
 - Principles of the “Sicilian Gambit”
 - Modernized scheme of antiarrhythmic drug classes
 - A few examples from experimental arrhythmia research

14. week: **Consultation**

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes:*
Minimal overlap with Medical Physiology 1 and Cardiology

Requirements for participation in classes and the possibility to make up for absences:
It is required to attend at least 75% of the lectures (10 lectures).
Missing attendance may be partially compensated at a consultation offered during the semester

Methods to assess knowledge acquisition during term time: (E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)
Understanding of the material of the previous lectures will be verified by two “multiple choice” tests (10-10 questions) + interactive during the lectures

Requirements for signature:
It is required to attend at least 75% of the lectures (10 lectures).
Missing attendance may be partially compensated at a consultation offered during the semester

Type of examination:

Requirements of the examination:
Before the exam the examinee should suggest at least six topics he/she knows best from at least six lectures. From the suggested topics the examiner will pick two to be orally presented.
The most important requirement is the best possible understanding of the selected lectures.
| Lecture 1: | --- |
| Lecture 2: | --- |
| Lecture 3: | 1. Basic features and classification of ion channels
2. Characterization and principles of regulation of voltage-gated ion channels
3. Characterization and principles of regulation of ligand-gated ion channels |
| Lecture 4: | 1. Heterogeneity of action potentials and depolarizing ion currents in the heart
2. Repolarizing ion currents in the heart – the principle of repolarization reserve
3. Atrium specific, nonselective and anion currents in the heart |
| Lecture 5: | 1. Principal mechanisms of arrhythmogenesis
2. Atrial fibrillation
3. Ventricular arrhythmias |
| Lecture 6: | 1. Cardiomyocyte isolation techniques; patch-clamp measurement
2. Multicellular heart preparations; action potential measurements |
| Lecture 7: | 1. Major Ca2+ compartments in cardiomyocytes
2. Trans-sarcolemmal Ca2+ transport in cardiomyocytes
3. Ca2+ transport in the sarcoplasmic reticulum and in mitochondria |
| Lecture 8: | 1. Principal mechanisms of the EC-coupling – the local control theory
2. Control of Ca2+ release and Ca2+ content of the sarcoplasmic reticulum – principle of flux balance
3. Mechanisms of functional adaptation of the heart |
| Lecture 9: | 1. Afterpotentials and arrhythmogenesis
2. Intracellular Ca2+ overload and ischemia/reperfusion injury
3. Cardiac hypertrophy and heart failure |
| Lecture 10: | Basic properties of Ca2+-sensitive dyes; Ca2+ measurements in isolated single cardiomyocytes and in isolated intact heart; subcellular Ca2+ measurements
Optical mapping of membrane potential; principles of using genetically encoded Ca2+ indicators; |
| Lecture 11: | 1. QT syndromes and their genetic background; consequences of genetic disorders of Ca2+ transporters
2. Transgenic animal models in cardiac electrophysiology – principles and perspectives of human gene transfer |
| Lecture 12: | 1. Advantages and limitations of small and large animal models; human relevance of data and information derived from animal models
2. Animal models of arrhythmogenesis, ischemic heart disease and heart failure human relevance of data and information derived from animal models |
| Lecture 13: | --- |
Method and type of evaluation:
Two simple topics from the corresponding topic list will be picked randomly by the examinee.

The overall grade of the exam is the mean of two partial grades:
Excellent (5): 4.51 - 5.00
Good (4): 3.51 - 4.50
Satisfactory (3): 2.51 - 3.50
Pass (2): 2.00 - 2.50
Fail (1): below 2.00

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:

Obligatory:
1. The material presented during the classroom lectures and made also available online.

Suggested:
1. Ion channels for communication between and within cells; Erwin Neher Nobel Lecture, 1991
3. Excitation-Contraction Coupling and Cardiac Contractile Force D. Bers; Springer, 2001
5. Electrical Diseases of the Heart Ed. I. Gussak, C. Antzelevitch; Springer, 2008
We would like to bring to the attention of Semmelweis University students a newly started English course on the topic of engineering innovation in medical research and patient care. By Béla Merkely Rector, the course is being promoted with the Pázmány Péter Catholic University Faculty of Information Technology and Bionics. The course does not require any engineering previous experience. This course was designed for medical student with basic biophysical knowledge.

The aim of the course is to introduce those interested in areas where engineering opportunities are becoming increasingly important in patient care. Each lecture converges on a theme that is presented by a medical and an engineering specialist based on their own perspectives. This allows the audience to learn about the engineering and medical aspects of the same topic. On the other hand, this course provides a deeper insight into the specific field of medical engineering to facilitate the development of research collaboration between the two fields.

We strive to promote medical developments and facilitating a safe but rapid transfer of research results into clinical practice.

Language: English.

Exam: 2-page essay on a selected topic.

Held by Medical and Engineering specialists

Thematics

- Recent advances in biomedical engineering.
- Microfluidics for diagnostics and therapy.
- Robotics for healthcare: robotics surgery from minimal invasive surgery to DaVinci.
- Ultrasound diagnostics and therapy.
- Advances in bioimage processing.
- Deep learning algorithms in medical imaging.
- Proteomics: the new era of microbiology.
- 3D printing and 3D planning in medicine.
- Prosthetics in medical and engineering field.
- Biosignal processing for personalized treatment.
- Gene Therapy from the perspective of Systems Biology.
- Organ-on-a-chip, and investigation and development of stem cell based therapies.
- From patents to university spin-off companies.

CLINICAL HUNGARIAN from the second semester of the 3rd year

Division of Foreign Languages and Communication – Faculty of Health Sciences

H-1088 Budapest, Vas u. 17., room 130
Mailing address: H-1085 Budapest, Úllői út 26.
Phone: +(36-1) 486-4960 Fax: +(36-1) 486-4962 Bakó
Head of the Division: Katalin Zöldi Kovács Ph.D.
CLINICOPATHOLOGY

Semmelweis University, Faculty of Medicine

Name of the managing institute (and any contributing institutes):
Department of Pathology, Forensic and Insurance Medicine
Name of the subject: CLINICOPATHOLOGY
Credit value: 3
Number of lessons per week: 28 lecture: 28 practical course: seminar:
Subject type: elective course
Subject code: AOVPAT126_2A
Name of the course leader: Lotz Gábor MD.
His workplace, phone number: Department of Pathology, Forensic and Insurance Medicine, 06208259665
Position: associate professor
Date and registration number of their habilitation:

Objectives of the subject, its place in the medical curriculum: Practical application of 3rd year theoretical material in Clinics with the active supports of clinicians and specialist in pathology.

Place where the subject is taught (address of the auditorium, seminar room, etc.): Lecture room Department of Pathology, Forensic and Insurance Medicine

Successful completion of the subject results in the acquisition of the following competencies: Completion of the subject may provide additional experiences to the students to apply theoretical knowledge in their future medical practice.

Course prerequisites: Completion of the final exam of Pathology (6th semester requirement).

Number of students required for the course (minimum, maximum) and method of selecting students: minimum 5, maximum 180

Detailed curriculum: (Theoretical and practical lessons shall be given separately by numbering the lessons (by weeks).
Please provide the names of the teachers of the lectures and practical lessons and indicate guest lecturers. Do not use attachments! Always attach a CV for guest lecturers!)
1. Dr. Kiss: Introduction, case presentation
2. Dr. Lilla Madaras: Gynecology
3. Prof. Dr. András Kiss: Liver
4. Prof. Dr. Janina Kulka & Dr. Lilla Madaras: Breast
5. Dr. Attila Kovács: Pancreas
6. Dr. Judit Halász: Pediatrics
7. Dr. Attila Kovács: Head and Neck
8. Prof. Dr. András Kiss: GI
9. Dr. Deján Dobi: Kidney
10. Dr. Eszter Székely: Cytology
11. Dr. Eszter Székely: Urology
12. Dr. Jeannette Tóth: Eye
13. Dr. István Kenessey: Final exam
Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: Subject overlaps with 3rd year medical studies in pathology as well as with all clinical subjects.

Requirements for participation in classes and the possibility to make up for absences: Attending at least 9 lectures.

Requirements for signature: Attending at least 9 lectures. Individual essay work from a future determined topic which was lectured during the semester.

Type of examination: Written. Essay

Requirements of the examination: Topic of the performed lectures (see above).

Method and type of evaluation: (Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)
Subjective evaluation of the essay work.

Possibilities for exam retake: No retake opportunity. In the absence of the essay signature will be refused.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
Material will be submitted to the Moodle system of the University.
DEVELOPMENTAL BIOLOGY: from gene to newborn. I. -

“Our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right.”

Hamburger 1900-2001

Regulatory mechanisms and early development of embryology
2 hours/week, 2 credits
Prof. Dr. Imre Oláh

Department of Human Morphology and Developmental Biology

Introduction to developmental biology
Comparative embryology, epigenesis and preformation, evolutionary embryology, medical implications

Regulatory elements of the ontogenesis I.
Hormones, growth factors, transcription factors, instructive and permissive interactions

Regulatory elements of the ontogenesis II.
DNA-methylation, X chromosome inactivation, genomic imprinting

Cell-cell and cell-extracellular matrix interactions
Adhesion molecules, integrins, cytoskeleton and cell movement, cell polarization

Cell lineages
Fate map, stem cells, peripheral blood fibrocytes, cell specification, polarity in biological system

Neurogenesis
Origin of neural cells, switch between neuronal and glial fates, axonal specificity, synaptic plasticity

Neural crests and placods
Origin of neural crest and placods, flexibility and heterogeneity of neural crest cells.

Myogenesis
Embryonic origin of skeletal, smooth and cardiac muscles. Induction of myogenesis, regulatory factors of myogenesis, regeneration of skeletal muscles

Teratogenesis
Morphogens, morphogenetic period, cancer as an altered development, stem cell therapy, teratogens.

Primordial germ cells (PGC)
Origins, migration, mitosis, differences between male and female PGC, maturations

Fertilization
Acrosome reaction, prevention of polyspermy, activation of egg metabolism

Embryonic induction
Spemann organization center, mosaic and regulative zygotes

Early embryonic development
Cleavage, neurulation, X-chromosome inactivation, parental imprinting

Gastrulation
Differentiation of mesoderm, primary tissue formation

Axis formations in birds and mammals
Symmetry breaking, left-right asymmetry formation.
ORGANOGENESIS

2 hours/week, 2 credits
Prof. Dr. Imre Oláh

Department of Human Morphology and Developmental Biology

Axial and paraxial mesoderm Formation of axial skeleton, somitogenesis, clinical correlations
Segmentation and Homeobox genes Retinoic acid, gain of function, loss of function
Intermediate mesoderm I. Development of kidney, clinical correlations
Intermediate mesoderm II. Development of gonads, sex determination, clinical correlations
Lateral plate mesoderm, splanchnopleura I. Vasculogenesis, blood formation, hematopoietic stem cell.
Lateral plate mesoderm, splanchnopleura II. Early development of the heart. Cardiac anlage, cardiac jelly, cardiac skeleton, development of coronary vessels, contribution of neural crest cells, epicardial body, clinical correlations
Lateral plate mesoderm, somatopleura Development of the limb, evolutionary and ontogenetic aspects, clinical correlations
Branchiogenic arches and their derivatives Clinical correlations
Prechordal plate as head organizer, AVE-anterior ventral entoderm Cranial neural crest and head mesoderm, somatic and visceral head and neck, clinical correlations
Development of arteries Branchiogenic, parietal and visceral segmental arteries, clinical correlations
Epithelio-mesenchymal interactions Ecto-entoderm ↔ mesoderm, tooth and lung development, clinical correlations
Neurogenesis Antero-posterior, and craniosacral regionalization, axon guidance, growth, synapsis formation
Development of eye Retina, lens
Entoderm formation Foregut and its derivatives (thymus, thyroid, parathyroid), development of pancreas
Environmental regulation of development Developmental symbiosis, seasonality and sex, nutritional contribution
Objectives of the subject, its place in the medical curriculum:
Today, we have plenty of data in medicine and the challenge lies not any more in obtaining the data but in interpreting the data. Figuring the result of genomics, transcriptomics and other omics technologies present a serious obstacle in understanding the molecular mechanism behind definite diseases. Luckily, bioinformatics is at hand to assist in solving these problems.

Bioinformatics comprises of the computer-assisted evaluation of clinical and biological data. We will discuss in detail three areas of bioinformatics. The first contain databases dealing with clinical and biological data. These also include biobanks and data repositories for storing and accessing information. The second area contains the data processing, modelling, visualization and interpretation. The third pillar is the interpretation of the data within the clinical context of a selected disease.

We will give lectures on the most important chapters of medical bioinformatics including databases, decision-support tools, genomics, transcriptomics, proteomics, medical informatics and artificial intelligence.

Successful completion of the subject results in the acquisition of the following competencies:
Students will be able to understand the theoretical basics and to utilize the most important bioinformatical tools. They will know the advantages and limitations of each method. The students will have a hand-on experience of these tools enabling successful application in research projects and in clinical diagnostics.

Course prerequisites:
Completed first two semesters.

Number of students required for the course (minimum, maximum) and method of selecting students:
minimum: 20
maximum: 60

Thematics
I. section: Basics of bioinformatics
1. Introduction to bioinformatics (Balázs Győrffy)
2. Utilization of a training and test set (János Tibor Fekete)
3. Statistical errors and dichotomania (János Tibor Fekete)
4. Survival analysis* (Balázs Győrffy)
5. ROC analysis: predicting sensitivity and specificity * (János Tibor Fekete)
II. section: Omics
6. Similar genes and proteins, BLAST* (Balázs Győrffy)
7. Introduction to genomics (Balázs Győrffy)
8. Genomics: quality control* (Ádám Nagy)
9. Genomics: alignment of data to a reference genome * (Ádám Nagy)
10. Genomics: identifying mutations (SNV, indels) (Ádám Nagy)
11. Genomics: determining the consequence of a mutation* (Ádám Nagy)
12. Genomics: what is the clinical relevance of a mutation, ClinVar, dbSNP* (Ádám Nagy)
13. Genomics: mutation signatures (Ádám Nagy)
14. Genomics: copy number variations* (Ádám Nagy)
15. Genomics: identifying processing artefacts and quality issues (Otília Menyhárt)
16. Proteomics: pre-processing (Balázs Győrffy)
17. Transcriptomics: processing RNA-seq data (Balázs Győrffy)
18. Proteomics: tools to analyze immunohistochemistry results (Áron Bartha)
19. Proteomics: processing mass spectrometry (Áron Bartha)
20. Proteomics: understanding molecular functions, Uniprot (Ottilia Menyhárt)
21. Genomics: GeneBank (Attila Marcell Szász)

III. section: Integrative science
22. Application of multi-omic tools (Otília Menyhárt)
23. Clinical studies utilizing multi-omics (Otília Menyhárt)
24. Multiple hypothesis testing* (Balázs Győrffy)
25. Analyzing COVID-19 (Ádám Nagy)
26. Reproducibility issues in medicine (Otília Menyhárt)

IV. section: Artificial intelligence
27. Introduction to artificial intelligence (Balázs Győrffy)
28. Machine learning* (János Tibor Fekete)
29. The Bayes rule (János Tibor Fekete)
30. Clinical application of a decision tree (Áron Bartha)
31. Determining distance* (Balázs Győrffy)
32. Clustering* (Balázs Győrffy)
33. Neuronal networks* (Balázs Győrffy)
34. Principal component analysis (Áron Bartha)
35. Support Vector Machines (János Tibor Fekete)
36. Regression* (Áron Bartha)
37. Diagnostic tools using artificial intelligence (Attila Marcell Szász)

V. section: Medical informatics
38. Using REDcap (Attila Marcell Szász)
39. Electronic health records (Áron Bartha)
40. Time distortion and computer addiction (Otília Menyhárt)
41. Development, learning and work (Otília Menyhárt)
42. Outlook (Balázs Győrffy)

Each lecture comprises of three 15-minute talks. Starred lectures have associated exercises.
The exercises are held by:

Balázs Győrffy, Áron Bartha, János Tibor Fekete, Máté Balajti, Ádám Nagy

It is recommended to bring a private laptop for the exercises.

Other subjects concerning the border issues of the given subject (both compulsory and optional courses!). Possible overlaps of themes: Biophysics (biostatistics), translational medicine Requirements for participation in classes and the possibility to make up for absences: According to the current regulation of the University. Missed exercises can be repeated at the last exercise.

Methods to assess knowledge acquisition during term time:
(E.g. homework, reports, mid-term test, end-term test, etc., the possibility of replacement and improvement of test results)

Completed exercises give 33% of the final result.

Requirements for signature:
Maximal number of missed lectures: 25% of all lectures.

Type of examination:
The semester ends with a colloquium.

Requirements of the examination:
(In case of a theoretical examination, please provide the topic list; in case of a practical exam, specify the topics and the method of the exam)

The final exam will comprise a theoretical part (42 multiple-choice selection test) and an exercise. The exercise will comprise a bioinformatic evaluation of a new data. Any support tool, including utilization of a private laptop is allowed when solving this final exercise.

Method and type of evaluation:
(Method of calculating the final mark based on the theoretical and practical examination. How the mid-term test results are taken into account in the final mark.)

Completed exercises (33%), multiple-choice test (33%), final exercise (33%)

Possibilities for exam retake:
According to the current Study and Examination Regulations.

Printed, electronic and online notes, textbooks, guides and literature (URL address for online material) to aid the acquisition of the material:
The lectures contain all necessary information, a hard copy of the slides will be provided at each lecture.
OBLIGATORY ELECTIVE AND ELECTIVE SUBJECTS – SCHEDULE OF THE CLINICAL MODULE

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lectures</th>
<th>Practicals</th>
<th>Credit Points</th>
<th>Examination</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesiology and Intensive Therapy</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Surgery II.</td>
</tr>
<tr>
<td>Medicinal, Epidemiological, and Social Aspects of Drug Abuse</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinicopathology II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>pract. mark</td>
<td>Pathology final</td>
</tr>
<tr>
<td>Clinical Endocrinology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Basic module</td>
</tr>
<tr>
<td>Clinical Hematology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical practice</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical Oncology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Internal Medicine II.</td>
</tr>
<tr>
<td>Health Informatics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Neonatology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical cardiovascular physiology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Clinical Physiology of Respiration and Respiratory Diseases</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Healthcare Management</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>Ultrasonography in Obstetrics and Gynecology</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Methodology of Clinical Experiments – Observational Experiments</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lectures</td>
<td>Practicals</td>
<td>Credit Points</td>
<td>Examination</td>
<td>Prerequisite</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Antibiotic therapy & infectology</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module. Pharmacology and Pharmacotherapy II.</td>
</tr>
<tr>
<td>Cardiorespiratorical and neurophysical measuring techniques</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Physiology II.</td>
</tr>
<tr>
<td>Social media in medicine</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Medical Communication</td>
</tr>
<tr>
<td>Emergency Surgery</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Surgery I.</td>
</tr>
<tr>
<td>Neurobehavioral assessment of infants</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Pre-clinical module</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Neurology</td>
</tr>
<tr>
<td>Traditional Chinese Medicine</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>For 3rd year students and up</td>
</tr>
<tr>
<td>Introduction to Epigenetics</td>
<td>2</td>
<td></td>
<td>2</td>
<td>examination</td>
<td>Immunology</td>
</tr>
<tr>
<td>Clinical Hungarian</td>
<td></td>
<td>4</td>
<td>2</td>
<td>pract. mark</td>
<td>Hungarian Medical Terminology V.</td>
</tr>
<tr>
<td>Inflammation Biology</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Immunology, Molecular Cell Biology II.</td>
</tr>
<tr>
<td>Introduction to Pharmacological Research</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td>Molecular Cell Biology II., Medical Biochemistry</td>
</tr>
<tr>
<td>Clinical work - Radiology</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Gastroenterology</td>
<td>2</td>
<td></td>
<td>3</td>
<td>pract. mark</td>
<td>Internal Medicine – Propedeutics</td>
</tr>
<tr>
<td>Patient Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e-learning course</td>
</tr>
<tr>
<td>Medical and Dental Terminology on advanced level I-II</td>
<td>2</td>
<td></td>
<td>2</td>
<td>pract. mark</td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology in semesters 6-12 on B2 level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardio Electrophysiology</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>for 2-4 year students</td>
</tr>
<tr>
<td>Network, Management, Career Building</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>for 3-5 year students</td>
</tr>
<tr>
<td>Course on Human Lactation and Breastfeeding – Theory, Support and Promotion</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>for 5 year students</td>
</tr>
</tbody>
</table>
COMPULSORY INTERNSHIPS AND RESPONSIBLE DEPARTMENTS

Internal Medicine

Department of Internal Medicine and Oncology
(former 1st Department of Internal Medicine)
Budapest VIII., Korányi Sándor u. 2/A Phone: 459-1500 / ext 51465
Head of the Department: Dr. István Takács
Tutor: Dr. Péter Studinger

Department of Internal Medicine and Hematology
(former 2nd and 3rd Department of Internal Medicine)
Budapest, VIII. Szentkirályi u. 46. Phone: 459-1500
Head of the Department: Prof. Dr. Tamás Masszi
Tutor: Dr. Katalin Keltai
E-mail: keltaikati@gmail.com

Infectology

Department of Internal Medicine and Hematology, Division of Infectology at Szent László Hospital
Budapest, Albert Flórián u. 5-7.
Head of the Department: Prof. Dr. Gergely Kriván
Tutor: Dr. János Sinkó
E-mail: infectology.hun@gmail.com (Ms. Júlia Nagy)

Surgery

Department of Surgery, Transplantation and Gastroenterology
Budapest VIII., Üllői út. 78. Phone: 459-1500 / ext. 52120
Head of the Department: Prof. Dr. Attila Szijártó
Tutor: Dr. Péter Ónody
E-mail: kovacs.zsanett@med.semmelweis-univ.hu (Ms. Zsanett Kovács)

Traumatology

Department of Traumatology
Budapest VIII., Fiumei út 17. Phone: 461-4723
Budapest XIV., Uzsoki u. 29. Phone/fax: 467-3851
Mobile: 06-20-825-8680
Head of the Department: Prof. Dr. László Hangody
Tutor: Dr. Tamás Gál

Vascular surgery

Department of Vascular Surgery
Budapest, XII., Városmajor u. 68. Phone: (+36-1) 458-6700
Head of the Department: Prof. Dr. Péter Sótonyi
Tutor: Dr. Péter Banga
Pediatrics

1st Department of Pediatrics
Budapest VIII., Bókay J. u. 53. Phone: +36-1-313-8212
Head of the Department: Prof. Dr. Attila Szabó
Tutor: Dr. Ádám Balogh
E-mail: education.ped1@med.semmelweis-univ.hu (Ms. Enikő Stolmár) ☎: 52656

2nd Department of Pediatrics
Budapest IX., Tűzoltó u. 7-9. Phone: 215-1380 / ext. 52976
Head of the Department: Dr. Gábor Kovács
Tutor: Dr. Klára Horváth

Obstetrics and Gynecology

Department of Obstetrics and Gynecology
Budapest VIII., Baross u. 27. Phone: 266-0473
Head of the Department: Prof. Dr. Nándor Ács
Tutor: Dr. Gyula Richárd Nagy
E-mail: szlaby.emese@med.semmelweis-univ.hu (Ms. Emese Szlaby)

Neurology

Department of Neurology
Budapest VIII., Balassa u. 6. Phone: 210-0330
Head of the Department: Prof. Dr. Dániel Bereczki
Tutor: Dr. Róbert Debreczeni (debreczeni.robert@med.semmelweis-univ.hu)
E-mail: kovacs.andrea@med.semmelweis-univ.hu (Ms. Andrea Kovács)

Psychiatry

Department of Psychiatry and Psychotherapy
Budapest VIII., Balassa u. 6. Phone: 210-0330 / ext. 51100
Head of the Department: Dr. János Réthelyi
Tutor: Dr. Erika Szily
E-mail: szecci.tunde@med.semmelweis-univ.hu (Ms. Tünde Szécsi)

Family Medicine in Daily Practice

Department of Family Medicine
Budapest VIII., Stáhly u. 9. Phone: 355-8530
Head of the Department: Dr. Péter Torzsa
Tutor: Dr. Ádám Becze
E-mail: fekete.ilona@med.semmelweis-univ.hu (Ms. Ilona Fekete)
Prehospital Emergency Medicine

National Ambulance Service
Budapest XIII., Róbert Károly krt. 77. Phone: 350-6720
Director: **Dr. Gábor Göbl**
E-mail: szabados.agnes@mentok.hu (Ms. Ágnes Szabados)

Transfusion Course

Department of Transfusion Medicine
Budapest VIII., Nagyvárad tér 4.
Phone: 210-2940
Head of the Department: **Prof. Dr. Attila Tordai**
E-mail: kristof.szilvia@med.semmelweis-univ.hu (Ms. Szilvia Kristóf)
STUDY PROGRAM

6th Year in the 2022/2023 academic year

NEW CURRICULUM

<table>
<thead>
<tr>
<th>course name</th>
<th>hours</th>
<th>credit</th>
<th>prerequisite(s)</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Medicine (final year’s practice)</td>
<td>8 weeks (incl. 1 week Infectology and 1 week Family Medicine)</td>
<td>8</td>
<td>Internal Medicine II., Medical Imaging, Pulmonology and Thoracic Surgery</td>
<td>final</td>
</tr>
<tr>
<td>Surgery (final year’s practice)</td>
<td>6 weeks (incl. 1 week Vascular Surgery, 1 week Traumatology)</td>
<td>6</td>
<td>Traumatology, Urology, Ophthalmology</td>
<td>final</td>
</tr>
<tr>
<td>Pediatrics (final year’s practice)</td>
<td>6 weeks</td>
<td>6</td>
<td>Internal Medicine II., Pediatrics, Clinical Genetics</td>
<td>final</td>
</tr>
<tr>
<td>Obstetrics and Gynecology (final year’s practice)</td>
<td>4 weeks</td>
<td>4</td>
<td>Clinical Genetics, Obstetrics and Gynecology</td>
<td>final</td>
</tr>
<tr>
<td>Neurology (final year’s practice)</td>
<td>3 weeks</td>
<td>3</td>
<td>Neurology</td>
<td>final</td>
</tr>
<tr>
<td>Psychiatry (final year’s practice)</td>
<td>3 weeks</td>
<td>3</td>
<td>Psychiatry and Psychotherapy</td>
<td>final</td>
</tr>
<tr>
<td>Ambulance</td>
<td>2 weeks</td>
<td>2</td>
<td>Anaesthesiology and Intensive Therapy, Emergency Medicine and Oxyology, Traumatology</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Transfusion</td>
<td>1 week</td>
<td>1</td>
<td>Anaesthesiology and Intensive Therapy, Internal Medicine II.</td>
<td>pract. mark</td>
</tr>
<tr>
<td>Elective</td>
<td>6 weeks</td>
<td>6</td>
<td>Internal Medicine II., Surgery, Last course of the chosen field (announced in the 5th year at latest)</td>
<td>pract. mark</td>
</tr>
<tr>
<td>PE XI.</td>
<td>0</td>
<td>1</td>
<td>PE X.*</td>
<td>signature</td>
</tr>
<tr>
<td>PE XII.</td>
<td>0</td>
<td>1</td>
<td>PE XI.*</td>
<td>signature</td>
</tr>
<tr>
<td>Thesis work</td>
<td>In addition to individual student preparation, at least 20 contact hours with the supervisor</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

elective subjects in all in the 1-6 years

<table>
<thead>
<tr>
<th>Obligatory elective subjects</th>
<th>From the 2022/2023 academic year, minimum 4% of the total number of credits required.</th>
<th>As determined at the relevant subject.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementary elective internship practice</td>
<td>5 weeks duration (2 “gap” weeks + 3 weeks in May) Practice time: 40 hours per week; Credits: 5</td>
<td>Internal Medicine II. Obstetrics-Gynecology Pediatrics</td>
</tr>
</tbody>
</table>

* Simultaneous taking the courses is possible.
Comment:

Please read more about the rules concerning the criteria of selecting the foreign clinical practice positions and accepting the practice period spent abroad:
https://semmelweis.hu/english/education/english-language-program/english-secretariat/official-forms/
https://semmelweis.hu/english/education/departments/

Certificates can be downloaded at
https://semmelweis.hu/english/education/english-language-program/english-secretariat/official-forms/

Please note the followings:

1. When not at Semmelweis University the one week Traumatology is to be completed at a surgical department providing neurochirurgia as well.
2. It is strongly required to keep the instructions of Article 24 of the Examination and Studies Regulations concerning the requirements of the diploma work focusing especially on the deadlines.
3. The final exams can be done only on the exam dates published by the clinical departments of Semmelweis University.

Please note: there are no individual requests and the rule should be kept strictly.
INTERNAL MEDICINE

To be present for at least 7 hours per day (35 hours per week), including 1 week Infectology and 1 week Family Medicine.

Activities should include the following subjects: general survey of hospital/department organization, examination of patients in the Medical Department, with special emphasis to case history taking and full physical examination. The students should gain practice in patient documentation, problem-oriented medical record keeping, taking of pulse, blood pressure, of patients, making 12-lead ECG.
Participate in the preparation of diagnostic and therapeutic plan for patients.
Be present at invasive and semi-invasive interventions (taps of abdominal and chest fluid, preparation of bone marrow smear etc.).
To spend time at the outpatient department.
To practice basic laboratory techniques needed in bedside diagnosis (urinalysis, stool examination, use of dip sticks etc.).
To be on night duty once during the period.
Consultations in gastroenterology, diabetes, hematology, endocrinology, cardiology, sonography, X-ray, ECG etc.
Watch endoscopy performed.
See the intensive coronary care unit.
Regular consultations with the doctor responsible for the student.

All these activities should be carefully supervised by members of the medical staff.

The students should also practice communication with patients and their relatives, while giving them relevant medical information on the disease but avoiding conflicts with medical confidentiality.
Students should take an active part in medical consultations concerning their patients, as well as in the medical conferences in the department.
INFECTOLOGY IN INTERNAL MEDICINE

One-week infectology practice within sixth year’s rotation in internal medicine

Subject: Infectious diseases (Infectology)
Head of Division: Dr. Gergely Kriván PhD
Location: Department of Internal Medicine and Hematology, Division of Infectology at Szent László Hospital 1097 Budapest, Albert Flórián u 5-7.
Time period: 30 hours a week
Registration: NEPTUN system

Program: a detailed program plan will be announced about locations and tutors of daily practice in time.

Overview
Knowledge in infectious diseases has been part of ancient medical practice and science for ages. Epidemics, isolation of patients with communicable diseases, vaccinations and anti-infective therapy had a significant impact not only on the progress in healthcare but also on history and socio-cultural development of mankind. Although infectology is often considered being of marginal importance within internal medicine, it should be noted that an increasing number of diseases and conditions seem to have an infectious background. In addition, around a third of chapters within major medical textbooks deal with infectious diseases. As a result of the recent pandemic caused by SARS-CoV-2 virus unprecedented attention is being paid to infectious disease management globally.
Currently development of infectology has two important directions that are complementary to each other. The traditional one will target classical and emerging infections often of global scope, like COVID-19, influenza, gastrointestinal infections, hepatitis, or malaria etc. A newer branch of infectology is focusing on infections related to modern medicine, like nosocomial outbreaks caused by multiresistant organisms or infections occurring in immunocompromised hosts. Prophylaxis and therapy of infections as well as knowledge on antibiotic therapy is of significant importance in both fields.

Program details
During infectology rotation you will be invited to
- take part in rounds at the Departments of Infectious Diseases (infection control situation permitting), participate in round table discussions on current topics in infectology, discuss real life cases especially in the immunocompromised host setting, and gain insight into modern HIV/AIDS management.

Sessions are intended to be as interactive as possible, so you are encouraged to actively take part in discussions and feel free asking questions from tutors at all times.
Completion of rotation and signature: Registered students must attend all courses to receive their signature. We can only accept hospital discharge papers for verification of absences. The absence must be substituted at a later time period, assigned by the tutor. In the case of further absences, the practice cannot be accepted. Excuses like having been unable to locate the venue of practice are not acceptable. Students arriving later than 10 minutes past the scheduled start of the sessions will not be accepted to take part in the program.

Program: a detailed program plan will be announced about locations and tutors of daily practice in time.

Group size: Our institution can only accept a limited number of students at a time. In order to keep the program interactive and due to changing infection control rules, structure and logistics of the practice may change and the maximum number of participants may be restricted. For places available please check the NEPTUN system.
Overview
Knowledge in infectious diseases has been part of ancient medical practice and science for ages. Epidemics, isolation of patients with communicable diseases, vaccinations and anti-infective therapy had a significant impact not only on the progress in healthcare but also on history and socio-cultural development of mankind. Although infectology is often considered being of marginal importance within internal medicine, it should be noted that an increasing number of diseases and conditions seem to have an infectious background. In addition, around a third of chapters within major medical textbooks deal with infectious diseases. As a result of the recent pandemic caused by SARS-CoV-2 virus unprecedented attention is being paid to infectious disease management globally.
Currently development of infectology has two important directions that are complementary to each other. The traditional one will target classical and emerging infections often of global scope, like COVID-19, influenza, gastrointestinal infections, hepatitis, or malaria etc. A newer branch of infectology is focusing on infections related to modern medicine, like nosocomial outbreaks caused by multiresistant organisms or infections occurring in immunocompromised hosts. Prophylaxis and therapy of infections as well as knowledge on antibiotic therapy is of significant importance in both fields.

Program details
During infectology rotation you will be invited to
- take part in rounds at the Departments of Infectious Diseases (infection control situation permitting), participate in round table discussions on current topics in infectology, discuss real life cases especially in the immunocompromised host setting, and gain insight into modern HIV/AIDS management.

Sessions are intended to be as interactive as possible, so you are encouraged to actively take part in discussions and feel free asking questions from tutors at all times.
Completion of rotation and signature: Registered students must attend all courses to receive their signature. We can only accept hospital discharge papers for verification of absences. The absence must be substituted at a later time period, assigned by the tutor. In the case of further absences, the practice cannot be accepted. Excuses like having been unable to locate the venue of practice are not acceptable. Students arriving later than 10 minutes past the scheduled start of the sessions will not be accepted to take part in the program.
SURGERY

- Acting as a HO or SHO under strict supervision, including administration and practical skills.
- Admitting of patients with full physical examination, including breast and PR examinations.
- Theoretical planning for examinations and treatments for the examined patients.
- Continuous observation and registration of the patient’s condition with administration.
- Writing of discharge reports.
- Performing different injections (iv., im, sc), insertion of venflons, phlebotomies. To determine blood group, performing of transfusions under strict supervision. Completion of administration.
- Insertion of NG tubes.
- Catheterization (urethral and suprapubic).
- Removal of clips and stitches.
- Changing of dressings.
- Assistance at abdominal and thoracic wash-outs or punctures.
- Taking part in consultations with other specialists.
- Theoretical decisions about operations. Consenting.
- Taking part in operations, scrubbing in, stitching.
- Examination and treating of emergency patients.
- Taking part in anesthesiological preparation of patients.
- Observation of premedications.
- Assistance at several anesthesiological procedures, including spinal, peridural and GA.
- Assistance at intubations. If possible, independent intubation.
- Measurement of CVP.
- Assistance at jugular and subclavian venal punctures.
- Suction of the throat and trachea.
- Observation of ITU work.

Involvement in the preparation of the documentation of the patients.

Involvement in the preoperative preparations as well as in the postoperative care and treatments.

Take part in the operations as second assistants.
Take part in on-call duty without numerical limitations. During on-call (night) duty, interns should-under the supervision of the ward chief or authorized surgeon – be involved in solving all problems caused by either acute or chronic diseases.
Interns are required to take part in all consultations organized for them.

Interns will be eligible for the final examination if the above conditions have all been met and their academic achievements during their internship proved.
TRAUMATOLOGY

Credits: 0
Total number of hours: 40 lectures: practices: 40 seminars:
Type of the course (mandatory/elective): Mandatory
Academic year: 2022/2023
Code of the course: AOKTRA651_1A
Course director (tutor): Prof. Dr. Hangody László
Contact details: Semmelweis University Traumatology Department
Tel: 06 1 467 3851
Position: Head of Department
Date of habilitation: May 24, 2003
Reference number: 10/2003

Aim of the subject and its place in the curriculum:

Traumatology as a specialty deals with the treatment of injured patients, independent of the injured organ, patient’s age or previous diseases. In developed countries, the 4-5th leading cause of death is injury, while in the actively working population, the rate of death is even higher. Morbidity in children and in the elderly is also high. Since the patient examination and therapeutic algorithm somewhat differ from the previously taught examination and treatment methods in the curriculum, our aim is to offer a general and practical approach to treating trauma patients for students. The prerequisite for 6th year Traumatology is the material and exam from the 5th year in Traumatology, to be used in a more practical manner. Beside this, familiarization and active participation in the daily routine of a Traumatology department play a role in the students’ curriculum.

Location of the course (lecture hall, practice room, etc.):

• Uzsoki Hospital, Department of Orthopedics-Traumatology, Conference room (ground floor)
 1145 Budapest, Uzsoki street 29-41.

• Manninger Jenő National Institute of Traumatology, Conference room (8th floor)
 1081 Budapest, Fiumei street 17.

• In the Member States of the European Union (and in Switzerland and Norway), clinical practice is accepted and recognized if it is earned at a Traumatology or Orthopedic-Traumatology department at state-accredited university clinics or teaching hospitals – the legal ground for this is the mutual recognition of diplomas issued by the accredited institutions.

• Abroad at a Traumatology or Orthopedic-traumatology department of an accredited teaching hospital accredited by the Hungarian Accreditation Committee – HAC (this can be checked on the following website: http://www.semmelweis-english-program.org/index.php?option=com_content&task=view&id=79&Itemid=101 under the link: Approved Health Institutes for 6th year Rotations).

• Abroad in the country of students’ choice, which has been approved by the department (which meet the requirements posted on the Traumatology Department’s website).

Competencies gained upon the successful completion of the subject:

During practices, students will have the opportunity to learn the following: physical examination of injured patients, bandaging, suturing, casting techniques, and the uses of orthoses and splints. Consultation of typical and the more frequent trauma cases, radiologic diagnostics, as well as shadowing, observing and/or assisting in the operating theater are also part of the curriculum. In the ER, students will have an opportunity to examine and participate in the trauma care of patients under supervision.
Prerequisite(s) for admission to the subject:

Traumatology IV
According to the academic and examination regulations of Semmelweis University

Detailed thematic of the course:

1.) Daily attendance of morning conference. After becoming acquainted with the introduced cases, students will have the opportunity to examine the hospitalized patients and familiarize themselves with patient’s documentation.
2.) Assisting or observing in the operative theater, depending on the operative program.
3.) Students shall participate in patient admission, examination, follow and help in the evaluation of the diagnostic examinations, and take part in the acute treatment of traumatized patients during on duty shifts.
4.) Participating in grand rounds, patient presentation, and following up on referrals.
5.) Consultation with attending tutor of actual clinical cases, planning the treatment and the course of patient follow up.
6.) Taking part in patient follow up examinations. Examining the range of motion, function, evaluating x-rays and CT scans. Identification and treatment of complications.

Detailed syllabus:

1. First Aid
2. Evaluation of the mental-stage/orientation with the Glasgow-score
3. Evaluating and management of external wounds
4. Termination of bleeding
5. Transportation of trauma patient
6. Transient fixating bandage of traumatic part of body
7. Preparation of the surgical area
8. Surgical scrub-in and clothing
9. Infiltrational anaesthesia
10. Incision and drainage
11. Management of infected, necrotic wound
12. Closure
13. Stitch removal
14. Applying pressure-bandage
15. Reuniting closed fractures
16. Fracture stabilization
17. Reduction of dislocation
18. Transient fixation of broken extremities
19. Insertion of Foley’s catheter in men
20. Insertion of Foley’s catheter in women
21. Venous-canulating
22. Pain management
23. Assisting surgical procedures

Potential overlap(s) with other subjects:

Orthopedics, First aid, Sports Medicine, Neurotraumatology, Hand Surgery, General Surgery

Policy regarding the attendance and making up absences:

The complete attendance of the two week (40 hours, including the 12 hour on-duty shift) practice as well as the completion of the syllabus signed by the tutor is mandatory. The certificate/attendance sheet and syllabus must be handed in/scanned and emailed to the Traumatology Department upon completion of the practice with the certificate.

10 hours of absence is allowed if the student can provide documents of medical treatment, and this absence can be made up at a later time which is convenient for the tutor. Absence of more than 10 hours cannot be made up and we cannot accept the practice for the student.

Means of assessing the students’ progress during the semester:

The interactive seminars and practices allows for the assessment of students’ progress. There will be no formal test/quiz during the practice week.

Requirement for acknowledging the semester (signature):

The complete attendance of the two week (40 hours, including the 12 hour on-duty shift) practice as well as the completion of the syllabus signed by the tutor is mandatory. The certificate/attendance sheet and syllabus must be handed in/scanned and emailed to the Traumatology Department upon completion of the practice with the certificate.

Type of the examination:

Oral exam. One traumatology topic within the surgery exam.
Exam requirements:
Oral examination. The knowledge of the given textbook, lecture and practice material including that of 4th year.

One topic is chosen from the Traumatology topic list:
1. Treatment of the open fractures, guidelines, methods
2. Nonoperative treatment methods of fractures (traction, functional treatment, external fixation, guidelines of the treatment of fractures)
3. Osteosynthesis, methods
4. Mechanism, diagnosis and treatment of joint dislocations
5. Clinical symptoms of fractures, diagnosis
6. Primary and immediate care of skull and brain injuries, in-hospital diagnostic examination methods
7. Classification of skull fractures, and treatment principles
8. Concussion and contusion of the brain and their treatment
9. Epidural, subdural and intracerebral hematoma; symptoms, diagnosis and treatment
10. Examination of spinal injuries; diagnosis. Surgical indications in the management of spinal injuries
11. Fixation of vertebral fractures. Rehabilitation of spinal injuries
12. Rib fracture classification, treatment and prognosis
13. Treatment and diagnosis of hemo- and pneumothorax
14. Guidelines for observing patient with blunt abdominal injuries, diagnosis and treatment of parenchymal and bowel injuries
15. Types and treatment of the injuries of the shoulder girdle (soft tissue and bony lesions)
16. Treatment of humeral fractures (humerus neck and diaphysis)
17. Diagnosis and treatment of olecranon fractures
18. Treatment of forearm fractures in adults
19. Typical radial bone fracture (distal radius fracturc) principals and treatment methods
22. Types, treatment and associated injuries of pelvic fractures.
23. Types, therapy and probable complications of hip fractures (femoral neck and intertrochanteric fractures)
24. Diagnosis, treatment, complications and prognosis of intracapsular fractures of the femoral neck
25. Principles of endoprosthesis replacement (arthroplasty) surgery
26. Diaphyseal fractures of the femur
27. Intraarticular fractures of the knee and treatment methods
28. Diagnosis and treatment of patellar fractures
29. Ligament injuries of the knee – injury mechanism, diagnosis and treatment
30. Cartilage injuries of the knee joint (including meniscus injuries). Principles of arthroscopy
31. Open and closed tibia fractures – treatment and rehabilitation
33. Types and treatment of ankle fractures
34. Calcaneal fracture and its therapy
35. Symptoms and therapy of Achilles tendon ruptures
36. Compartment syndrome of the lower extremity – diagnosis and treatment

Type and method of grading:
Oral exam grade (averaged with the surgery topics), based on a 5 grade scale (1-5).

Literature, i.e. printed, electronic and online notes, textbooks, tutorials (URL for online material):

Name of Textbook:
The Trauma Manual:
TRAUMA AND ACUTE CARE SURGERY Third edition
Editors:
Andrew B. Peitzman
Michael Rhodes
C. William Schwab
Donald M. Yealy
Timothy C. Fabian
Publisher:
Wolters Kluwer / Lippincott Williams & Wilkins

Internet
The lecture material can be downloaded from Semmelweis University’s E-learning portal https://itc.semmelweis.hu/moodle/?lang=en
SYLLABUS OF THE SUBJECT

I: Reception, assignment, and tutor appointment
The 6th grade students who registered themselves to the certain term, should appear on the first day of the practice (usually on Monday) at 8 am at the English course coordinator (Zsuzsanna Jaranyi M.D., associate professor). They can get information of the meeting point at the reception. From 8 am till 8:30 the students get their coats and their lockers. After this, they are assigned to their tutor. Our aim is the „one tutor-one student” principle, but this is not possible often, due to the numerous students at same time (4-5 students have 1 tutor). During the practice course it is the tutor’s task to introduce the whole range of the vascular surgical procedures to the students: like the morning ward round – physical examination of the patients – diagnostical steps of vascular diseases – treatment strategy – knowledge of operative techniques – early control, medical therapy, recognition and treatment of adverse events, long term prognosis of patients who underwent vascular surgical operations and the activities of the outpatient clinic.

II: Activities in wards
The student participates in the ward rounds with the tutor’s guidance, where he can get acquainted with the admitted patients’ history, the type of the previously performed operations, or even with the planned operative opportunities. The tutor involves the student in the features of the arterial and venous patient examination: like recording the patient history, listing the risk factors of the vascular diseases, palpation, auscultation, and examination with mini Doppler, performing special tests (Trendelenburg-, Perthes probe, postural-, capillary refill test), including or excluding cardiac co morbidities (ECG, ECHO, history findings), and finding other co morbidities, which affect with the surgical treatment.

III: Diagnostic possibilities of patients with vascular diseases
Students should spend at least one day in the angiography, carotid duplex scan, and CT/MRI laboratories, where they could get acquainted with the most common invasive and non-invasive diagnostical opportunities, and with the endovascular therapy.

IV: Activity in the Operating Theatre
The student participates in the patients’ operations, following all the stations, and in some of these he/she could take a hand in: anesthesia, narcosis, intubation or local anesthesia, catheter usage, canulation, giving injection, disinfection, isolation, surgical techniques, wound drainage, closing, and dressing change, and following the operated patient to the ward or to the intensive care unit. It is recommended for the student to scrub in, and to assist to the surgeon. During the operation he/she should get a possibility to touch the ill and the reconstructed vessels and the tutor should explain the specialties of the actual type of the operation.

V: Outpatient clinic
The student should participate in his/her tutor’s outpatient clinic, where he/she could learn the examinations of the vascular patients. The student should perform patient examination also (palpation, auscultation, Doppler, and evaluating the test results), and should follow the treatment decision strategy, and the aspects of the patient controlling

VI: Practice oriented theoretical training
The students get a grouped theoretical training, which involves the whole range of vascular surgery. These are one and a half – two hours long discussions which are all practice oriented.

VII: On the last day of the practice course the students give back their coats and their locker keys, and they get the signature in their index, which certifies the successfully fulfilled practice.
PEDIATRICS

According to the curriculum, 6th year medical students should complete a 6-week Pediatric practical rotation. Students rotate to a different Ward every week. This way they can acquire and practice as much activities and procedures as possible on both infants and children.

Students should practice or potentially practice the following procedures while on the rotation:

- Taking of pulse and blood pressure, correct weight and height measurement (also of infants) (use of percentile tables).
- Under the supervision of the ward physician, active participation in blood sampling, taking throat swab etc.
- Under the supervision of the ward physician, practice of various injection techniques (venous, im, sc and Mantoux test).
- Preparation and control of infusion and transfusion accessories and performing these activities under the supervision of the ward physician. Determination of blood group.
- To assist to special diagnostic or therapeutic interventions and learning eventually to perform them under the supervision of the ward physician (bone marrow sampling, lumbar puncture).
- Based on the knowledge of the necessary physiological studium: blood counting and urine analysis (also the sediment).
- Taking of case records and temperature charts.
- Participation in the daily rounds for students, where simpler differential diagnostic questions are discussed with the instructions of a full or associate professor.
- Participation in tutorials held on the most important theoretical subjects, enabling students to get acquainted with the standpoint of the hospital in debated questions.
- In addition to the above, students are expected to be able to contact children patients of various ages (to win the patients for the examination), to do basic nursing duties (feeding, drinking, bathing, changing of infants’ diapers, administering of medicaments).
- Working in the wards: ward round (physical examination, discuss about illnesses, therapy, different diagnoses, etc.)

Type of exam: Bedside practical exam and oral exam.
Exam requirements: topics are available at departments website and Moodle

Note: Only legibly, completely and accurately filled out, institutionally sealed, original acceptance letters are recognized by the I. Department of Pediatrics!
OBSTETRICS AND GYNECOLOGY

Essential Requirements in Obstetrics

- Prenatal care (anamnesis, lab tests, screening during pregnancy, obstetrical examinations, Leopold’s manoeuvres)
- Cardiotocography (NST, OCT)
- Ultrasonography (evaluation)
- Abnormal pregnancy (diagnosis and therapy), intercurrent diseases (diabetes, heart diseases, renal diseases). Preeclamptic toxemia, hypertension, twins, hemorrhages, abortions
- Normal labor
 – fetal and maternal monitoring, management of the stages of labor (examinations during labor)
- Abnormal labor
 – breech delivery, transverse lie (diagnosis)
- Obstetric operations (assistance at labor and delivery)
- Obstetric operations (vacuum extraction, forceps, cesarean section, episiotomy)
- Postnatal care
 – Evaluation of the premature, dysmature and eutrophic newborns
 – Fundamentals of neonatal management
- Essential Requirements in Gynecology
- Gynecologic anamnesis
- Gynecologic examinations (to be carried out)
 – vaginal examination
 – colposcopy – cytology (basic knowledge, how to take a PAP smear)
 – examination of the breast
- Gynecologic operations (assistance)
 – Bartholin abscess, cyst
 – D and C
 – abdominal hysterectomy
 – vaginal hysterectomy
 – colporrhaphy
- Postoperative management (basic knowledge)
- Outpatient clinics (to take part in the office work of outpatient clinics for gynecology, genetic counseling, adolescent gynecology, menopause, endocrinology, etc.)
- Bleeding disorders
- Cervical, corporal, ovarian, vulvar cancer (etiology, screening, diagnosis, therapy)
- Inflammation of the genital tract (PID)
- Urinary incontinence
- Contraception
NEUROLOGY

General information

Tutor: Dr. Róbert Debreczeni
Tel.: 210-0330, Fax: 210-1368

Office hours at the Department of Neurology:
Monday 13:00-14:00 Friday 10:00-12:00

Responsible Secretary: Andrea Kovács (Andi)

Rotation periods: set by the English Secretariat, but for individual changes one might apply at the Department of Neurology. To ease the scheduling of other 6th year practices the Department shall organize “early rotations” right after taking the 5th year semifinal exam.

Neurology rotation is 3 weeks long. Students receive their schedule and assignments on the first day of practice. During the training students must write one neurological case report. It is also obligatory to spend one day at our Outpatient Clinic and to take part in one night duty (no sleep in). Students’ activity in the wards, at the Outpatient Clinic and during duty, and also the case report is evaluated by the student’s tutor on an assessment sheet. The assessment form and the case report must be presented at the final exam. During the training period two days of absence are allowed.

Final examination
One can register for the exam only through the Neptun-system.
The final examination consists of:
1. practical part: neurological examination skills, decision making, tested at the bedside;
2. theoretical part: 3 theoretical questions.
Examinations start at 10 a.m. Students must present their index book, assessment form, case report and in case of retake the permission from the Office of Dean.
On event of failing the earliest possible retake is 10 days later.

Official textbooks:

1. Arányi Zs., Kamondi A., Kovács T., Szirmai I.: Investigation of neurological patients
3. Lindsay,Bone,Callender:Neurology and Neurosurgery Illustrated. Churchill Livingstone

Other suggested books:

2. Duus: Topical Diagnosis in Neurology. Thieme Medical Publishers
6th year Medical Student Clinical Neurology Learning Objectives

Neurologic History and Examination

1. Perform a competent history, noting the following factors:
 A. Establish the onset, progression and character of the disorder identifying all related symptoms.
 B. Perform a standard neurologic review of symptoms with regard to personality, memory, headaches, pain, seizures, impairments of consciousness, vision, hearing, language function, swallowing, coordination, gait, weakness, sensory alterations, sphincter disturbance, and involuntary movements.

2. Perform a neurologic examination
 A. Perform a screening mental status examination to include:
 - level of consciousness assessment, and aphasia assessment.
 B. Examine for meningismus, straight leg raising maneuver.
 C. Cranial nerve examination
 D. Motor examination including: tone, strength and bulk, pronator drift, abnormal movements.
 E. Perform a reflex examination (muscle stretch reflexes, superficial reflexes, pathologic reflexes)
 F. Coordination examination including finger-to-nose- test, heel-to-shin test, rapid alternating movements.
 G. Gait examination: stance and Romberg test, gait, tandem gait, ability to rise from sitting, toe walking and heel walking.
 H. Perform sensory examination including primary modalities (pain, temperature, position, vibration) and secondary/cortical modalities (stereognosis, graphesthesia, double simultaneous stimulation).

I. Acquire the following skills:
 A. Anatomic and physiologic basis of the neurologic examination.
 B. Competent history, physical and neurologic examination.
 C. Localize the lesion using the clinical database.
 D. Develop a differential diagnosis of the clinical problem.
 E. Assess the acuteness of neurological diseases, recognize neurological emergencies.
 F. Formulate a plan of investigation and management.

II. Describe the indications, techniques, results, contraindications and risks of the followings:
 A. Lumbar puncture (investigation of CSF)
 B. EEG, EMG, ENG, Transcranial magnetic stimulation
 C. CT, MRI, SPECT, PET
 D. Carotid and transcranial Doppler ultrasound

III. Disorders of motor function
 A. Differentiate between upper and lower motor neuron lesion (UMN, LMN).
 B. UMN facial weakness and LMN facial weakness.
 C. Disorders of coordination. Recognize symptoms of cerebellar disorders.
 - Define ataxia, dysmetria, wide-based gait, and discuss the localization.
 D. Define and differentiate involuntary movement disorders: tremor, rigidity, spasticity, athetosis, chorea, dystonias, myoclonus, tics. Discuss the findings and treatment of: Parkinson’s disease, essential tremor, tardive dyskinesia, Huntington’s chorea, Wilson’s disease.

IV. Disorders of sensation
 A. Differentiate central sensory disorders from peripheral sensory disorders.

V. Disorders of vision
 A. Localize the lesions causing vision disorders and visual field defects.
 B. Differentiate papilledema from papillitis.
 C. The innervation deficit of the ocular muscles.
 D. Recognize gaze problems and nystagmus.
 E. Assess pupillary abnormalities.
VI. Episodic disorders
 A. Seizure disorders: generalized and partial seizures, distinguish seizure from syncope.
 B. Describe Todd’s postictal phenomenon.
 C. Evaluation of a patient for new-onset seizure.
 D. The anticonvulsants, their indications and side effects.
 E. Management of a patient in status epilepticus.
 F. Narcolepsy and obstructive sleep apnea.

VII. Cerebrovascular diseases
 A. Define the following: asymptomatic carotid bruit, TIA, amaurosis fugax, ischemic infarct, lacunar infarct, hemorrhagic infarct, parenchymal hemorrhage, SAH.
 B. The clinical features of various territorial infarcts.
 C. Treatment options to prevent infarction in atrial fibrillation and carotid stenosis.
 D. The clinical features for hypertensive parenchymal hemorrhage.
 E. The clinical picture and diagnosis of SAH. Early medical/surgical management of a patient with a SAH.

VIII. Multiple sclerosis (MS)
 A. The criteria for the clinical diagnosis of MS.
 B. The treatment of MS.

IX. Head trauma
 A. Define the temporal profile, symptoms and treatment of: commotion, concussion, anterograde and retrograde amnesia, subdural hematoma, epidural hematoma, contusion or hemorrhage, liquorhea.

X. Dizziness and disorders of hearing
 A. Define vertigo, and contrast it with other type of dizziness.
 B. Describe nystagmus, hanging head test (Hallpike maneuver), caloric.
 C. Identify the clinical features of: benign paroxysmal positional vertigo, vestibular neuronitis, Meniere’s disease, brainstem TIA with vertigo, acoustic neuroma.

XI. Disorders of higher cognitive functions
 A. Define and assess: dementia, delirium, amnesia, confabulation, hallucination.
 B. Define normal-pressure hydrocephalus.
 C. Define the anatomical basis for aphasia and dysarthria.
 D. Differentiate the aphasias on the basis of ability to produce speech, comprehension, naming, repetition.

XII. Disorders of altered consciousness
 A. Define hypnoid and non-hypnoid unconsciousness.
 B. The anatomic basis of consciousness.
 C. Assess the comatose patient, evaluation and treatment.
 D. Localize the following: decorticate and decerebrate rigidity, conjugately deviated eyes, pathologic respiration, pinpoint pupils, anisocoria, intact versus absent oculocephalic response
 E. Diagnosis and management of increased intracranial pressure (ICP).
 F. Symptoms brain herniations.

XIII. Headaches and facial pain
 A. Clinical features of migraine, cluster headache, tension headache, trigeminal neuralgia,”organic” headache.
 B. Treatment for common headaches.

XIV. Brain tumors
 A. Clinical presentation and diagnosis of primary brain tumors.
 B. Metastatic tumors to the brain in adults.
XV. Infections
A. Bacterial meningitis, viral meningitis, encephalitis including herpes simplex, chronic meningitis, brain abscess. Neurosyphilis. Lyme disease.
B. HIV and the nervous system.

XVI. Spinal cord disorders
A. Neurological symptoms caused by compression, transsection and hemisection of the spinal cord.
B. Autonomic deficits caused by spinal cord lesion.
C. Clinical presentation of vitamin B12 deficiency.

XVII. Peripheral nervous system disorders
A. Clinical syndromes of neuropathy, neuromuscular junction disorders, myopathy.
B. Describe: radicular pain, radiculopathy, mononeuropathy, meralgia paresthetica, mononeuritis multiplex, polyneuropathy, paresthesia, fasciculation.
C. Clinical findings in root lesions at C5, L4, L5, S1.
D. Intervertebral disc herniation
E. The tunnel syndromes.
F. The acute inflammatory demyelinating polyneuropathy (Guillain-Barre synd.)
G. The motoneuron disease.
H. The myasthenia gravis.
I. Duchenne muscular dystrophy, myotonic dystrophy, polymyositis.

XVIII. Alcohol related disorders
A. Wernicke-Korsakoff syndrome, dementia.
B. Delirium tremens, alcohol withdrawal seizure.
C. Cerebellar degeneration, peripheral polyneuropathy.
Neurology Examination Question List for 6th year Students

1st series Priority questions

1. Brainstem reflexes
2. The facial nerve
3. Differential diagnosis of vertigo and dizziness
4. Localisation of paresis syndromes
5. Symptoms of upper and lower motroneuron lesion
6. Types and localisation of aphasias
7. Classification of unconscious conditions
8. Examination of the unconscious patient
9. Unconsciousness due to metabolic origin
10. Neurological emergencies
12. Traumatic intracranial bleedings
13. Trauma of the spine and spinal cord
14. Clinical syndromes of impaired circulation of the internal carotid artery
15. Clinical syndromes of impaired circulation of the vertebro-basilar system
16. Emergency in cerebrovascular disorders
17. Diagnostic procedures in cerebrovascular disorders.
19. Intracerebral bleedings.
20. Diagnosis, treatment and prognosis of subarachnoid hemorrhage
21. Status epilepticus
22. Meningitis, encephalitis
23. Multiple sclerosis
24. Signs of brain tumors
25. Signs of tumors of the spine and spinal space
26. Brain edema
27. Diagnostic criteria of dementia
28. Diagnosis of Parkinson’s disease
29. Wernicke-Korsakow syndrome
30. Guillain-Barre syndrome
31. Disturbance of micturition and defecation
32. Myasthenia gravis

2nd series

1. Neurological causes of impaired visual acuity. Visual field defects.
2. Ocular movement and gaze disorders
3. Disorders of the vestibular system.
5. Syndromes of pons and mesencephalon lesions
6. The muscle tone control
7. Neuroanatomical basis of sensory disturbances
9. Gait disorders
10. Symptoms of frontal lobe damage
11. Symptoms of temporal lobe damage
12. The limbic system
13. Symptoms of parietal lobe damage
14. Symptoms of occipital lobe damage
15. Classification of aphasia
16. Agnosia, apraxia, alexia, agraphia
17. The basal ganglia
18. Disorders of the thalamus
19. Localisation of memory disturbances
20. Imaging techniques (angiography, CT, MR, PET, SPECT)
21. Investigation of cerebral circulation
22. EEG in the diagnostic workup
23. EMG, nerve conduction studies, transcranial magnetic stimulation and evoked potentials (BAEP, VEP, SSEP)
24. The lumbar puncture and the examination of cerebrospinal fluid
25. The cerebral circulation, and its regulation
26. Classification of cerebrovascular disorders
27. TIA
28. Causes of cerebral ischaemia in young adults
29. Treatment and prevention of cerebral ischemia
30. Classification of epilepsy
31. Diagnostic workup of epilepsy
32. Differential diagnosis of syncope and other types of disturbed consciousness
33. Treatment of epilepsy
3rd series

1. Neurological disorders caused by viral infections
2. Neurological disorders caused by Herpes virus
3. Prion-diseases, slow virus infections
4. Neurological consequences of AIDS
5. Clinical types and treatment of multiple sclerosis
6. Hystopathological classification of brain tumors
7. Metastatic tumors of the brain
8. Paraneoplasias of the nervous system (PML, neuropathies, cerebellar deg., Lambert-Eaton sy.)
9. Disorders associated with parkinsonian syndrome
10. Treatment of Parkinson's disease
11. Hyperkinetic movement disorders
12. Classification of encephalopathies
13. Primary degenerative dementias
14. Multiple system atrophy
15. Disturbed cerebrospinal fluid circulation (hydrocephalus)
16. Syndrome of brachial plexus damage
17. Syndrome of radial, ulnar and median nerve damage
18. Syndrome of lumbosacrals plexus damage
19. Etiology of polyneuropathies
20. Neuropathies in diabetes mellitus
21. Inherited neuropathies (Charcot-Marie, Dejerine-Sottas)
22. Low back pain, and cervical disk disease
23. Malformation of the spine and spinal cord
24. Symptoms of the disorder of spinal cord
25. Motoneuron diseases
26. Muscular dystrophies
27. Muscle disorders
28. Primary headache syndromes
29. The neuralgias
30. The physiological sleep and the sleep disorders
31. Genetic disorders in neurology (Huntington chorea, fragile X, dystrophia myotonica)
PSYCHIATRY

Department of Psychiatry and Psychotherapy
Tutor: Dr. Erika Szily

Teaching Psychiatry for the sixth-year students at the Department of Psychiatry and Psychotherapy at Semmelweis University

The goals of the psychiatric practices (3 weeks)

The goal of our Clinic is to teach medical students about the most important signs and symptoms of the most common diseases as psychiatric disorders have a relatively high prevalence in the population. Considering the high prevalence and the last but not least economic consequences, psychiatric disorders can be a burden for every society. Every medical student must be familiar with the high prevalence of depressive and anxiety disorders. Hungary was once one of the leading countries among those with high suicide rates; therefore, we require them to get acquainted with important details of the main causes and therapeutic possibilities of suicide, as well. As many psychiatric disorders can mask somatic diseases, medical students have to learn about the differentiation of these conditions.

In the 5th year students must base their knowledge on lectures and materials of practice where they have an opportunity to talk to a psychiatric patient, so they can learn how to detect the most important signs and symptoms of diseases. During the 6th year, they need to explore patients and write a case report according to the sample that is available on the website of our Clinic. Before the oral exam they have to discuss this case report with the responsible tutor who will give a mark for it. Students are not allowed to take their final exam without a marked case report. We have a certificate form on our website containing all the details students must bring from the hospital where they have completed their rotation. The link is: http://semmelweis.hu/pszichiatria/oktatas/the-english-version-can-be-found-here/

Objectives/target abilities:

- The ability to obtain a complete and reliable history
- The method of asking about specific psychiatric symptoms or how to evaluate the information provided by the patients including:
 - orientation and attention
 - affect
 - thought disorder
 - memory
 - psycho-motor abilities
 - perception
 - motivation, intellect and personality
- The ability of noticing states of potential psychiatric emergency
- The ability to recognize specific symptoms that can refer to any hidden psychiatric problem which is not told by the patients
- The ability of summarizing all the gained information in a detailed case report
- The ability of establishing a tentative diagnosis and to know what kind of tests (either laboratory or psychological or neuro-radiological, etc) are needed for the correct diagnosis
- Being aware of the most important effects and side/adverse effects of drugs used in psychiatry
- To learn that the practitioner must always consider the possible existence of psychiatric disorders even when there are a lot of somatic symptoms, since they can also appear as a result of psychiatric diseases

We have 5 wards with different profiles in our Clinic. Students must join these wards according to their schedule made by our training coordinator. Everybody has a tutor within the ward he or she is scheduled to. The tutor presents the specific profile of that particular ward, but they also have the opportunity to go and see other wards, too. They spend a day at the out-patient department of our Clinic, which is very useful because there are many patient examinations referred from other departments of Semmelweis University. Thus, they can gain insight into the most important psychiatric features of internal medicine, neurology, surgery etc. Students must join for one all-night-duty and they have to participate in the emergency treatment performed during this period.

Under the supervision of an appointed physician students have to:
- Participate in the work of one unit;
- Evaluate patients independently;
- Write a detailed case history of one patient which has to be presented at the exam;
Participate in consultations.
The internship in Psychiatry has to be completed at a Department of a University or in a Teaching Hospital which has a contract with a University. Students completing the internship abroad have to present a document of evaluation (i.e. Certificate downloadable from our website) indicating their performance during the internship and a grade from 5 (excellent) to 1 (failure).

Requirements
1. The 6th year includes a 3-week-long rotation in Psychiatry in a hospital or clinic which is accredited for teaching by Semmelweis University.
2. If you want to complete your rotation abroad, then before you start it, you must present at our department an officially stamped statement of acceptance issued by the teaching hospital abroad where you intend to spend your rotation.
 BE AWARE: The Letter of Acceptance for the 4-week-long Psychiatry internship requested from practice places abroad must state:
 a) The training place abroad is a teaching hospital
 b) A brief description of how Psychiatry is taught in that institution
 c) The name of the responsible tutor (name, e-mail)
3. The Psychiatry practice must consist of 6 hours on 20 (4×5) workdays at psychiatric wards. Students participate in the everyday work of the ward(s), in patients’ admission, in ward rounds and in therapeutic decisions. One all-night-duty is compulsory within the rotation period.
4. Writing a case report during the rotation period is a task for every student. A sample case report is available on the website of our department http://semmelweis.hu/pszichiatria/oktatas/the-english-version-can-be-found-here/
5. Case reports should not include patients’ personal data (name, birth date, national insurance number, etc). Only those practice places are acceptable where the release of the case report is not forbidden by law. Students completing the internship abroad have to present at the exam the CERTIFICATE in which the tutor has indicated their performance during the internship on the scale: excellent-satisfactory-unsatisfactory and commented on their strengths and weaknesses.

Without these documents students are not allowed to take their final exam in Psychiatry.
Please note that the Final Examination in Psychiatry cannot be taken within the 4th week of the rotation, just after the completion of 4 full weeks.
Sign-up for the exams: through the NEPTUN SYSTEM.
7. It is important to bring to the final exam this signed Certificate of the practice the case report (or a detailed report of the case report by the tutor on a separate sheet of paper) the mark for the case report, the filled-in Register of observed psychiatric conditions that was signed continuously by the tutors during the 5th and 6th year. The form is available on our website: http://semmelweis.hu/pszichiatria/oktatas/the-english-version-can-be-found-here/
FAMILY MEDICINE IN DAILY PRACTICE within Internal Medicine

One week Family Medicine practice within sixth year’s rotation in Internal Medicine

Department of Family Medicine
Head of the Department: Dr. Péter Torzsa M.D. Ph.D.
Contact details: H- 1085 Budapest, Stáhly u. 7-9. Phone: +36-1-355-8530
Tutor: Dr. Krisztán Vörös

Total number of hours: 40 lectures: – practices: 5×8
Type of the course (mandatory/elective): mandatory
Academic year: 2022/2023
Code of the course: AOKCSA154_SA

Aim of the subject and its place in the curriculum:
Family practice training is based on a one-to-one model involving a tutor and a medical student. The training is practice oriented. Medical students can gain experience about what kind of work a family practice involves while taking an active part in managing the consulting hours and being involved in patient treatment and care and screening.

Location of the course (lecture hall, practice room, etc.):
Accredited tutorial practices

Competencies gained upon the successful completion of the subject:
Medical students working together with the family practice team are involved in patient care during the consulting hours as well as in the patients’ home.
During the training they learn how to
- do physical examination
- make a diagnosis
- make a differential diagnosis
- set up a therapeutic plan
- write a case study
- manage paperwork and patient data recording
- manage expert activity
The medical students’ communicative skills develop and they get to know the statistical characteristics of the practice as well as the patient flow, morbidity and mortality data of the practice they are trained at.
During the training medical students are expected to keep a practice training diary and to shortly document the cases they meet (and to make detailed documentation of one particular case).

Prerequisite(s) for admission to the subject:
Internal medicine, Pharmacology, Laboratory medicine, Family Medicine, Public Health

Minimum and maximum number of students registering for the course:
Student selection method in case of oversubscription:
Where they are assigned

How to register for the course:
To register for the course in the ‘Neptun’ system
Detailed thematic of the course:

In a one-week training:
- Paperwork and data management
- Registration of a new patient and setting up a patient care summary for them
- Making out a prescription by hand
- Writing a referral (to hospital or to consultation)
- Compiling a therapeutic sheet and updating it
- Expert activity
- Judging whether the patient is fit for work and managing sick leave documentation
- Compiling patient data for official rehabilitation and social assessment
- Examining patients, diagnosis/therapy
- Recognising and treating upper and lower respiratory infections
- Recognising and treating urogenital infections
- Recognising and treating gastrointestinal infections
- Therapy/care
- Therapy, care and rehabilitation of cardiovascular and hypertonic patients
- Therapy, care and rehabilitation of diabetic patients and patients with metabolic diseases
- Therapy, care and rehabilitation of cancer patients
- Therapy, care and rehabilitation of patients with musculoskeletal diseases
- Therapy, care and rehabilitation of patients with cardiorespiratory diseases

Potential overlap(s) with other subjects:
- Internal medicine – Diagnosing and treating symptoms
- Public health issues and preventive medicine – communicable diseases, diseases to notify
- Surgery – acute abdominal symptoms, treatment of wounds

Policy regarding the attendance and making up absences:
It’s compulsory for the student to attend 75 percent of the training sessions.

Means of assessing the students’ progress during the semester:
During the short training period there is no assessment.

Requirement for acknowledging the semester (signature):
Attending the training sessions, a completed diary and an assessment sheet filled in by the tutor.
TRANSFUSION COURSE

Department of Transfusion Medicine
Course Director: Prof. Dr. Attila Tordai

1. Introduction, the history of transfusion medicine
2. Immunological introduction: basic mechanisms important in transfusion medicine
3. Immune response to incompatible transfusion: antigen (protein, carbohydrate) recognition, primary/secondary immune response
4. The molecular structure and physiological role of red cell antigens
5. Plasticity of stem cells, regenerative medicine
6. Introduction of the HLA system, diagnostics in transplantation immunogenetics
7. Platelet, granulocyte antigen systems
8. The blood group serology compatibility
9. Immunomodulation effects of transfusion
10. Blood donors, blood letting for donation, donor screening, risk assessment and reduction, international trends
11. Red cell, platelet, granulocyte and plasma blood products: manufacturing, storage, quality parameters
12. Generation and clinical use of albumin and immunoglobulin blood products
13. Challenges and approaches of blood supply management, international examples
14. Steps and practices of transfusion execution, international outlook
15. Indications of red cell, platelet and granulocyte transfusion
16. Alternatives to red cell transfusion: stimulation of red cell formation
17. Apheresis and extracorporal photopheresis
18. Transfusion aspects of hematology patient care, application of special blood products
19. Options for blood saving, peri-operative blood collection
20. Solid organ transplantation and its transfusion aspects (complications, case reports)
21. Infectious diseases transmitted by transfusion, epidemiology, screening, prevention
22. Transfusion aspects of the coagulation system, generation and clinical application of coagulation factor products
23. Treatment and long term care in inherited coagulation disorders
24. Effects of massive transfusion, factor substitution in acquired bleeding disorders
25. Transfusion aspects of cardiac surgery (complications, case reports)
26. Immunological complications of transfusions: hemolytic and non hemolytic
27. Non immunological complications of transfusions: circulatory and iron overload
28. Hungarian and international legal aspects of transfusion medicine
29. Test examination
AMBULANCE PRACTICE (Prehospital Emergency Medicine)

National Ambulance Service
Lecturer: Dr. Gábor Göbl

Syllabus

During the 2 weeks practice students will join the staff of an ALS (Advanced Life Support) Unit. They will experience the acute, in-field presentation of emergencies, occasionally urgencies, as well as the special viewpoints of interhospital transfer.

- Goal of the ambulance practice is to gain insight into:
 - Patient’s assessment in the prehospital setting (primary and secondary survey)
 - Recognition of critically ill conditions and the emergency interventions required (airway management, CPR, IV. line, volume substitution, pain relief, etc).
 - Recognition of severe emergencies (ACS, stroke, hypertensive emergencies, bronchial asthma, trauma, poisoning, psychiatric disorders, etc).
 - Patient’s mobilization, immobilization, special viewpoints of extrication
 - Monitoring patient en route to the hospital, transportation trauma.

The certification of the practice should contain the
- period of time spent at the ambulance station
- list and short summary of 15 cases the student participated at
- signature of the local director of the Ambulance Service

Note: Absence in 25% of practice time is possible, however informing the coordinator in advance and discussion of the new term of the practice are required.

Mode of certifying absences: oral
Evaluation: “completed” or “not completed”

Important information: Solely in the Neptun registered students are welcome at the Medical and Educational Directorate (1134 Budapest Róbert Károly krt. 77. 5th Floor) on the first day of the term at 9 in the morning. All the information concerning the location of the practice, schedule of work, information about safety at work, etc. will be announced at this time. Without getting this information nobody will be allowed to start the practice, and there will be no opportunity for replacement.

We ask the students not to turn directly to us with their wish to change schedule.
CARDIORESPIRATORY AND NEUROPHYSIOLOGICAL MEASURING METHODS

AOSKIK151 _1A

Elective course for medical students in the 3-6th years
Course director: Dr. Habil. László Dézsi,
Private Professor of Physiology, Semmelweis University

The purpose of the course: To review the theory and practice of modern measuring methods in experimental and clinical medicine, and providing practical knowledge to medical students on cardiorespiratory and neurophysiological measurements. The course is based on but further extends the material delivered during the course of Medical physiology. Throughout the lectures we put an emphasis on potential methodological errors of measurements and examinations, as well as how to avoid them.

Detailed Program:
1. Introduction. Biomedical engineering. Design and safety requirements of biomedical equipment
2. Computerized data acquisition and analysis. Telemetry systems
3. General metrology. Basics of measurement and control theory
4. Home monitoring of cardiovascular health status. Determination of blood glucose and tissue glucose concentrations
5. Sampling of continuous signals. Digitizing analogue signals
6. Direct and indirect methods to determine cardiac output and peripheral blood flow
8. Significance of objective studies in the practice of audiology. Neurophysiological measurements (action potentials, brain stem evoked potentials)
10. Measuring blood pressure in the lab and clinics (invasive and noninvasive methods)
11. Complement-related immunological and cardiopulmonary responses
12. Studying brain function by functional imaging systems
13. Experimental methods to study nociception
14. Investigating the electrical activity of the heart. Design of ECG amplifiers

Acknowledgement of the course: Prerequisite of the course is the completion of the first 2 years (Theoretical module). Regular attendance (maximum 3 absences) is required. Signature in the Index and 2 credit points will be awarded after successful exam. Source: material of the lectures, supplementary literature will be provided by the lecturers.
Applications: via Neptun system. Contact person: Dr. László Dézsi (e-mail: dezsi.laszlo@richter.hu; phone: 06-1-431-4823; phone/fax: 06-72-536-019). The application of min. 5 students is required.
COMPLEMENTARY ELECTIVE INTERNSHIP PRACTICE

Heart and Vascular Center
Department of Internal Medicine and Hematology
Department of Internal Medicine and Oncology
1st Department of Pediatrics
2nd Department of Pediatrics
Department of Neurology
Department of Psychiatry and Psychotherapy
1st Department of Surgery and Interventional Gastroenterology
2nd Department of Surgery
Department of Transplantation and Surgery
Department of Obstetrics and Gynecology

Credit: 5
Duration: 5 weeks (2 “gap” weeks + 3 weeks in May
Practice time: 40 hours per week

Lecturers: Dr. Béla Merkely
Dr. Tamás Masszi
Dr. István Takács
Dr. Attila Szabó
Dr. Gábor Kovács
Dr. Dániel Bereczki
Dr. János Réthelyi
Dr. Attila Szijártó
Dr. Gábor István
Dr. László Kóbori
Dr. Nándor Ács

Topic of the subject:
During the practice the student is assigned to a Tutor or to a Medical Team and is shadowing the work of them. Student can work only under the continuous careful supervision of a tutor who is responsible for the student. Daily work hours for the student: 8 hours
Activities during the practice should include the following:
- examination of patients in the department, with special emphasis to case history taking and full physical examination
- gain practice in patient documentation, problem-oriented medical record keeping
- participate in the preparation of diagnostic and therapeutic plan for patients, differential diagnosis of the case
- take an active part in medical consultations concerning their patients, as well as in the medical conferences in the department
- participate actively or as an observer at invasive and semi-invasive interventions, diagnostic or imaging procedures
- evaluation of routine laboratory results
- evaluation of imaging results
- possible participation on night or weekend duties
- get to know the work of the special sections of the department
- regular consultations with the doctor responsible for the student
 students should also practice communication with patients and their relatives, while giving them relevant medical information on the disease but avoiding conflicts with medical confidentiality.

Prerequisite of the course: Completion of the first 10 semester’s subjects.

Special academic work required for completion of the course: Under the supervision of the Tutor(s) the student takes part of the management of out- and inpatients of the Dept thereby obtaining competence in the subdiscipline.

Type of exam: Bedside practical exam

Suggested print, electronic, online material: Material given by the hosting subject for the final year.
PHYSICAL EDUCATION XI-XII.

Practice: 1 hour per week

The subjects taken into consideration when calculating the average of the diploma are the following:

- all subject with final exam
- list of the subjects ending with a semifinal:
 - Medical biology
 - Medical chemistry
 - Genetics and genomics
 - Immunology
 - Otorhinolaryngology
 - Dermatology
 - Clinical Genetics
 - Oncology (from 2025)
 - Orthopedics
 - Pulmonology (from 2025)
 - Radiology
 - Urology
 - Forensic Medicine
 - Ophthalmology
 - Oral surgery and dentistry
 - grade of the thesis
 - grade of the written part of the final board examination
 - grade of the oral part of the final board examination
 - grade of the practical part of the final board examination
GENERAL INFORMATION

Deadline of paying the tuition fee in the 6th year: the first semester’s fee is to be paid until 9 August, 2022, the second semester’s until 28 February, 2023.

The professor responsible for the student’s instruction during the clinical rotation outside Hungary is requested to give a detailed certificate of the student’s performance. It is requested to be done in the Student Handbook! This certificate in the Student Handbook must be signed by the professor, the Head of the Department as well as by the director of the hospital or the Dean of the University the hospital is affiliated to. Semmelweis University reserves the right to accept a certificate or refuse it in justified cases. Students have to present these certificates to the concerned departments. After the departments have accepted them, students have to retain the originals and hand them in at the English Secretariat.

Tuition fee reduction:

In case the student completes all the rotations regardless whether the 1 week Transfusion course is completed at Semmelweis University or abroad, he/she has to pay 80% of the tuition fee valid in the academic year. The relevant acceptance letters should be handed in latest until December 15, 2022. Otherwise the student is not entitled for the reduction!

Please write a letter of request addressed to the Academic Program Director when applying for the 20% reduction!

Please note:
that you have to sign up for the General Board Examination held in June latest until April 30, 2023! For the August exam latest until July 15, 2023 and for the November exam latest until October 15, 2023!
FACULTY OF DENTISTRY

BASIC MODULE
BASIC MODULE

1st semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Macroscopic Anatomy and Embryology I</td>
<td>C6L1P5</td>
<td>examination</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Foundations of Dental Materials Science</td>
<td>C2L2P0</td>
<td>examination</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical Chemistry</td>
<td>C4L2P2</td>
<td>examination</td>
</tr>
<tr>
<td>compulsory</td>
<td>Cell Science</td>
<td>C3L1P2</td>
<td>examination</td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics I</td>
<td>C4L1.5P2.5</td>
<td>examination</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Introduction to the Hungarian Language</td>
<td>C0L0P4</td>
<td>practice mark</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Terminology</td>
<td>C2L0P2</td>
<td>practice mark</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education I</td>
<td>C0L0P1</td>
<td>signature</td>
</tr>
</tbody>
</table>

Total Credit 21

BASIC MODULE

2nd semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Macroscopic Anatomy and Embryology II</td>
<td>C8L2P6</td>
<td>final#</td>
<td>Macroscopic Anatomy and Embryology I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Microscopic Anatomy and Embryology I</td>
<td>C4L2P2</td>
<td>examination</td>
<td>Cell Science</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry I</td>
<td>C4L2P2</td>
<td>examination</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Biophysics II</td>
<td>C3L1.5P2.5</td>
<td>final#</td>
<td>Biophysics I, Physical Foundations of Dental Materials Science</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian for Dental Medical Purposes I</td>
<td>C0L0P4</td>
<td>practice mark</td>
<td>Introduction to the Hungarian language</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Materials</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Macroscopic Anatomy I, Physical Foundations of Dental Materials Science</td>
</tr>
<tr>
<td>compulsory</td>
<td>First Aid</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Informatics</td>
<td>C2L0P2</td>
<td>practice mark</td>
<td></td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education II</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Medical Terminology</td>
<td>C1L0P2</td>
<td>practice mark</td>
<td>Medical Terminology</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Psychology</td>
<td>C1L2P0</td>
<td>examination</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Medical Sociology</td>
<td>C1L1P1</td>
<td>examination</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>History of Medicine</td>
<td>C1L2P0</td>
<td>examination</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit 27

Explanation

- **15 credits** should be gained from the **elective subjects** during the 5-year studies – see the elective list after the 3rd year study program
- The grade influences the qualification of the diploma.
- **C = Credit point**
- **L = Lecture (hours/week)**
- **P = Practice (hours/week)**
- *The grade influences the qualification of the diploma.*
LIST OF TEXTBOOKS (The list may change!)

11. Tóth: Concise Inorganic Chemistry for Medical Students. (SOTE) (Bp.)
12. Laboratory Manual I-II (Bp.)
13. Hrabáč: Selected Collection of Chemical Calculations (SOTE) (Bp.)
14. Sasvári: Bioorganic Compounds (Bp.) SOTE
Recommended textbooks:

3. Sasvári-Müllner: Bioorganic Compounds 4 kötet. (Bp.)
MACROSCOPIC ANATOMY AND EMBRYOLOGY I – II

Department of Anatomy, Histology & Embryology
Course Director: Dr. Andrea D. Székely

LEARNING OBJECTIVES
Aims of the lectures in anatomy: Presentation of the important and/or complicated chapters such as introductory chapters, thorax, pelvis, hand, foot, skull, heart, chapters of the visceral organs, central nervous system, organs of special senses, topographical anatomy, together with the developmental relevances, introduction to general and organ based embryology.

Aims of the practical sessions in the dissecting room: Based on the weekly programs (see separate), students will both observe prosected cadaver specimens (bones, joints, muscles, viscera, brain) and perform dissections on parts of, or on an entire, enbalmed cadaver. Students are supervised by the lab instructors. Bones, joints, muscles and peripheral nervous system will be primarily taught in the dissecting room.

LECTURES: First semester: 1×45 min; second semester: 2×45 min.
PRACTICAL CLASSES: First semester: 5×45 min; second semester: 6×45 min.
ECTS CREDITS: Altogether 14 (first semester: 6; second semester: 8).
MIDTERM TESTS: Oral and/or written

ACCEPTENCE OF THE SEMESTER:
Active participation in lectures, and dissection room sessions is obligatory for every student. Students should attend at least 75% of the scheduled hours to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the lectures and in the dissection room classes.

To gain a signature proving the validity of the semester students should attend at least 75% of the scheduled practical hours as well as having a successful midterm result (at last a 2). In case the latter has not been fulfilled, there will be two make up dates offered during the last two weeks of the semester.

Students are eligible to sit for the final examination only upon presentation of a dissected specimen. The dissection work may be done during the two semesters. The specimen will be evaluated by a departmental board.

TYPE OF EXAMS: oral and written
First semester: semifinal examination, second semester: final exam

Semifinal and final examinations consist of written and oral (practical and theoretical) parts
1. Written pretest (e-learning module – access to SeKA account is obligatory)
2. Macroscopic Anatomy (successful identification of structures on true anatomical specimens) including correct answers to relevant theoretical questions)
LIST OF TEXTBOOKS

Recommended textbooks:

COURSE DESCRIPTION

Macroscopic Anatomy and Embryology I

Lectures and dissection classes
Subject matter: Macroscopy and clinically oriented anatomy of the parts of the musculoskeletal system, i.e. osteology, arthrology and myology, together with the vascular and nervous supply of the limbs and the trunk. Skull (viscerocranium, neurocranium). Cavities, muscles of the head & neck region. Macroscopy of the brain and spinal cord, membranes (dura, arachnoid and pia mater). General and organ based embryology, developmental malformations.

Credits: 6
Prerequisite: none

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Dissection room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>The role of anatomy in the medical curriculum. Terminology. General arthrology and myology</td>
<td>General introduction to practical work in the dissection room, tools and rules Bones of the upper limb and the girdle, shoulder joint, dissection of the upper limb</td>
</tr>
<tr>
<td>Week 2</td>
<td>Clinical anatomy of the upper limb</td>
<td>Muscles (flexors) of the upper limb/girdle Elbow joint</td>
</tr>
<tr>
<td>Week 3</td>
<td>Clinical anatomy of the lower limb</td>
<td>Upper limb, arm, forearm Muscles and joints of the hand</td>
</tr>
<tr>
<td>Week 4</td>
<td>Gametes, fertilization, cleavage, blastulation</td>
<td>Dissection of the muscles, vessels and nerves of the upper limb (branches of the axillary a+v, brachial plexus)</td>
</tr>
<tr>
<td>Week 5</td>
<td>Implantation, structure of the placenta, placental circulation. Fetal membranes</td>
<td>Dissection of the muscles, vessels and nerves of the upper limb 1. Midterm test (oral): Upper limb including the girdle</td>
</tr>
<tr>
<td>Week 7</td>
<td>Components, muscles, joints, ligaments and movements of the vertebral column Components and movements of the thorax. Diaphragm</td>
<td>Dissection of the limbs and superficial regions of the the trunk (cadaver) Knee joint, bones of the leg and foot</td>
</tr>
<tr>
<td>Week 8</td>
<td>Components of the abdominal wall. Rectus sheath. Subinguinal hiatus. Inguinal canal. Adductor and femoral canals.</td>
<td>Dissection of the limbs and superficial regions of the the trunk (cadaver) Inspection of the structure of the body wall on prossected specimens (torso) Femoral vessels, lumbar plexus</td>
</tr>
<tr>
<td>Week 9</td>
<td>Bony framework of the skull: spaces of viscerocranium.</td>
<td>Sacral plexus Diaphragm Components of the body wall, rectus sheath, hernia canals inspection of the structure of the body wall on prossected specimens (torso)</td>
</tr>
<tr>
<td>Week 10</td>
<td>Introduction to the study of the nervous system. General organization of the central and peripheral nervous systems</td>
<td>Dissection of the lower limb and superficial regions of the the trunk (cadaver) Inspection of the structure of the body wall on prossected specimens (torso)</td>
</tr>
<tr>
<td>Week 11</td>
<td>Blood supply to the brain. Meninges, CSF, ventricles</td>
<td>Bones of the skull Internal and external skull bases Bones of the facial skeleton, mandible. Orbit, nasal cavity, pterygopalatine fossa</td>
</tr>
<tr>
<td>Week 12</td>
<td>Macroscopy of the brain stem, cerebellum and spinal cord.</td>
<td>Bones of the skull Internal and external skull bases Bones of the facial skeleton, mandible. Orbit, nasal cavity, pterygopalatine fossa</td>
</tr>
<tr>
<td>Week 13</td>
<td>Neurulation. Development of the central nervous system.</td>
<td>Morphology of the brain and spinal cord Blood supply, meninges, sinuses CSF circulation, cisterns Cadaver dissection Demonstration of prossected specimens</td>
</tr>
<tr>
<td>Week 14</td>
<td>Development of the skull, vertebral column and the limbs</td>
<td>Telencephalic hemispheres, gyri and sulci, Diencephalon, lateral and 3rd ventricles, Brain stem, cerebellum, 4th ventricle Frontal sections of the brain Non-obligatory assessments I-II: Topics of the semester</td>
</tr>
</tbody>
</table>
Midterm tests: The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Topic list for the semifinal examination:

Macroscopic Anatomy and Embryology I

Musculoskeletal Anatomy

General osteology, classification of bones
- Continuous connections of bones. Components and classification of joints
- General myology
- Structure and movements of the vertebral column, the gross anatomy of the muscles acting upon it
- Movements and muscles of the head & neck (atlantooccipital and atlantoaxial joints)
- Osteofibrous structure of the thoracic cage (bones, joints, ligaments, movements)
- Joints of the shoulder girdle, the gross anatomy of the muscles acting upon them
- Shoulder joint, the gross anatomy of the muscles acting upon it
- Axillary fossa, quadrangular and triangular spaces
- Muscles and cross section of the arm
- Muscles and cross section of the forearm
- Elbow joint, the gross anatomy of the muscles acting upon it
- Cubital fossa
- Structure and movements of the radiocarpal joint, gross anatomy of the muscles acting upon it
- Osteofibrous spaces and muscle compartments of the hand, tendinous sheaths
- Muscles, joints and movements of the fingers
- Composition of the pelvis (bones, ligaments and membranes)
- Hip joint and the gross anatomy of the muscles concerned with the movements
- External and internal muscles of the hip, supra- and infrapiiform hiatuses.
- Osteofibrous compartments, muscles and of the thigh
- Knee joint and the gross anatomy of the muscles concerned with the movements. Popliteal fossa
- Subinguinal hiatus, vascular and muscular compartments; adductor canal, femoral canal
- Osteofibrous spaces and muscle compartments and cross section of the leg (crus)
- Ankle joint together with the gross anatomy of the muscles acting upon it
- Subtalar and talocalcaneonavicular joints, the muscles acting upon them
- Structure of the foot, arches of the foot
- Diaphragm
- Muscles and spaces of the abdominal wall, rectus sheath
- Inguinal canal, femoral canal
- Pelvic floor (muscles); urogenital diaphragm, perineal muscles
- Components and connections of the anterior, middle and posterior cranial fossae.
- External skull base, connections
- Walls and connections of the orbit
- Walls and connections of the nasal cavity
- Oral cavity, temporal and infratemporal fossae
- Walls and connections of the pterygopalatine fossa

Macroscopic of the nervous system

- Blood supply to the brain, meninges, CSF
- Hemispheres, lateral ventricles, diencephalon, the 3rd ventricle
- Brain stem, cerebellum, the 4th ventricle, spinal cord
- Frontal sections of the brain
- Dorsal branches of the spinal nerves, intercostal nerves
- Cervical plexus
- Brachial plexus
- Lumbar plexus
- Sacral plexus

General Embryology
- Spermatogenesis, spermiogenesis
- Oogenesis
- Fertilization
- Cleavage of the zygote
- Blastocyst formation; the bilaminar embryonic disc
- Implantation
- Major parts of the early embryo (primary and secondary yolk sacs, amnion, chorion, chorionic cavity, body stalk)
- Gastrulation, formation of the intraembryonic mesoderm; the notochord
- Neurulation (neural tube and neural crest), formation of brain vessels
- Derivatives of ectoderm, endoderm and mesoderm
- Folding of the embryo
- Development of the fetal membranes (chorion and amnion)
- The umbilical cord
- Placenta (structure and formation)
- Twin formation
- Development of the skull
- Development of the vertebral column and limbs
- Development of the musculoskeletal system
Macroscopic Anatomy and Embryology II including Maxillofacial Anatomy

Lectures and dissection classes

Subject matter: Morphology, development, topography and clinically oriented anatomy of the internal organs (i.e. cardiovascular, gastrointestinal, respiratory and urogenital systems). Morphology and topography of the intracranial spaces. Course and branches of cranial nerves. Autonomic nervous system. Maxillofacial Anatomy

Credits: 8

Prerequisite: Macroscopic Anatomy and embryology I

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Dissection room</th>
</tr>
</thead>
</table>
| 1 | 1. Composition of the oral cavity, palate, tongue and the faucial isthmus
2. Temporomandibular joint, muscles of mastication
3. Anatomy of teeth | Muscles of facial expression, neck muscles, triangles, cervical fasciae
Muscules of mastication, TMJ |
| 2 | 4. Nasal cavity, paranasal sinuses
5. Morphology of the pharynx and esophagus, peripharyngeal spaces
6. Anatomy of the larynx | Oral cavity, teeth, tongue
Pharynx, nasal cavity, larynx |
| 3 | 7. Classification of cranial nerve nuclei
8. Salivary glands
9. Autonomic nervous system. Sympathetic and parasympathetic nervous systems | Dissection of the temporal region
Dissection of the face, neck and parotid region (cadaver) |
| 4 | 10. Trigeminal nerve (CN 5). Cutaneous innervation
11. Facial (CN 7) and hypoglossal (CN 12) nerves
12. Glossopharyngeal (CN 9), vagus (CN 10) and accessory (CN 11) nerves | Dissection of the infratemporal and pterygopalatine regions (cadaver)
Head and neck prossections |
| 5 | 13. Orbit, eye bulb. Extraocular muscles and eye movements. Oculomotor (CN3), trochlear (CN4) and abducent (CN6) nerves
14. Vessels, lymph nodes and lymphatic drainage of the head&neck
15. Development/derivatives of the foregut together with the pharyngeal clefts/arches/pouches | Head and neck prossections
Dissection of the orbit
Cranial nerve branches (cadaver) |
| 6 | 16. Innervation of the teeth and the gingiva, the anatomy of dental local anaesthesia
17. Face development together with developmental malformations.
18. Imaging anatomy of the jaws, teeth and the maxillary sinus (Radiology lecture) | Dissection of cranial nerve branches
MAXILLOFACIAL MIDTERM |
20. Chambers of the heart, external features, annuli fibrosis, valves. Vessels, conducting system of the heart. Surface projection of the heart, pericardium, Auscultation points.
| 8 | 22. Development of the heart. Fetal circulation
23. Development of arteries and veins
24. Stomach and small intestines (duodenum, jejunum, ileum | Morphology of the heart
Dissection of the posterior mediastinum |
| 9 | 25. Large intestine, rectum
27. Liver, gall bladder, pancreas, spleen. Portocaval anastomoses | Dissection of the cadaver. Opening of the abdominal cavity, celiac trunk
Superior mesenteric artery, duodenum |
| 10 | 28. Peritoneum, peritoneal recesses, peritoneal relations of abdominal organs.
29. Development of the peritoneum, Separation of body cavities.
30. Macroscopy of urinary organs | Inferior mesenteric artery
Dissection of the kidney, renal capsules and the retroperitoneal region (cadaver) |
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Dissection room</th>
</tr>
</thead>
</table>
| 11 | 31. Development of the lung. Circulatory adaptation in the newborn
32. Development of urinary organs.
33. Morphology and coats of the testicle. Epididymis. | Ureter, urinary bladder, male urethra
Dissection of the retroperitoneal organs (cadaver) |
| 12 | 34. Morphology of the spermatic cord, seminal vesicle and prostate.
Morphology of the penis and male urethra.
35. Anatomy of the ovary, Fallopian tube and uterus
36. Vagina, external genital organs. Female and male perineum. | Male genital organs
Female genital organs |
| 13 | 37. Development of genital organs
38. Topographical and sectional anatomy of the pelvis
39. Topographical and sectional anatomy of the abdomen | Macroscopy of the pelvic floor
Revision; cross sectional anatomy |
| 14 | 40. Topographical and sectional anatomy of the thorax
41. Topographical and sectional anatomy of the neck
42. Topographical and sectional anatomy of the head. | Revision
Non-obligatory assessment: Limbs and internal organs (except for the head and neck region) |

Midterm tests: The time and topics of midterm tests will be announced in the departmental homepage at the beginning of the semester (http://semmelweis.hu/anatomia).

Topic list for the final examination:

Macroscopic Anatomy and embryology I
(see there)

Macroscopic Anatomy and embryology II

- Muscles of the neck, triangles of the neck, cervical fasciae
- Orbit, accessory organs of the eye, extraocular muscles, eye movements.
- Shape, external features of heart
- Skeleton of heart, anuli fibrosi
- Structure of heart wall
- Chambers of heart
- Endocardium, ostia, valves of heart
- Pulse generating and conducting system of heart
- Vessels of the heart
- Pericardium
- Position and surface projections of heart. Radiology of heart
- Percussion and auscultation (area of cardiac dullness, heart sounds)
- Pulmonary circulation
- Parts and topography of the aorta
- Arch of aorta together with its branches
- Blood supply, venous and lymphatic drainage of the thoracic wall and mammary gland
- Thoracic duct, right lymphatic trunk
- Thoracic aorta and its branches
- Abdominal aorta and its branches
- Subclavian artery, axillary artery together with their branches
- Celiac trunk and its branches
- Superior mesenteric artery and its branches
- Inferior mesenteric artery and its branches
- External and internal iliac artery and its branches
- Superior vena cava and its tributaries
- Inferior vena cava and its tributaries
- Azygos and hemiazygos veins and their tributaries
- Portal vein and its tributaries, portocaval anastomoses
- Esophagus (anatomy)
- Stomach (macroscopy and peritoneal relations)
- Duodenum (macroscopy, shape, position, vessels)
- Jejunum and ileum (macroscopy, shape, position, vessels)
- Colon (macroscopy, shape, position, vessels)
- Rectum, anal canal (macroscopy, shape, position, vessels)
- Liver (macroscopy and peritoneal relations)
- Gall bladder and biliary passages (anatomy)
- Pancreas (macroscopy, shape, position, vessels)
- Trachea and bronchial tree
- Lung (macroscopy, shape, position, vessels)
- Surface projection of pleura and lung
- Pleura, pleural cavity
- Mediastinum (divisions and content)
- Kidney (macroscopy, shape, position, vessels)
- Urinary passages (macroscopy of ureter and urinary bladder)
- Macroscopy of the male and female urethrae
- Testis (macroscopy, shape, position, vessels)
- Epididymis, vas deferens, spermatic cord
- Scrotum, coats of testis
- Seminal vesicle, prostate
- Macroscopy of penis
- Ovary (macroscopy, shape, position, vessels)
- Uterine tube (shape, position, vessels)
- Uterus (shape, parts, position, supporting structures, vessels)
- Broad ligament (lig. latum) and its components
- Vagina, external female genital organs
- Topography of the female pelvic organs (connective tissue spaces, peritoneal relations)
- Topography of the male pelvic organs (connective tissue spaces, peritoneal relations)
- Pelvic floor, perineum
- Peritoneum, greater and lesser omentum, mesentery, omental bursa
- Sympathetic nervous system (cervical and thoracic parts, sympathetic trunk)
- Sympathetic nervous system (abdominal and pelvic parts)
- Sacral parasympathetic system

- Macroscopy questions in Maxillofacial Anatomy
- Oral cavity (divisions, boundaries)
- Frontal section of the oral cavity, sulcus lateralis linguae
- Fauclal isthmus, palate
- Macroscopy of the tongue (parts, vessels, innervation)
- Floor of mouth (descriptive anatomy)
- Pharynx, muscles, para- and retropharyngeal spaces
- Nasal cavity and paranasal sinuses
- Larynx (skeleton, fibroelastic membranes joints and muscles)
- Larynx (mucous membrane, cavity)
- Types and morphology of teeth
- Tooth eruption and exfoliation
- Blood supply and innervation of upper teeth
- Blood supply and innervation of lower teeth
- Temporomandibular joint
- Muscles concerned with the opening and closing of the mouth
- Muscles of facial expressions
- Muscles and mechanism of mastication
- Anatomy of the parotid gland, parotid nest

- Anatomy of the submandibular gland, submandibular region
- Anatomy of the sublingual gland, sublingual region
- Branches of the ophthalmic nerve (CN 5/1)
- Branches of the maxillary nerve (CN 5/2)
- Branches of the mandibular nerve (CN 5/3)
- Branches of the facial nerve (CN 7)
- Branches of the glossopharyngeal nerve (CN 9)
- Branches of the vagus nerve (CN 10)
- Branches of the accessory and hypoglossal nerves (CN 11 & 12)
- Lymph nodes and lymphatic drainage of the head & neck region
- External carotid artery and its branches
- Maxillary artery and its branches
- Course and branches of the internal carotid artery
- Veins of face and neck
- Cranial sympathetic and parasympathetic nervous systems
- Cervical plexus

- Maxillofacial Embryology
- Tooth development together with their malformations
- Development of the jaws
- Development of the face
- Developmental malformations of the face
- Derivatives of pharyngeal grooves and pouches
- Derivatives of pharyngeal arches
- Development of the primary and secondary palates
- Development of the tongue

- Organ development
- Fetal circulation
- Formation of atria, development of the interatrial septum
- Formation of ventricles, development of the aorticopulmonary septum
- Development of arteries
- Development of the inferior vena cava and the portal vein
- Development of the superior vena cava, azygos and hemiazygos veins
- Development and differentiation of the midgut
- Development and differentiation of the hindgut
- Formation of the liver and pancreas
LEARNING OBJECTIVES

Aims of the lectures in embryology: Presentation of the early development from the differentiation of the germ cells to the formation of the human embryo (general embryology). Presentation of the development of organs and functional systems parallel with the gross anatomical and histological lectures including the frequently occurring malformations.

Aims of the lectures in histology: Presentation of the cell, basic principles in cell biology (mitosis, cytoskeleton, cellular motility), detailed presentation of the basic (epithelial, connective, muscle and nervous) tissues. Complementing gross anatomy with a detailed presentation of the fine structure of organs, including the ultrastructural details together with the molecular background.

Important chapters: basic tissues, viscera, central nervous system.

Aims of the practical sessions in the histology room: Facilitate the understanding of ground (epithelial, connective, muscle and nervous) tissues and the fine structure of the organs through the observation and interpretation of histological specimens.

LECTURES: 2 x 45 min in both semesters
PRACTICAL CLASSES: I: 2 x 45 min; II: 2 x 45 min.
ECTS CREDITS: Altogether 8 (I: 4; II: 4).
MIDTERM TESTS: written (e-learning type)

ACCEPTENCE OF THE SEMESTER:

Active participation in lectures, and dissection room sessions is obligatory for every student. Students should attend at least 75% of the scheduled practical classes to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the Histology classes.

Students are obliged to participate in the midterm test or their semester would not be accepted. Missed midterms should be retaken at the given retake timepoints the department offers during the last two weeks of the semester.

TYPE OF EXAMS: oral and written
I: semifinal examination, II: final exam

Semifinal and final examinations consist of written and oral parts
1. Written pretest (e-learning module – access to SeKA account is obligatory)
2. Oral test in Microscopic Anatomy: identification of structures on virtual histological specimens including relevant theoretical questions

LIST OF TEXTBOOKS

Recommended textbooks:
COURSE DESCRIPTION

Microscopic Anatomy and Embryology I.

Lectures in Histology and Embryology; practical classes in Histology

Subject matter

Histology: Microscopy of the ground (basic) tissues (epithelia, glandular tissues, connective and supporting tissues, types of muscle tissues. Histology of the corpuscular elements of the blood, cells of the red bone marrow. Microscopical structure of the internal organs (cardiovascular, gastrointestinal, respiratory and the urogenital systems)

Embryology: Basic principles of human development, introduction to the clinical embryology. General embryology, including spermatogenesis, oogenesis, fertilization, cleavage, blastulation, formation of germinal layers, body axes, molecular basis of right-left asymmetry, Hox genes, formation of the placenta, fetal membranes. Organ development including the early onset of fetal circulations, and the development of the limbs, together with the trunk and the skull. Factors inducing congenital malformations. Development of the internal organs together with their malformations

Credits: 5

Prerequisite: Cell Science

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Histology laboratory</th>
</tr>
</thead>
</table>
| 1 | 1. Epithelial tissues, cell contacts, intercellular connections
 2. Glandular epithelium | Simple and stratified epithelial tissues |
| 2 | 3. Connective tissue cells and fibres.
 4. Connective tissue fibres. Types of connective tissue | Transitional epithelium
 Glandular epithelium |
| 3 | 5. Supporting tissues (cartilage, bone)
 6. Ossification, bone remodelling | Connective tissue fibres and cell types |
| 4 | 7. Muscle tissues I
 8. Muscle tissues II | Supporting tissues (cartilage, bone)
 Types of bone formation |
| 5 | 9. Histology of vessels
 10. Histology of the tongue and salivary glands | Types of muscle tissues
 Histology of the peripheral nervous system
 Histology of vessels |
| 6 | 11. Tooth development, malformations
 12. Histology of teeth I Enamel and dentine | Midterm (basic tissues, nerve tissue, vessels)
 Tooth development, tooth |
| 7 | 13. Histology of teeth II Cementum and dental pulp
 14. Histology of teeth III Parodontal tissues | Salivary glands, lip, tongue, lingual papillae |
| 8 | 15. Histology of the esophagus and stomach
 16. Microscopical anatomy of the small intestines | Esophagus, cardia
 Stomach, small intestine, large intestine |
| 9 | 17. Histology of the liver, gall bladder and pancreas
 18. Microscopical anatomy of the large intestines | Liver, gall bladder and pancreas |
| 10 | 19. Histology of the airways
 20. Histology of the kidney | Larynx, trachea, lung |
| 11 | 21. Histology of urinary passages
 22. Histology of the testicle | Histology of the urinary system (kidney, ureter, urinary bladder) |
| 12 | 23. Histology of the spermatic cord, seminal vesicle and prostate
 24. Histology of the ovary, oogenesis | Male genital system 1. |
| 13 | 25. Histology of the Fallopian tube, uterus and the vagina
 26. Histology of the placenta, umbilical cord and the mammary gland | Male genital system 2.
 Female genital system 1. |
| 14 | 27. Histology summary I
 28. Histology summary II | Female genital system 2
 Placenta, umbilical cord, mammary gland |
Topic list for the semifinal examination

Microscopic Anatomy and Embryology I.

General Histology, Histology of Organs
- Definition and classification of epithelial tissues
- Simple epithelia
- Stratified epithelia
- Membrane specializations of epithelia
- Glandular epithelia
- Cells of connective tissue
- Ground substance and fibres of connective tissue
- Types of connective tissue
- Histology of cartilage
- Histology of the bone tissue
- Intramembranous ossification
- Endochondral ossification
- Growth and remodeling of bone
- Smooth muscle and myoepithelial cells
- Skeletal muscle tissue
- Cardiac muscle tissue
- Histological structure of arteries and arterioles
- Composition of capillaries and veins
- General composition of parenchymal (solid/compact) organs
- Wall structure of hollow organs
- Fine structure of the intestinal villi, enteroendocrine system
- Lip and tongue
- Histological structure of the esophagus
- Histological structure of the stomach
- Histological structure of the small intestine (duodenum, jejunum, ileum)
- Histological structure of the large intestine
- Histological structure of the liver
- Histological structure of the gall bladder, extrahepatic bile ducts and pancreas
- Histological structure of the larynx, trachea and lung
- Histology of kidney
- Histological structure of the ureter and urinary bladder
- Histological structure of the male genital apparatus (testicles, epididymis, spermatic cord, seminal vesicle, prostate and penis)
- Histological structure of the female genital apparatus (ovary, uterine tube, vagina and the mammary gland)
- Uterus (proliferative, secretory phases) menstrual cycle
- Placenta and umbilical cord

Maxillofacial histology
- Structure of enamel
- Amelogenesis
- Structure of dentin
- Dentinogenesis
- Fine structure of the dental pulp
- Structure and formation of cementum
- Parodontal tissues
- Parts and structure of gingiva
- Tooth eruption
- Histology of the palate
- Histology of the tongue
- Fine structure of salivary glands
GENERAL DENTAL MATERIALS

Lecturer: Dr. Judit Borbély D.M.D., PhD – associate professor

Second Semester

Lectures (1 hour/week)

Topics of the lectures (weekly, numbered):

1. History of dental education
2. Impression materials I
3. Impression materials II
4. Casts, models and dies
5. Metals, technologies
6. Investment materials, flaking methods
7. Precious alloys, non-precious alloys
8. Dental resins
9. Dental ceramics
10. Dental cad/cam technology
11. Implant materials
12. Luting materials
13. Filling materials
14. Tooth whitening materials

Department of Prosthodontics, Faculty of Dentistry, Semmelweis University
Detailed information on the subject is available on our website under
https://semmelweis.hu/fogpotlastan/en/angol/

PHYSICAL FOUNDATIONS OF DENTAL MATERIALS SCIENCE

Tutor: Dr. István Voszka

First Semester

Lecture (2 hours/week)

1. Basic forms of material, atoms, interactions, bonds
4. Methods for structure examination (diffraction, microscopic, spectroscopic methods)
6. Ceramics, polymers, composites.
10. Other physical (optical, electrical, thermal) properties of materials
11. Comparison of the properties of dental materials
13. Physical bases of implantology.
MEDICAL CHEMISTRY

Institute of Biochemistry and Molecular Biology
Department of Molecular Biology
EOK Building, H-1094 Budapest, Tűzoltó u. 37-47.

Lecturer of the course: Csaba Sőti MD, DSc (soti.csaba@med.semmelweis-univ.hu)
Course coordinator: Gergely Keszler MD, PhD (keszler.gergely@med.semmelweis-univ.hu)
Credit: 4
Lessons (in hours): 28 lectures and 28 practicals
Subject code: FOKOMBT304_1A

The principal aim of the course is to prepare students for the understanding of the subjects of Biochemistry, Molecular cell biology, Physiology and Pharmacology. This requires a firm knowledge of the foundations of general, organic and inorganic chemistry.

Lectures:

General chemistry
1. Secondary bonds and interactions
2. Chemical equilibria
3. Acid-base theories, pH
4. pH of strong or weak acids and bases
5. The theory of buffers
6. Buffers of physiological importance, cation and anion hydrolysis, pH of salt solutions
7. Solubility of salts and bases, the solubility product
8. Laws of dilute solutions, Specific and equivalent conductivity
9. Thermodynamics 1 – Enthalpy
10. Thermodynamics 2 – Entropy
11. Thermodynamics 3 – Direction of reactions
12. Electrochemistry
13. Complex compounds, reactive oxygen species

Organic chemistry
1. Nomenclature of organic compounds, constitution of organic compounds
2. Configuration and conformation of organic compounds
3. Classification and reactions of hydroxyl compounds
4. Classification and reactions of oxo compounds
5. Structure, function and reactions of organic acids
6. Nitrogen-containing organic compounds
7. Sulphur or phosphorus-containing organic compounds

Practicals:
1. Introduction, acid-base titration 1 (titration of strong acids) (4×45 min)
2. Acid-base titration 2 (titration of weak acids), Relationship between conductivity and dissociation (4×45 min)
3. Titration curves, consultation (buffers) (4×45 min)
4. Electrochemistry, consultation (4×45 min)
5. Permanganometry (4×45 min)
6. Determination of the ionization constant of phenol red by photometry (4×45 min)
7. Complexometry. Precipitation titration (4×45 min)
Acknowledgment of the semester:
Attendance of at least 75% of the practical lessons is prerequisite of acknowledging the semester. Optional written midterm test (30 min on week 13, about the laboratory measurements during the semester. Performance at the laboratory work during the whole semester is also taken into account at the evaluation.

Examination and grading system:
The oral and written exam is based on the topic list announced in the beginning of the semester, and it takes place before a committee of two (examiner and co-examiner). The exam can be passed if all these topics are sufficiently answered. Students pick 3 questions (general chemistry, organic chemistry, practice) and a calculation problem to be solved in writing. Students, who achieve at least 12 points at the practical midterm and at the labs during the semester, get exempted from picking the practical question. The bonus is valid during the whole exam period (in case of an unsuccessful exam).

Topic list:
I. General chemistry
1. The covalent bond, the molecular geometry of inorganic molecules (e.g. carbon monoxide, carbon dioxide, ammonia). Ionization energy, electron affinity, electronegativity. The ionic bond, hydroxylapatite and fluoroapatite
2. The structures of polyatomic ions, the complexes
3. The secondary bonds and interactions between molecules
4. Laws of dilute solutions: vapor pressure, freezing point depression, boiling point elevation
5. The phenomenon of osmosis, its biological significance, isotonic, hypotonic and hypertonic solutions
6. Chemical equilibria, the equilibrium constant and the degree of dissociation, their correlation. The Le Châtelier principle (example: formation, properties, salts, practical use of hypochlorous acid.)
7. Gas mixtures: partial pressure, volume %. The composition of the air. Dissolution of gases in liquids, Henry’s law, the decompression sickness
8. The structure and dissociation of water. Acid-base theories. The pH and pOH concept, calculation of the pH of strong acids or bases, and their titration curves. Acid-base indicators
9. The dissociation of weak acids and bases, the concept of specific and equivalent conductivity, their correlations with the dissociation. Titration curves of weak acids
10. The buffers: principle, mechanism of action, calculation of the pH, The titration curves of polyprotic acids (phosphoric acid)
11. Buffers of physiological importance
12. The first law of thermodynamics. Heat of reaction, combustion heat, heat of formation. Hess’ law
13. The second law of thermodynamics. The direction of the chemical reactions, Gibbs free energy
14. Oxidation, reduction, oxidation number, standard reduction potential
15. The galvanic cells: arrangement, reactions, calculation of the electromotive force
16. Types of electrodes, redox systems of biological importance
17. The concentration cells, the principle of measuring the pH

II. Organic chemistry
1. The concept of isomerism, types of structural isomerism, nomenclature of organic compounds
2. Geometric isomerism in unsaturated and cyclic compounds
3. Stereoisomerism, chiral compounds, optical activity, D–L and R–S nomenclature
4. Conformations of organic compounds, examples with open chain and cyclic molecules
5. Properties and reactions of alkenes
6. Characteristics, reactions and biological roles of aromatic compounds
7. Alcohols, enols, phenols
8. Oxo compounds: aldehydes and ketones. Their chemical reactions, the mechanism of the nucleophilic addition. Oxo-enol tautomerism
9. Properties and reactions of compounds containing a carboxyl group
10. Substituted carboxylic acids (Halogenated, oxo-, hydroxy-; aromatic; mono-, di- and tricarboxylic acids)
11. Nitrogen-containing organic compounds: classification and properties of amines
12. Carboamides, amides of the carbonic acid, imines

III. Laboratory
1. Principle of concentration determination by volume measurement: titrations
2. Titrations of strong acids and bases
3. Titrations of weak acids and bases
4. Conductivity measurement, determination of weak acid dissociation
5. Titrations of gastric juice
6. Titrations of mono- and polyprotic acids
7. Titrations based on redox reaction: permanganometry
8. Complexometry: determination of copper concentration
9. Electrochemical measurements: the Daniell cell, concentration cell, redox and non-polarizable electrodes
10. Principle of spectrophotometry, areas of application: determination of the Kd value of the phenol red indicator
11. Precipitation titration
CELL SCIENCE

Department of Genetics, Cell- and Immunobiology
Address: NET Building, H-1089 Budapest, Nagyvárad tér 4.
Course director: Edit Buzás MD, DSc
Course coordinator: Orsolya Láng MD, PhD
Credit: 3

Aim of the course:
The course Cell Science is developed for Dentistry students as a part of the Basic Module. The course presents the most important aspects of cell-morphology and cell function. Cell Science Course provides a detailed discussion of compartmentalization in the eukaryotic cell as well as describes the most significant characteristics of the basic cell functions (migration, endocytosis, cell-cell communication, division, stem-cell differentiation, ageing and cell death). The practices introduce the students to the microscopic techniques used for cell morphological studies. The purpose of the course is to demonstrate the complexity of cell structure and function relationships as well as to present basic methods of in vitro cell culturing and their potential medical applications.

Location of the course (lecture hall, practice room, etc.):
Lecture: Basic Medical Sciences Center (H-1094 Budapest, Tűzoltó street 37-47.)
Practical classes: NET building: Lab rooms L13-L16 (H-1089 Budapest, Nagyvárad place 4.)

Lectures (1 hour per week):
1. Cell theory. Model cells in medicine
2. Cell membrane
3. Structure and function of the nucleus
4. Endoplasmic reticulum
5. Golgi complex, vesicular transport and secretion
6. Endocytosis. Autophagy
7. Cell adhesion and cell junctions
8. Cytoskeleton
9. Cellular movement
10. Structure and function of mitochondria and peroxisomes
12. Cell cycle and mitosis
13. Stem cells and differentiation
14. Cellular ageing and cell death

Practices (2 hours per week):
1. The light microscope
2. The general cell structure. Light microscopic microtechnique
3. The electron microscope. Cell membrane
4. The interphase nucleus. Cyto(histo)chemistry
5. Immunohistochemistry. Super-resolution microscopy
6. Cell and tissue culture
7. Endoplasmic reticulum
8. Golgi complex and secretion
9. Endocytosis and lysosomes
10. Cell surface differentiation, enzyme-histochemistry
12. Mitosis
13. Meiosis
14. Cell death (necrosis and apoptosis)
The order of topics may vary

Course requirements:
Students must participate at least 75% of the classes. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
The course ends with an exam consists of a written test (multiple choice, essays, drawings, etc. covering theoretical part of the subject). Further details will be announced on the website of the department (http://gsi.semmelweis.hu).
Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
DENTAL BIOCHEMISTRY I

Department of Medical Biochemistry

Credits: 4
Total number of hours: 56; lectures (hours): 28; practices (hours): 28
Type of the course: obligatory
Academic year: 2021/2022
Code of the course FOKOBMT305_1A
Course Director: Dr. Kraszimir Kolev

Contact details: H-1094 Budapest, Tűzoltó u. 37-47. Phone: +36-1-459-1500#60010 e-mail: Kolev.Krasimir@med.semmelweis-univ.hu
Position: Professor
Date of habilitation: 2008 Ref.: 266

Aim of the course:
The aim of this course is to examine biologically important molecules - namely amino acids, carbohydrates, lipids and nucleotides - identify their contributions to metabolic processes emphasized from a medical point of view, examine the structure and function of proteins, and address mechanisms of catalysis performed by enzymes. Furthermore, three basic biochemistry modules are outlined: The enzymology module, encompassing general principles of enzyme kinetics and how enzymes influence efficiency and controllability of chemical processes in biological systems, as well as how they affect structure and regulation of metabolic pathways; the bioenergetics module, addressing the relationships between mass-energy conversions in the human body emphasizing nutrional aspects, also elaborating on thermodynamic aspects of metabolism; and the ‘first’ intermediary metabolism module, presenting the salient features of carbohydrate and lipid metabolism which are essential for understanding physiological and pathological processes of the human body. During practices, students apply the theoretical knowledge acquired at lectures as part of case-oriented discussions in an effort to interpret - from a molecular point of view - relevant conditions.

Location of the course (lecture hall, practice room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Upon the successful completion of the curriculum, the student should be able to:
Identify biochemical structures, know and understand the reactions in which medically important molecules participate; know and understand inter-organ biochemical processes; know and understand integrated metabolic functions of the human body. Overall, such knowledge is essential for understanding physiological and pathological processes and, consequently, for making sound professional decisions.

Prerequisite(s) for admission to the course: None
Terms and Conditions for Starting Student Course (Minimum, Maximum), Student Selection Method: Not applicable for compulsory subjects
How to apply for the course: Application is through the Neptun online system

The course in thematic details:
Lectures: weekly 1×90 min (2 hours)
Practices (P): 2 hours every week
Lecturers: Dr. Komorowicz Erzsébet (KE), Dr. Szöllősi András (SZA), Dr. Bak Judit (BJ), Dr. Iordan Iordanov (II)
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures: weekly 1x90 min (2 hours)</th>
<th>Practices (P): 2 hours every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The chemical structure of proteinogenic amino acids. The peptide bond. The primary, secondary and tertiary structure of proteins. (SZA)</td>
<td>P: Structural and chemical characteristics of amino acids; pH and temperature dependent properties.</td>
</tr>
<tr>
<td>10</td>
<td>Metabolism of lipids – overview. Absorption of lipids. Metabolism of chylomicrons. (II)</td>
<td>P: Structure and function of the most important lipids in the body and in the diet.</td>
</tr>
<tr>
<td>13</td>
<td>Metabolism of cholesterol, cholesterol transport in circulation. (KE)</td>
<td>P: Determination of triglycerides and cholesterol in blood plasma.</td>
</tr>
<tr>
<td>14</td>
<td>Biosynthesis and metabolism of bile acids, the importance of bile acids in lipid digestion. Cholesterol uptake and release by cells. (KE)</td>
<td>P: Signal transduction of insulin</td>
</tr>
</tbody>
</table>
Potential overlap(s) with other topics: none

Requirement for special study: not applicable
Policy regarding attending practice; policy regarding absences:
Practices are mandatory. It is not possible to make up for missed practices. In case of absences amounting to more than 3 practices, the semester is not acknowledged. Arriving to a practice with a delay of more than 10 minutes is considered an absence. Practice/seminar participation performance will be evaluated by the tutors: as such, maximum 10 points per semester can be obtained that may count towards the examination grade, see under “Grading system” for further details.

Means of assessing acquired knowledge during the semester:

Midterms: A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Midterms may only be taken in person and not through Zoom, unless otherwise indicated. Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm). It is obligatory to gather ≥10 points from both midterms in order to be allowed to sit for the exam. For those students who fail to amass ≥10 points from both midterms, one or both midterms can be retaken in the last week during the practice/seminar (allocated time per midterm: 20 minutes). The midterm points will be added as “points” to the result of the exam, as detailed in “Grading system”, see below.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions; 20 secs are allocated per question. Points can be earned by correctly responding to at least 4 out of 5 Kahoot questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the exam, as detailed in “Grading system”, see below.

Requirement for acknowledging the semester, and for allowing the student to take the exam: Attendance of at least 75 % of the practical classes, and at least 10 points from both midterms.

Competition: The competition is held on the last week during the practice/seminar (allocated time: 35 minutes) and consists of 70 multiple choice questions (MCQs). The competition may only be taken in person and not through Zoom, unless otherwise indicated. Only students who amass 14 or more points from the midterms (not the retakes) can participate in the competition. Top 10% scorers (from those students enrolled in the Dental Biochemistry I course that participated in the competition) will be invited for an oral exam on the last day of that week. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners will be announced later in the same day, and will be exempted from the exam.

Exam Type: Colloquium (examination), Form: written test and oral exam, based on material of the official textbook, lectures and practices published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).

Exam Requirements: The material for the written test exam is the material of the lectures and practices in the subject, with the corresponding textbook chapters.

Types and modes of grading:
Grading system: The grade of the final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, v) during an oral exam. The written MCQ exam and the oral exam will take place in the same day of the examination period.

The grading system is as follows:
(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.
Total points from (i) and (ii) cannot exceed 20 points.
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).
If the score of the MCQ exam is 49 or below, then the grade of the final exam is ‘fail’.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the final exam from the total points (MCQ+semester):

95- 140: grade 5 (excellent)
86- 94: grade 4 (good)
71- 85: grade 3 (satisfactory)
50- 70: grade 2 (pass)

(v) Oral exam: Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. For those who scored 49 and below, a final mark of “1” will be registered in the Neptun, and points obtained during the semester will not count. During the oral exam, the examiner will pick five questions from those MCQs that were correctly answered by the student. If the student will not elaborate properly on 2 or 3 MCQs, his/her MCQ mark will be decreased by one grade (i.e. if MCQ Moodle exam is 3 and the student does not elaborate adequately on 2 or 3 MCQs picked by the examiner, the MCQ grade will be 3-1=2). If the student will not elaborate properly on 4 or 5 oral MCQs, his/her MCQ mark will be decreased by two grades (i.e. if MCQ Moodle exam was 3 and the student does not elaborate adequately on 4 or 5 oral MCQs picked by the examiner, the MCQ mark will be 3-2=1, i.e. “fail”). If MCQ Moodle exam is 2 and the student does not elaborate adequately on 3 or more MCQs picked by the examiner, the MCQ mark will be “fail”. The points from Kahoot and midterms will be added only if the student obtained from MCQ+oral exam a grade of ≥2.

How to apply for the exam: The exam dates are announced on the 12th week of the semester. We provide at least one exam date each week. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Opportunities to repeat the exam: A retake is possible on the closest announced exam date at least one day after an unsuccessful exam.

Printed, electronic and online notes, textbooks, tutorials, and literature for online learning (html for online material):
Harper’s Biochemistry (30th edition, or latest)
Online material published in the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).
BIOPHYSICS I

Tutor: Dr. István Voszka

First Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiations (basic concepts)</td>
<td>Laboratory safety rules</td>
</tr>
<tr>
<td>2</td>
<td>Properties of electromagnetic radiations; wave and corpuscular nature</td>
<td>Resonance</td>
</tr>
<tr>
<td>3</td>
<td>Attenuation of radiation</td>
<td>Emission spectroscopy. Light sources</td>
</tr>
<tr>
<td>4</td>
<td>Luminescence and its applications</td>
<td>Spectrophotometry</td>
</tr>
<tr>
<td>5</td>
<td>Lasers and their medical applications</td>
<td>Statistics</td>
</tr>
<tr>
<td>6</td>
<td>Thermal radiation, thermography. Biological effects of light</td>
<td>Detection of nuclear radiations</td>
</tr>
<tr>
<td>7</td>
<td>Production and spectrum of X-radiation Cyclotron; Linear accelerator;</td>
<td>Dosimetry</td>
</tr>
<tr>
<td>8</td>
<td>Attenuation of X-radiation, interactions</td>
<td>Special light microscopes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X-ray diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optics of the eye</td>
</tr>
<tr>
<td>9</td>
<td>Atomic structure; Radioactive decay law Gamma-radiation and its detection</td>
<td>Polarimeter</td>
</tr>
<tr>
<td>10</td>
<td>Radiotherapy, radiosurgery; Isotope diagnostics</td>
<td>Coulter counter</td>
</tr>
<tr>
<td>11</td>
<td>SPECT, PET Beta-radiation, beta-decay</td>
<td>Determination of skin-impedance</td>
</tr>
<tr>
<td>12</td>
<td>Alpha-radiation, alpha-decay Interaction with matter</td>
<td>Concentration determination with refractometer</td>
</tr>
<tr>
<td>13</td>
<td>Dosimetry</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Radiation protection; estimation of risk</td>
<td>Repetition</td>
</tr>
</tbody>
</table>
BIOPHYSICS II

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (1.5 hours per week)</th>
<th>Laboratory (2.5 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bonds and their significance in macromolecular structure; Boltzmann distribution, examples</td>
<td>The attenuation of gamma-radiation</td>
</tr>
<tr>
<td>2</td>
<td>Liquid crystals, membranes</td>
<td>Amplifier</td>
</tr>
<tr>
<td>3</td>
<td>Electronic properties of condensed materials (solids, macromolecules)</td>
<td>Gamma energy determination</td>
</tr>
<tr>
<td>4</td>
<td>Ultrasound properties, generation of ultrasound</td>
<td>Pulse generators (e.g. pacemaker, defibrillator)</td>
</tr>
<tr>
<td>5</td>
<td>Ultrasonography, Doppler methods</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>6</td>
<td>Methods for structure examination heat</td>
<td>Audiometry</td>
</tr>
<tr>
<td>7</td>
<td>Basic concepts of Thermodynamics, First law</td>
<td>Isotope diagnostics</td>
</tr>
<tr>
<td>8</td>
<td>General description of transport phenomena, Onsager’s equation, examples</td>
<td>Densitography (CT)</td>
</tr>
<tr>
<td>9</td>
<td>Diffusion; transport across membrane</td>
<td>Flow of fluids</td>
</tr>
<tr>
<td>10</td>
<td>Resting potential and its local changes</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>11</td>
<td>Action potential, properties, interpretation</td>
<td>Diffusion</td>
</tr>
<tr>
<td>12</td>
<td>General characteristics of sensory function, hearing, vision</td>
<td>Sensory function</td>
</tr>
<tr>
<td>13</td>
<td>Descriptive statistics</td>
<td>Repetition</td>
</tr>
<tr>
<td>14</td>
<td>Hypothesis testing</td>
<td></td>
</tr>
</tbody>
</table>
DENTAL PSYCHOLOGY

Institute of Behavioral Sciences

Code: FOKVMAG019_1A
Credit: 2
Head of the Department: Prof. Dr. József Kovács
Tutor: Dr. Gyöngyvér Salavecz

Second Semester

Course objectives:
– to introduce the concepts of stress, emotions, states of consciousness, and their role in pain perception
– to emphasize suggestive communication and therapeutic methods that may be used to improve doctor-patient relationship in dental practice
– to enable students to recognize and understand psychological and psychopathological issues when encountered in everyday dental practice

Topics:
1-2. Control problems and their relations to dental practice
3-4. Principles of perception, pain, consciousness, emotions and communication -and their relations to dentistry.
5-6. Stress and stress management in dental practice
7-8. Psychological crisis, presuicidal syndrome, and burn-out prevention
9-10. Role of psychological factors in producing and enhancing pain.
 Psychological interventions for pain suppression.
11-12. National holiday
13-14. Psychotherapeutic methods
15-16. Fables and imagination in dental practice
17-18. Substance misuse and surrounding areas in dentistry
19-20. Dental consequences of eating disorders
21-22. Hypnosis and relaxation therapies, and their possible use in dental practice
23-24. Conscious states, sleep, dreaming, general anesthesia
25-26. Affects, emotion and motivation
27-28. Review

Department:
Institute of Behavioral Sciences

Department of Psychology
NET Building, 20th floor
Phone: 210-2953
Secretary: NET Building, 20th floor, Room-2005. Phone: 2102930/ 56114.

Lecturers:
Dr. György Purebl e-mail: purgyor@net.sote.hu
Dr. Róbert Bódi e-mail: bodro@net.sote.hu
Dr. Adrienne Stauder e-mail: staadr@net.sote.hu
Dr. László Harmat e-mail: laszloharmat@yahoo.com
Éva Pollák e-mail: evipoll@yahoo.com
Gabor Suhai e-mail: shgabor@gmail.com

Participation and making up for absences:
Participation list will be recorded at the end of every lecture. To participate on at least 75% of the total number of lessons is a prerequisite for getting the signature. Maximum number of absences in a semester is 3.
Certifying absence from lesson and exam:
Medical certificate presented to the course leader.

Semester requirements:
Course will conclude with a written examination in the examination period.

Requirement of semester signature:
A signature will be given with the prerequisite of participation. One absence can be overlooked by the teacher if the student writes an essay. The topic of the essay must be discussed with the course leader in advance.

Method of granting grade: The result of the examination.

Type of exam: written examination
Exam requirements: Content of the lectures
Sign up for exam: through the Neptun system
Modifying sign up for exam: through the Neptun system

Certifying absence from exam:
A telephone message to the secretary of the Institute or an email message to the course leader.

Recommended text books:
MEDICAL SOCIOLOGY (Dentsoc)

Second Semester

Hour/semester: 28
Credit: 1
Code: FOKVMAG235_1A
Lecturer of the course: Prof. Dr. Purebl György
Contact details: SE ÁOK Magyatartástudományi Intézet, 1089. Nagyvárad tér 4, (36-1)210-2930/ext.56199, or (36-1) 210-2940/ext.56199; or (36-1)210-2953; purebl.gyorgy@med.semmelweis-univ.hu
Position: Professor, Director of the Institute of Behavioral Sciences, Semmelweis University—Budapest.
Date of habilitation and reference number: 05/2019 Semmelweis University, Budapest
Course leader: Bence Döbrössy dobrossy.bence@med.semmelweis-univ.hu
Teachers: Bence Döbrössy e-mail: dobrossybence@gmail.com Dr. Edmond Girasek email: girasek.edmond@gmail.com

Location of the course (address of lecture hall, seminar room etc.):
Nagyvárad térí Elméleti Tömb, 1089 Budapest Nagyvárad tér 4.
Elméleti Orvostudományi Központ 1094 Budapest Tűzoltó utca 37-47
FOOC, 1088 Budapest, Szentkirályi u. 47.

Goals of the subject:
The aim of this course is to help students realise that social factors have a considerable influence on oral/ dental health and dentistry. Social, economic and cultural factors have a great effect on the dentist-patient relationship, the way people make sense of their symptoms and seek dental help, their oral/ dental health related behaviour as well as on the aetiology of oral and dental conditions.
By understanding how different societies are structured and organised and how the categories people belong to (gender, ethnicity, occupation, educational level, financial situation to name but a few) shape all aspects of their lives and opportunities, our hope is that students will better comprehend the social reality influencing the dental health status of people and the practice of dentistry for dentists.

Syllabus of the subject:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture topic</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to sociology, basic concepts and principles.</td>
<td>Practice</td>
</tr>
<tr>
<td>2</td>
<td>General health and oral health status through history</td>
<td>Lecture</td>
</tr>
<tr>
<td>3</td>
<td>Social determinants of oral health and oral health related behaviour</td>
<td>Lecture</td>
</tr>
<tr>
<td>4</td>
<td>Intercultural dentistry</td>
<td>Lecture</td>
</tr>
<tr>
<td>5</td>
<td>Patient expectations regarding dentistry: the theory and practice of dental patient satisfaction studies.</td>
<td>Lecture</td>
</tr>
<tr>
<td>6</td>
<td>Norms, deviance and dentistry</td>
<td>Lecture</td>
</tr>
<tr>
<td>7</td>
<td>Covid and Sociology- a summary class.</td>
<td>Lecture</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to practicals. Project work discussion</td>
<td>Practice</td>
</tr>
<tr>
<td>9</td>
<td>Social inequality and health inequality</td>
<td>Practice</td>
</tr>
<tr>
<td>10</td>
<td>Health Care Systems workshop</td>
<td>Practice</td>
</tr>
<tr>
<td>11</td>
<td>21st century dentistry technological and socio-cultural changes</td>
<td>Practice</td>
</tr>
<tr>
<td>12</td>
<td>Dental help seeking behaviour, illness behaviour</td>
<td>Practice</td>
</tr>
<tr>
<td>13</td>
<td>Medicalisation in dentistry, cosmetic dentistry</td>
<td>Practice</td>
</tr>
<tr>
<td>14</td>
<td>Project reports</td>
<td>Practice</td>
</tr>
</tbody>
</table>

Courses (obligatory and elective) which in part or entirely overlap the topics of above course:
- Public Health
- The Basics of Digital Healthcare

Special academic work required for completion of the course:
Project work done in the practicals
Attendance on practices and lectures, replacement in case of missed sessions:
75% of practicals must be attended. One practical absence can be made up by undertaking an extra task set by the practical leader or by participating in the practical with another group.

Consequences of absence from sessions and exams:
No signature is given if 75% of the practicals is not attended, the project work is not done.

Method of checking acquired knowledge during the study period:
Completion of project work is required for getting a signature. The project work is graded and makes up 40% of the final grade.

Requirements of an accepted semester (signature of the lecturer):
Completion of project work and 75% practical attendance is required for getting a signature.

Type of the exam:
written exam in the examination period (60% of the final grade)

Requirements of the exam:
- The written exam will consist of multiple choice questions and an essay type case analysis where students are required to understand, explain and apply to the given case concepts and knowledge acquired in the course.
- In order to undertake the exam successfully, students must know the material made available to them on the departmental home page as well as the textbook.
- The material covered in the exam:
 - 21st century dentistry technological and socio-cultural changes
 - Dental help seeking behaviour
 - Intercultural aspects of dentistry
 - Medicalisation in dentistry, cosmetic dentistry
 - Patient expectations regarding dentistry
 - Social determinants of oral health and oral health related behaviour
 - Social inequalities and inequalities in dental health
 - Socio-cultural aspects of pain
 - Systems of dental health care provision
 - The profession of dentistry

Grading of courses:
40% - project work
60% - written examination

Grades:
0-50 points – 1
51-60 points – 2
61-74 points – 3
75-84 points – 4
85 points and over 5

All lecture notes and slides are made available on Moodle (https://itc.semmelweis.hu/moodle/)
textbook: Graham Scrambler (ed) Sociology as Applied to Health and Medicine, Palgrave Macmillan 2018

Exam sign up: Through the Neptun System
Modifying: Through the Neptun System
Absence from the exam: With medical document submitted to the course director
The history of medical science, considered as a part of the general history of civilization The study of the history of medicine helps us to describe and understand how people in different times and cultures experienced and dealt with these fundamentals of human existence. This knowledge can inform debate about the present and the future, and help to bring medicine and science to a wide audience. All human societies have medical beliefs that provide explanations for birth, death, and disease. Many cultures in ancient times treated illnesses with magic and herbal remedies. Ancient Egyptians thought that their gods healed them. The ancient Greeks pursued medicine as a science. Hippocrates, the most famous physician of the time (c. 400 B.C.), believed that diseases had natural causes, not supernatural ones. By the Middle Ages, Europe was hit with a terrible epidemic that killed millions of people called the plague, or Black Death. The Renaissance marked a new period of interest in art and science throughout Europe. Despite new medical discoveries, many doctors still practiced old ways. Most sick people could not afford to see a trained physician. Instead, they consulted midwives who assisted with childbirths and made herbal remedies to treat illnesses. Minor surgeries were not done in the hospital but at the local barbershop. Medical research and training improved in the 18th century but there were still no cures for diseases like smallpox, a disease that killed millions of people over thousands of years. Middle Eastern doctors gave people mild doses of the smallpox to combat the disease. The portrayal of the history of medicine becomes more difficult in the 19th century. Discoveries multiply, and the number of eminent doctors is so great that the history is apt to become a series of biographies. Nevertheless, it is possible to discern the leading trends in modern medical thought. In the beginning of 20th century the research and technology have expanded medical knowledge and improved medical practices like surgery. Today, doctors are able to perform less invasive surgical procedures. The science of medicine has progressed dramatically in just the last 50 years. Career opportunities in health care have also expanded. There is a need for more skilled medical professionals, not only in hospitals, but in dentist and doctors’ offices, research labs, rehabilitation centres, mental health clinics, nursing homes and even schools.

Topics/week

13. Consultation

Important: 3 absences are allowed. Doctor’s certificate is required to certify absence from the exam.

Exam requirement: written test

Textbook:
FIRST AID

Department of Oxyology and Emergency Care
Faculty of Health Sciences
1088 Budapest, Vas u. 17., room 145
Phone: +(36-1)486-5840
Head of the Department: Andrea Szekely, MD, PhD, DEAA
Teacher: Istvan Hornyak associate professor

Second Semester

- Topics
 - Dangerous scene. Safety measurements on the scene. Call for an ambulance.
 - Emotional viewpoints of managing emergencies.
 - The unconscious patient. Airway management. Assessment of the vital signs.
 - Recovery position.
 - Heart attack. Sudden death. Chain of survival.
 - BLS (Basic Life Support)
 - BLS + AED
 - AED (Automated External Defibrillator). PAD (Public Access Defibrillation)
 - Fainting. Shock. Allergy
 - Poisoning. Drugs. Drunkenness.

Note: Participation at 75% of practices is necessary. Compensation of absences is possible in subsequent practices. Development in learning skills will be controlled all the time during the practices in the semester. Mode of certifying absences: oral – referring to practices

Requirements: The student should be able to recognize emergencies, and call for help
start with BLS + AED
provide airway management in unconscious patients
provide first aid for patients complaining for chest-pain, shortness of breath, signs for hypoglycaemia and having suffered from fainting, shock condition, convulsion, injuries.
The practical exam on the last practical lesson is evaluated with 5 grades method.
MEDICAL INFORMATICS

Name of the educational organizational unit: SE EKK Institute of Digital Health Sciences
Name of the subject: Medical Informatics
Type of the subject: 2 practice / week
code: FOKVDEI316_1A
credit value: 2
Name of the lecturer of the subject: Dr. Miklós Szócska

Teachers: Dr. Ádám Zoltán Tamus (PhD, associate professor)
 Tamás Tóth (assistant lecturer)
 Zoltán Sándor (PhD, senior lecturer)
 Zoltán Tóth (PhD, senior lecturer)

Administrator: Ms. Petra Rácz

Term: spring

The exercise of the subject in the realization of the aim of the education:
To introduce the students to the medical application of informatics, the characteristics of modern, integrated information systems with respect to quantitative aspects and to decision demands of the modern sciences.
The medical informatics leans on methods of mathematics, statistics and computer sciences and it also includes from the different engineering, management and informatics procedures.

Topics of the subject:
Topic of the practical practices: 2×14 practices = 28 practices
1. MS Excel – basics of data storage
2. MS Excel – processing of data
3. MS Excel – data representation, diagrams
4. MS Excel – advanced level exercises
5. Collection and processing of medical data
6. Practice, preparation for the test
 1. test (Excel exercises)
7. Basics of databases
8. Data extraction from databases, performing queries
9. Online health information sources
10. Presentation techniques and tools
11. Data security, data protection
12. The future of health informatics
 2. test (computer-based test)

Requirements of participation of the lessons and the possibility of substitution of the absence:
• According to rules of the Study and Examination Regulations. Attendance at min. 75% of the classes
 o Max. 3 absence allowed from practices
• A practical grade will be assigned based on the results of the two tests

The mode of the certificate in case of absence from the lessons and from the exams:
According to rules of the Studies and Exam Code. No certificate accepted.

The requirements of signature at the end of the term:
Attendance of at least 75% of the practices, at least 50% result of both tests
Type of the exam:
Practical mark
Exam requirements:
The practical note is determined based on the results of the two mid-term examinations.

List of lecture notes, course books, study-aids and literature which can be used to acquisition of the syllabus:
The educational materials are available at http://dei-cloud.semmelweis.hu. Username and password are announced at the first practice.

Recommended literature:

Microsoft Office Help and Training Center: https://support.office.com/he educational materials are available at http://dei-cloud.semmelweis.hu
Username and password is announced at the lecture/first practice.
LANGUAGE COURSES – Medical Terminology

Department of Languages for specific purposes
Lecturer: Dr. Fogarasi-Nuber Katalin
Subject name: Medical Terminology; Dental Medical Terminology
Code: FOKVNYE345_1A; FOKVNYE318_1A
Credit value: 2 / 1

Thematics:
The aim of this course is to help students understand English, Latin and Greek medical and dental medical terms used in Hungary and worldwide. The material implies anatomical and clinical vocabulary adjusted to the schedule of the anatomy course. Terms for diagnoses and procedures are demonstrated by authentic medical documents. In addition, students get acquainted with the basic linguistic phenomena required for diagnostic skills.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. once a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 3 times.

Requirements:
midterms (week 7 and 13)
Topics of midterms: vocabulary, construction of Latin phrases, used in anatomy, pathology, pharmacology
Students who fail a midterm have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. once a semester). Students have to write the two midterms.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written papers as well as the active participation in classes.

- 0–50% = 1
- 51–60% = 2
- 61–75% = 3
- 76–89% = 4
- 90–100% = 5

Textbooks:
Teaching material

Excerpts of the following optional textbooks (chapters containing the basic vocabulary of dentistry):
Medical Terminology

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Skills: Communication between medical professionals, distinguishing medical English and Latin-Greek medical terminology
Vocabulary: parts of the human body, anatomical planes and directions
Linguistic phenomena: pronunciation, alphabet, basic form and dictionary entry of medical nouns and adjectives |
| 2. | Skills: Part–whole theory in anatomical nomenclature
Vocabulary: general terms of skeletal system
Linguistic phenomena: possessive phrases in anatomy and in elemental diagnostics |
| 3. | Skills: Part–whole theory in diagnostics adjusted to anatomical studies
Vocabulary: bones of the upper and lower extremities
Linguistic phenomena: nouns and their adjectives in anatomy |
| 4. | Skills: Attribution in anatomical nomenclature and maxillofacial diagnoses
Vocabulary: bones and joints of skull, terms used in maxillofacial surgery
Linguistic phenomena: nouns and their adjectives |
| 5. | Skills: Attribution in dental and clinical diagnostics adjusted to anatomical studies
Vocabulary: oral and nasal cavity, related clinical terms
Linguistic phenomena: nouns and their adjectives in possessive phrases |
| 6. | Skills: Understanding complex anatomical and diagnostical phrases
Vocabulary: tooth names, parts of teeth
Linguistic phenomena: nouns and their adjectives in possessive phrases of anatomy and elemental dental and clinical diagnostics |
| 7. | 1st midterm
Skills: Distinguishing types of medical and dental medical documentation
Vocabulary: pectoral girdle
Linguistic phenomena: common endings of anatomical and clinical terms |
| 8. | Skills: Understanding plural forms in anatomy and in clinical documentation
Vocabulary: bones, joints and muscles of hand and elbow, Greek and Latin endings of clinical terms
Linguistic phenomena: plural phrases in anatomy |
| 9. | Skills: Describing symptoms and locations in dental and clinical diagnoses
Vocabulary: pelvic girdle
Linguistic phenomena: possessive phrases of anatomy and dental diagnostics |
| 10. | Skills: Understanding plural forms in clinical diagnostics
Vocabulary: joints and muscles of lower extremity,
Linguistic phenomena: complex phenomena of anatomical phrases and accident surgical diagnoses |
| 11. | Skills: Describing common facial and dental lesions
Vocabulary: muscles of neck and face
Linguistic phenomena: complex phenomena of diagnostic phrases |
| 12. | Revision |
| 13. | 2nd midterm |
| 14. | Evaluation of student performance; retake of the midterms |
Dental Medical Terminology

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Skills: Distinguishing pharmaceutical products
 Vocabulary: musculoskeletal system, composition, diseases and injuries
 Linguistic phenomena: gramma, litra, gutta; numerals |
| 2. | Skills: Understanding medical prescriptions, factory products
 Vocabulary: circulatory system, composition, diseases
 Linguistic phenomena: Using Genitive and Accusative in prescriptions |
| 3. | Skills: The use of anatomical and clinical word stems, pre-and suffixes
 Vocabulary: gastrointestinal tract, composition, symptoms, diseases
 Linguistic phenomena: splitting terms in pre-and suffixes and stems |
| 4. | Skills: Understanding terms related to caries; ICD-10 in use
 Vocabulary: respiratory system, composition, significance, symptoms and diseases, terms used in conservative dentistry
 Linguistic phenomena: Prepositional phrases in diagnostics and prescriptions |
| 5. | Skills: Use of terms pertaining to diseases of pulp and periapical tissues, phrases on surgical procedures due to a condition, conditions after a procedure
 Vocabulary: urinary passages, pelvis, ureter, and bladder, endodontic terms
 Linguistic phenomena: instructions in prescriptions (imperative, passive and active voice) |
| 6. | Skills: Use of terms related to the developmental disorders of dentition and craniofacial malformations, phrases on surgical procedures due to a condition, conditions after a procedure
 Vocabulary: urogenital apparatus, terms used in oral pathology
 Linguistic phenomena: instructions in prescriptions; packaging materials used in pharmacology |
| 7. | Midterm test |
| 8. | Skills: Understanding terms of drugs types, prescribing magistral products
 Vocabulary: terms of drug types and effects
 Linguistic phenomena: Greek and Latin roots of pharmacological terms, prepositional phrases in diagnostics and prescriptions |
| 9. | Skills: Use of terms related to gingival, tongue and periodontal diseases, terms pertaining to sensory organs
 Vocabulary: anatomical and clinical terms of sensory organs in medical documentation, parodontological terms, terminology of maculopapular rash
 Linguistic phenomena: Analysis of metaphorical terms describing sensory organs |
| 10. | Skills: Understanding terms related to salivary gland disorders, writing diagnoses and prescriptions
 Vocabulary: endocrinological terms, terms pertaining to endocrine and exocrine glands
 Linguistic phenomena: complex phenomena of medical terminology |
| 11. | Skills: Understanding terms related to diseases of the lips and oral mucosa. Infectious diseases
 Vocabulary: nomenclature of microorganisms, terms describing forms of cheilitis and stomatitis
 Linguistic phenomena: Latin terms and constructions used in clinical and dental infectology |
| 12. | Skills: Use of terms describing tumour diseases of the oral cavity, dental lesions
 Vocabulary: histopathological findings, attrition of teeth
 Linguistic phenomena: Latin-Greek terms combined in complex diagnoses |
| 13. | Endterm test |
| 14. | Evaluation of student performance; retake of the midterms |
Introduction to the Hungarian Language, Hungarian for Dental Medical Purposes I

Department of Languages for specific purposes
Lecturer: Dr. Fogarasi Katalin
Subject name: Introduction to Hungarian Language, Hungarian for Dental Medical Purposes I
Code: FOKVNYE319_1A; FOKONYE320_1A
Credit value: 0

Thematics:
The subject prepares students for the most important everyday communication situations in Hungary. Students get acquainted with the basics of the Hungarian language necessary for everyday communication. In the 2nd semester students expand their communication skills in language basics and become familiar with simpler terms used in conversations in the pharmacy and dental office and in the medical records of internal medicine.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 7 times.

Requirements:
midterms (week 7 and 13), oral test (week 14)
Topics of midterms: see detailed course description
Students who fail a midterm or the oral test have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester). Students have to write the two midterms and take part in the oral test.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written midterms, the oral test as well as the active participation in classes. Tests under 50% must be retaken. In the latter case, the mark fail will also be calculated towards the final mark. For the oral examination two teachers evaluate separately the grade of the student.

0–50% = 1
51–60% = 2
61–75% = 3
76–89% = 4
90–100% = 5
Curriculum and detailed course requirements

Term 1 Introduction to the Hungarian Language

Hungarian Language is a course for students in the first year without any previous exposure to Hungarian. Students will be introduced to the basic vocabulary of general Hungarian. Topics of the course are arranged into 14 teaching units (weeks), with special attention to the most important expressions. Each text is linked to vocabulary, grammar issues and tasks. The course consists of 56 hours (4 hours per week).

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Hungarian alphabet, greeting
 „lenni“ (to be) verb in present tense
 adjectives: hungry, thirsty, tired, sad, happy, ... (plus „lenni“)
| 2. | nationalities: Hungarian, English, German, Iranian, Canadian, Russian, etc....
 occupation names: eg. dentistry student, student, dentist, doctor, teacher, assistant, dental technician
 Verbs 1: introduction
| 3. | Verbs 2: to stand, sit, read, look, ask, talk, cook, relax, walk, dance, like, can, study
 their use in simple sentences (s. lesson 10)
| 4. | Verbs 3: -ik Verbs
 „szeretek olvasni, tudok táncolni, fogorvos szeretnék lenni,” (I like to read, I can dance, I’d like to be a dentist)
 „tilos” -ni, „szabad” -ni (enni, inni, dohányozni) (forbidden to …, allowed to …) (eat, drink, smoke)
 When? parts of the day (s. greetings), days (s. lesson 12.)
 With who? to live, study
| 5. | Numbers + How much is it? How old are you? What time is it?
 Bus, tram line nr. ... (“hányas”), which district / floor? (“hányadik”)
 With what? (with metro, …)
| 6. | Summary, 1st written test
| 7. | course book pp. 50-51, hot, cold, sensitive to hot, cold (What is it sensitive to?)
 Practicing verbs
 Where do you live?
 „I’d like” + -t other foods and drinks
 Repetition from 8th week: Where do you live? (in detail, which district, floor)
 three–directedness in detail a.) library, school, restaurant, bank, cafe, shop, hospital, surgery, pharmacy b.) university, square, clinic
 What is the flat like?
 practice: three–directedness (with pictures)
 What do we do from morning to night?
| 12. | Summary, 2nd test
| 13. | Oral test |

Textbooks

L. Gyöngyösi – B. Hetesy: *Jó reggelt kívánok!*
A. Weidinger: *Nyelvtan*
Term 2 Hungarian for Dental Medical Purposes I

Hungarian for Dental Medical Purposes I. is a course for students who completed the course Introduction to the Hungarian Language in the first term.

Course objectives are to acquire basic knowledge and skills in order to understand general medical communication, apply the acquired skills freely and creatively to minimize communication problems with Hungarians and use medical language correctly in practice.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Repetition, conversations (important verbs, questioning pronouns)</td>
</tr>
</tbody>
</table>
| 2. | Expression of ownership in Hungarian language; body parts.
 Adjectives: healthy, sick, weak, having a cold (“náthás”), having fever (“lázas”)
 Verbs: to cough, sneeze, stay, examine, take |
| 3. | At the pharmacy 1. |
| 5. | Medical record (Internal Medicine) 1. (patient records, family history, social history)
 Past tense |
| 6. | Medical record (Internal Medicine) 2. (medications, allergies, surgeries, present complaints) speech understanding: coherent, longer text narrated in singular 3rd person. |
| 7. | Summary, 1st written test |
| 8. | Introduction to dental vocabulary, terms for teeth. Which tooth hurts? Where exactly does it hurt? |
| 9. | Questions about pain 1., practice (pronunciation, grammatical explanations) |
| 10. | Questions about pain 2, practice (pronunciation, grammatical explanations) |
| 11. | Questions about pain 3., practice (discussing possible answers, practicing listening skill, targeted questions) |
| 12. | Reading and discussing a sample dialogue
 Incomplete dialogue: writing or saying the dentist’s sentences based upon the answers of the patient and writing or saying the patient’s sentences based on the dentist’s questions.
 Case history-taking (questions of the medical record->complaint, pain) |
| 13. | Summary, 2nd written test |
| 14. | Oral test |

Textbooks
L. Gyöngyösi – B. Hetesy: Jó napot kívánok!
Á. Silló: Szituációk
A. Marthy – Á. Végh: Egészségére!
A. Weidinger: Nyelvtan.
Physical Education

Department of Physical Education

Subject: Physical Education I
Type of Subject: Compulsory
Code of Subject: FOKOTS007_1A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

The syllabus (preferably a week and numbered):

1st year semester I:

1st Week: General information
Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra – curricular activities. Heart rate measurements, Ruffier test and evaluation of the results.

2nd Week: Athletic
Exercises to improve stamina. Preferably outdoors, on grass ground running, with the aim of developing good running and breathing techniques.

3rd Week: Flying disc
Introduction the basic of Frisbee rules and practicing the basic technical elements in pairs and game situation.

4th Week: Tennis
Introducing the basis technical elements of tennis (forehand and backhand shot), improving hand-eye coordination.

5th Week: Agility ladder
Introducing different running, skipping techniques using agility ladder.

6th Week: Football
Introducing the basic technical elements of football. Single exercises and exercises in pairs to improve the ball skill development.

7th Week: Badminton
Introducing the basic technical and tactical elements of badminton. Introducing the basic rules and game.

8th Week: Circuit training
Bodyweight exercises and exercises with basic equipment to learn the correct functional movement pattern.

9th Week: Ruffier test and ball skill developing exercises
Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention.

10th Week: Meta
Introducing the game and the basic rules. Aim to improve the ball skill development, improve reaction time, speed and explosiveness.

11th Week: Obstacle course
To complete a built up obstacle course using different creeping-climbing, hovering, pulling, skipping, throwing techniques for general skill development.
12th Week: Core training
Postural correction exercises using the own bodyweight especially to strengthen the core muscles to prevent the health of the vertebrae.

13th Week: Skipping rope
Endurance and coordination developing exercises at different levels using skipping rope.

14th Week: Dumbbell exercises
Strengthening exercises with dumbbells.

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence cannot be proved, should make up for the lost lessons

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in 10 classes approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!

Subject: Physical Education II

Type of Subject: Compulsory
Code of Subject: FOKOTS1007_2A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

The syllabus (preferably a week and numbered):

1st year semester II:

1st. week: General information:
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.

2nd. week: Basketball:
Dribbling, passing and shooting drills in order to improve fine motor skills.

3rd. week: Bench exercises:
Using the dimensions of the sport bench by running, skipping, jumping, lifting etc. exercises.

4th. week: Rubber band exercises:
Strength and coordination training by taking advantage of the elastic features of the object.

5th. week: Floorball:
Introducing the sport to the Students by exposing the major rules, proper technique of stick handling. Passing and shooting drills.
6th. week: "Double-trouble":
Strength and stretch training in pairs by applying different starting positions. Functional movements executed in pairs.

7th. week: Volleyball:
Introducing the fundamental elements of the game (serves, hits, digs etc.) Exposing the major rules and techniques.

8th. week: Frisbee:
Taking the next step into the game by applying tactical elements in match situations. Passing and catching drills in different moving forms.

9th. week: Ruffier test and ball skill developing exercises
Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention. Sport games on the side (Dodge-ball, King of the court etc.)

10th. week: Circuit training:
General strengthening drills at each stations. Applying different intensity level, regarding the various conditions of the Students.

11th. week: Tennis:
Involving the new strokes into the learning process: form of serves, the volleys, the smash etc.

12th. week: Badminton:
Introducing the new technical and tactical elements of the game (drop shots, lobs, smash etc.) Exposing the rules of doubles.

13th. week: Core exercises:
Relative (own body) weight exercises applying different equipment (hand weights, rubber band etc.) with the aim of postural correction, by strengthening the core muscles in order to avoid spinal deformations.

14th. week: Box exercises:
Applying the sport box by jumping, lifting, slaloming, carrying (etc.) it by this enhance the level of strength and stamina.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins/week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball, volleyball)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence cannot be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in 10 classes (15 times for trainings!) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
COMPULSORY SUMMER PRACTICE

I.

Department of General Dental Preclinical Practice

Address: Budapest, 1088, Szentkirályi u. 47

Tel: 459-1472; 459-1500/59112; 59322

Head and tutor of department: Prof. Dr. Krisztina Márton D.M.D., Ph.D

Assistant lecturer: Dr. Anna Júlia Dézsi (tutor), Dr. Tamás Demeter Ph.D

Clinical specialist: Dr. Csilla Erdei, Dr. Zoltán Kovács

Resident: Dr. Fanni Andrea Vass, Dr. Zsófia Vince

Credit value: 0

Dental Assistant Practice – 2 weeks (60’ hours)

Week 1

Introduction of the Practice, administration. Fire and Job Security Rules for Students, Code of Conduct.

Lecture: Introduction of the Dental Clinical and Training Centre, patient check in.

General tasks of the dental assistants, main parts of their profession and responsibilities in the different departments. Structure of the patient administration system

Practice: Basic and auxiliary materials used in the dental office: Phosphate cements, polycarboxylate cements, calcium-hydroxide

Lecture: Infection control, documentation and quality assurance.

Contamination, disinfection, principles of sterilization, chairside assistant responsibilities.

Hand hygiene, avoidance of pinprick accidents

Practice: Hand hygiene practice.

Visiting the Central Sterilization Unit.

Lecture: Environmental aspects in dentistry.

Practice: Basic and auxiliary materials used in the dental office: mixing procedures of different types of impression materials: alginate.

Impression taking on phantom heads

Lecture: Ergonomics and four-handed dentistry, dentist work position, patient position on upper and lower arch

Practice: Presentation of four-handed dentistry and practicing four-handed treatment on phantom heads.

Presentation of manual and machine mixing of impression materials, mixing procedures of different types of impression materials: silicone, polyether

Presentation of the Dental Clinical and Training Centre

Interactive quiz

Week 2

(practicing the things learnt the previous week)

Clinical assistant practice in the clinical Department
II.

Dental Laboratory Technical Practice (60 hours)

Topics of the practical sessions:

1. **week:** visiting of a dental laboratory
 – Introduction of the laboratory, of its structure. Demonstration of the cast making, metal casting and porcelain veneering.
 – Getting acquainted with the making of fixed and removable dental appliances.
 – Presentation of a specific odontotechnological workphase, as a group assignment (8 minute ppt presentation).

2. **week:**
 – Introduction to the training laboratory, handing out of the instruments, demonstration of the instruments
 – Cast making
 – Wax pattern making of and incisor and a praemolar tooth.
 – Waxing up of an occlusal surface.
 – Artificial teeth

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!
STUDY PROGRAMME

BASIC MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Microscopic Anatomy and Embryology II</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Macroscopic Anatomy II, Microscopic Anatomy and Embryology I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Dental Biochemistry II</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Dental Biochemistry I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cell Biology I</td>
<td>C3L1P2</td>
<td>examination</td>
<td>Dental Biochemistry I, Medical Chemistry</td>
</tr>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology I</td>
<td>C8L5P3.5</td>
<td>examination</td>
<td>Microscopic anatomy and Embryology I, Macroscopic anatomy II, Biophysics II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Restorative dentistry Pre-Clinical I</td>
<td>C4L0P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Pre-clinical I, Macroscopic anatomy and embryology II, General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>Basic Immunology</td>
<td>C2L2P1</td>
<td>examination</td>
<td>Cell Science, Dental Biochemistry I</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dental Preclinical Practice</td>
<td>C4L1P3</td>
<td>examination*</td>
<td>Physical Foundations of Dental Materials Science, Macroscopic Anatomy I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian for Dental Medical Purposes II</td>
<td>C0L0P4</td>
<td>practice mark</td>
<td>Hungarian for Dental Medical Purposes I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education III</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

4th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Medical and Dental Physiology II</td>
<td>C8L5P3.5</td>
<td>final#</td>
<td>Medical and Dental Physiology I, Microscopic anatomy and Embryology II, Molecular Cell Biology I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Odontotechnology and Prosthodontics Preclinical Course II</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I, Macroscopic anatomy II</td>
</tr>
<tr>
<td>compulsory</td>
<td>General and Oral Microbiology</td>
<td>C3L2P2</td>
<td>examination*</td>
<td>Microscopic Anatomy and Embryology II, Molecular Cell Biology I, Medical and Dental Physiology I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Genetics and Genomics</td>
<td>C2L1.5P1</td>
<td>examination</td>
<td>Microscopic Anatomy and Embryology II, Basic Immunology, Molecular Cell Biology I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics, Pre-clinical I</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Odontotechnology and Prosthodontics Preclinical Course I, General Dental Preclinical Practice</td>
</tr>
<tr>
<td>compulsory</td>
<td>Hungarian for Dental Medical Purposes II</td>
<td>C4L0P4</td>
<td>signature</td>
<td>Hungarian for Dental Medical Purposes II</td>
</tr>
<tr>
<td>compulsory</td>
<td>Molecular Cell Biology II</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Dental Biochemistry II, Molecular Cell Biology I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education IV</td>
<td>C0L0P1</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Explanation

15 credits should be gained from the elective subjects during the 5-year studies – see the elective list after the 3rd year study program

*The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point, L = Lecture (hours/week), P = Practice (hours/week)
LIST OF TEXTBOOKS (The list may change!)

5. A.Newbrun: Cariology Quintessence. ISBN 0867152052
11. Immunology seminars (e-book)

Recommended textbooks:

5. Hermann Péter, Szentpétery András: Gnatológia (Semmelweis Kiadó, 2018)
MICROSCOPIC ANATOMY AND EMBRYOLOGY (I –) II

Department of Anatomy, Histology & Embryology

Course Director: Dr. Andrea D. Székely

LEARNING OBJECTIVES

Aims of the lectures in embryology: Presentation of the development of the organs and functional systems parallel with the gross anatomical and histological lectures including the frequently occurring malformations.

Aims of the lectures in histology: Presentation of the cell, basic principles in cell biology (mitosis, cytoskeleton, cellular motility), detailed presentation of the basic (epithelial, connective, muscle and nervous) tissues. Complementing gross anatomy with a detailed presentation of the fine structure of organs, including the ultrastructural details together with the molecular background. Important chapters: basic tissues, viscera, central nervous system.

Aims of the practical sessions in the histology room: Facilitate the understanding of ground (epithelial, connective, muscle and nervous) tissues and the fine structure of the organs through the observation and interpretation of histological specimens.

LECTURES: 2 × 45 min in both semesters
PRACTICAL CLASSES: 2 × 45 min in both semesters
ECTS CREDITS: Altogether 8.4 credits in both semesters
MIDTERM TESTS: written (e-learning type)

ACCEPTENCE OF THE SEMESTER:
Active participation in lectures, and dissection room sessions is obligatory for every student. Students should attend at least 75% of the scheduled practical classes to gain a signature proving the validity of the semester. Absences are therefore limited in 25%. Attendance will be recorded in the lectures and in the histology classes.

Students are obliged to participate in the midterm test or their semester would not be accepted. Missed midterms should be retaken at the given retake timepoints the department offers during the last two weeks of the semester.

TYPE OF EXAMS: oral and written
I.: semifinal examination, II.: final exam

Semifinal and final examinations consist of written and oral parts
1. Written pretest (e-learning module – access to SeKA account is obligatory)
2. Oral test in Microscopic Anatomy: identification of structures on virtual histological specimens including relevant theoretical questions

LIST OF TEXTBOOKS
1. The Developing Human – Clinically Oriented Embryology, 10th ed. by KL Moore, TVN Persaud and M Torchia, Saunders, 2015; ISBN 9780323313384

Recommended textbooks:
COURSE DESCRIPTION

Microscopic Anatomy and Embryology II

Lectures in Histology and Embryology; practical classes in Histology

Subject matter

Histology: Microscopical structure of the CNS and PNS (cerebrum, cerebellum, brain stem, spinal cord, ganglia) organs of special senses (apple of eye, inner ear), endocrine glands (pineal, pituitary, thyroid, suprarenal glands) skin and appendages, lymphatic system and the mammary gland.

Embryology: Development of the central and peripheral nervous systems, development of the organs of senses together with their malformations.

Credits: 4

Prerequisites: Macroscopic Anatomy II (successful final examination)

Microscopic Anatomy and Embryology I (successful examination)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Histology laboratory*</th>
</tr>
</thead>
</table>
| Week 1 | 1. Blood, corpuscular elements of blood. Bone marrow, erythropoiesis, leukopoiesis
2. Cellular components of lymphatic tissue. Thymus, tonsils, MALT | Thymus, tonsils |
| Week 2 | 3. Structure and circulation of lymph nodes and spleen
4. Nerve tissue | Lymph node, spleen |
6. Structure of CNS
7. Formation and derivatives of the neural crest and placode ectoderm | Histology of the peripheral nervous system (peripheral nerve, motor end plate, spinal cord) |
| Week 4 | 7. Fine structure of the spinal cord. Spinal reflexes, receptors, effectors, monosynaptic/
proprioceptive reflexes
8. Brain tracts, neurotransmitters, neuronal circuits, “connectomics” | Histology of the central nervous system |
| Week 5 | 9. Central autonomic nervous system. Monoaminergic and cholinergic neurones and pathways. „Ascending Reticular Activating System” (ARAS)
10. Somato-and viscerosensory systems. Sensory pathways. | 1. Midterm test
(Histological slides of weeks 1-5) |
| Week 6 | 11. Functional connectivity of the sensory cortex, thalamus and insula
system, control of micturition
14. Structure of the cerebellum, cerebellar connections | Microscopy of the CNS - consultation |
| Week 8 | 15. Neuroanatomy of movements/locomotion II. Planning /programming of and eliciting
movements. Gait control mechanism. The role of cerebellum and basal ganglia
16. External ear, middle ear. | Microscopy of the CNS - consultation |
18. Control of balancing and posture together with the movements of the eye and head. Awareness
of spatial position. | 2. Midterm test
Microscopy of the CNS
Development of the nervous system |
of speech.
20. Fibrous and vascular coats of the eyeball. Lacrimal gland, lacrimal apparatus. | Histology of palm skin, scalp skin
Mammary gland |
| Week 11 | 21. Inner coat of the eyeball, retina. Development of the eye
Eyesball, retina, lacrimal gland |
| Week 12 | 23. Circadian rhythm, sleep/wake cycle; neuroanatomy of resting state and activation
24. Endocrine system I, Hypothalamus, the hypothalamo-hypophysial system, epiphysis | Organs of special senses II
Organ of Corti |
| Week 13 | 25. Taste sensation and olfaction. Limbic system
26. Neuroanatomy of energy metabolism, food intake, hedonism and addiction | Endocrine system |
| Week 14 | 27. Neuroanatomy of emotions, motivation, agression, empathy and behaviour. The reward system
28. Neuroanatomy of stress, fear, anxiety and depression. Determination, alertedness together with
personality, consciousness and well-being. | Revision |

The topics of the Histology laboratories together with the accurate time and topics of the MIDTERM tests are going to be announced in the departmental homepage (as well as in the Handbook)
Topic list for the final examination:

Microscopic Anatomy and Embryology I
(see there)

Microscopic Anatomy and Embryology II

Development of the nervous system and organs of special senses
Development and primary differentiation of the neural tube
Development of telencephalon
Development of the peripheral nervous system (neural crest, placodes)
Development of the organ of vision
Development of the organ of hearing\(\text{\&}\)equilibrium

Histology
Histology of the neurons developing from the neural tube
Glial cells
Histology of the neurons and supporting cells developing from the neural crest
Fine structure of peripheral nerves
Receptors and effectors
Interneuronal synapses
Microscopical anatomy development of the pituitary gland with special relevance to the posterior lobe
Blood supply, histology and development of the anterior and intermediate lobes of the pituitary gland
Microscopical anatomy of the pineal gland
Microscopical anatomy and the development of the thyroid gland
Microscopical anatomy and the development of the parathyroid gland
Microscopical anatomy and the development of the cortical layering of the suprarenal gland
Microscopical anatomy and the development of the suprarenal gland
Histology of the islands of Langerhans
Histological structure of lymph nodes
Spleen (fine structure and circulation)
Thymus
Tonsils, MALT
Microscopical structure of the skin
Histology of the mammary gland (lactating and non-lactating)

Organs of special senses
Coats of the eyeball (tunica fibrosa, vasculosa, nervosa)
Lens, accommodation
Light reflex of the pupil
Chambers of the eye, vitreous body
Eyelids, conjunctiva, lacrimal apparatus
Cornea reflex
Visual pathway, optic nerve (CN 2)
External ear, tympanic membrane.
Tympanic cavity, auditory tube,
Hearing ossicles, their joints and muscles
Bony and membranous labyrinth
Cochlea and cochlear duct
Organ of Corti. Auditory pathway, vestibulocochlear nerve (CN 8)
Vestibular system
Taste sensation, taste buds, tracts
Organs of olfaction and taste, olfactory nerve (CN 1)

Microscopy of the central nervous system
Fine structure (microscopy) of the spinal cord
Proprioceptive reflexes
Nociceptive reflexes
Autonomic reflexes
Fine structure of the medulla oblongata
Fine structure of the pons
Fine structure of the midbrain
Classification of cranial nerve nuclei
Tracts of the brain stem
Reticular formation, monoaminergic systems
Fine structure of the cerebellum
Cerebellar afferents and efferents
Fine structure of the thalamus
Hypothalamo-hypophyseal system
Fine structure of the basal ganglia
Fine structure of the cerebral cortex, cortical fields
Tracts of the protopathic sensibility (anterolateral system)
Tracts of the epicritic sensibility (posterior funiculus/medial lemniscus)
Pyramidal (tract) system
Extrapyramidal system
Limbic system (nuclei and tracts)
Reflex arc of mastication
Anatomical bases for trigeminal pain
Autonomic innervation of salivary glands
BASIC IMMUNOLOGY

Department of Genetics, Cell and Immunobiology

Course director: Prof. Dr. Edit Buzás
Tutor: Dr. Marianna Csilla Holub
Subject code: FOKGEN037_1A
Prerequisite subject: Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III; Medical and Dental Physiology II

Credits: 3

<table>
<thead>
<tr>
<th>Lectures (2 hr / week)</th>
<th>Practicals / Seminars (1 hr / week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role, processes, organs and cells of the immune system</td>
<td>Basic terms</td>
</tr>
<tr>
<td>2. Principles of natural immunity</td>
<td>The immune system in the lab</td>
</tr>
<tr>
<td>3. The complement system; inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions I: Immunoserology</td>
</tr>
<tr>
<td>4. Inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions II: Immunassays</td>
</tr>
<tr>
<td>5. Antigen, antigen presentation and MHCs</td>
<td>Methods based on antigen-antibody interactions III: Flow cytometry</td>
</tr>
<tr>
<td>6. Antigen receptors and their formation</td>
<td>Complement assays</td>
</tr>
<tr>
<td>7. T lymphocytes and cell-mediated immune response</td>
<td>HLA typing</td>
</tr>
<tr>
<td>8. B lymphocytes and humoral immune response</td>
<td>Vaccination I</td>
</tr>
<tr>
<td>9. Mucosal immunity</td>
<td>Vaccination II</td>
</tr>
<tr>
<td>10. Immune response in infections</td>
<td>Biological therapies I</td>
</tr>
<tr>
<td>11. Immunodeficiencies</td>
<td>Biological therapies II</td>
</tr>
<tr>
<td>12. Hypersensitivity</td>
<td>Hypersensitivity I</td>
</tr>
<tr>
<td>12. Tolerance and autoimmunity</td>
<td>Hypersensitivity II-IV.</td>
</tr>
<tr>
<td>13. Antitumor immunity</td>
<td>Screening methods for autoantibodies</td>
</tr>
<tr>
<td>14. Immunology of transplantation</td>
<td>Case studies II</td>
</tr>
</tbody>
</table>

The sequence of lessons may change.

75% minimum attendance of both the lectures and practical lessons is necessary for the end-term signature. Retake for the midterm will be organized for those student, who miss the midterm because an acute disease, but they have to show up the medical record.

Midterm: written test once in the semester. The midterm is not a requirement for the validity of the semester. Retake (one make up day) will be organized for those student, who miss the midterm because an acute disease, but they have to show up the medical record.

Exam: written test in the exam period. The exam grade will be calculated from the sum of midterm scores and exam scores. For passing you have to reach more than 50 % of both the exam scores and total scores.

Literature:
Immunology seminars (e-book): http://gsi.semmelweis.hu (The user name and password is on the course datasheet of the Neptun.)
GENETICS AND GENOMICS

Department of Genetics, Cell- and Immunobiology
Course director: Prof. Dr. Edit Buzás
Course coordinator: Dr. F. Ágnes Semsei
Subject code: FOKGEN181_1A
Prerequisite subject: Medical Biochemistry, Molecular and Cell Biology III, Medical and Dental Physiology II
Credit: 2

Lectures (2 hours per week):
1. Introduction to human genetics, the human genome
2. Monogenic inheritance (Autosomal inheritance)
3. Role of sex in inheritance
4. Genetic variations
5. Chromosomal aberrations I
6. Chromosomal aberrations II
7. Epigenetics
8. Introduction to genomics. Methods in genomics
9. Genomic approach of complex inheritance
10. Pharmaco- and nutrigenomics
11. Midterm
12. Gene and genome manipulation
13. Genetics of biological processes
14. Population genetics and genomics; Genome and environment

Practices (1 hour per week):
1. Cytogenetics I
2. Cytogenetics II
3. Molecular genetic methods and applications in human genetics I
4. Molecular genetic methods and applications in human genetics II
5. Pedigree analysis: autosomal inheritance I (AD)
6. Autosomal inheritance II (AR)
7. Sex-linked inheritance I (XR)
8. Sex-linked inheritance II (XD, mitochondrial)
9. Complex inheritance
10. Consultation
11. Case studies
12. Genetic aspects of cell cycle and cell division disorders
13. Meiosis, gametogenesis; pre-implantation genetic testing
14. From genes to bedside

Important notes:
Students must visit at least 75% of the lessons. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
There is one midterm during the semester. Spare midterm is organized for those students, who miss the midterm because an acute illness, but they have to show up the medical record to the tutor in one week. There is no opportunity to improve the midterm scores.
After the course there is a written exam (single choice and essay questions, family tree, karyogram, evaluation of molecular genetic studies etc.). The exam grade is calculated from the sum of midterm scores (maximum 40) and exam scores (maximum 60). Students have to reach more than 50 % of both the exam scores and total scores to pass the exam. In the third exam midterm scores are not calculated.

Core text: Medical Genetics and genomics (e-book)
Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
DENTAL BIOCHEMISTRY II

Department of Medical Biochemistry

Credits: 3
Total number of hours: 42; lectures (hours): 28; practices (hours): 14
Type of the course: obligatory
Academic year: 2021/2022
Code of the course FOKOMBT305_2
Course Director: Dr. Kraszimir Kolev
Contact details: H-1094 Budapest, Tűzoltó u. 37-47. tel: +36-1-459-1500#60010 email: Kolev.Krasimir@med.semmelweis-univ.hu
Position: Professor
Date of habilitation: 2008 Ref.: 266

Aim of the course:
The aim of the course is to comprehensively describe metabolic processes in the human body, from a medical point of view. The main theme of the semester is to elaborate further on carbohydrate and lipid metabolism commenced in Medical Biochemistry I, elaborate on amino acid and nucleotide metabolism, examine more thoroughly intermediary metabolism including the integration of processes throughout the organs and the human body as a whole. Furthermore, this course aims to afford to medical students the skills of being able to interpret complex physiological processes in the human body at a molecular level. During practices they discuss rapidly developing, promising areas of medicine ("tomorrow's medicine"). The medical biochemical orientation of the course is based on the presentation of molecular bases of diseases that pose serious public health problems (cardiovascular, neurodegenerative, cancer states), with particular emphasis on discussing potential molecular targets of therapy.

Location of the course (lecture hall, practice room, etc.):
Premises located in the Basic Medical Sciences building (laboratory rooms located on the first floor and lecture halls located on the ground floor).

Upon the successful completion of the curriculum, the student should be able to:
Identify biochemical structures, know and understand the reactions in which medically important molecules participate; know and understand inter-organ biochemical processes; know and understand integrated metabolic functions of the human body. Overall, such knowledge is essential for understanding physiological and pathological processes and, consequently, for making sound professional decisions.

Prerequisite (s) for admission to the course: Medical Biochemistry I

Terms and Conditions for Starting Student Course (Minimum, Maximum), Student Selection Method: Not applicable for compulsory subjects.
How to apply for the course: Application is through the Neptun online system.

The course in thematic details:

Lectures: weekly 1×90 min (2 hours)
Lecturers: Dr. Bartha Katalin (BK), Dr. Ambrus Attila (AA), Dr. Komorowicz Erzsébet (KE), Dr. Törőcsik Beáta (TB)
<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures: weekly 1x90 min (2 hours)</th>
<th>Practices (P): 2 hours every other week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biosynthesis and degradation of heme. Iron homeostasis (BK)</td>
<td>P: Vitamin B12 deficiency and methylmalonic acidemias</td>
</tr>
<tr>
<td>4</td>
<td>Structure and function of nucleotides. The fate of nucleotides obtained through diet. Formation and elimination of uric acid; its metabolic role in humans. Synthesis and degradation of purine and pyrimidine nucleotides. Effects of cytostatic drugs on nucleotide metabolism. (AA)</td>
<td>P: Vitamin B12 deficiency and methylmalonic acidemias</td>
</tr>
<tr>
<td>5</td>
<td>Integration of metabolism. Metabolism of red blood cells. Red blood cell enzymopathies. Kidney metabolism, and dependence on fasting and acidosis. Metabolism of muscle and heart. Comparison of kidney and liver gluconeogenesis. Metabolic adaptation to physical effort. (TB)</td>
<td>P: Acute and chronic liver disease</td>
</tr>
<tr>
<td>6</td>
<td>The starvation-feeding cycle and its regulation. Regulation of hepatocyte metabolism in starvation. (TB)</td>
<td>P: Acute and chronic liver disease</td>
</tr>
<tr>
<td>7</td>
<td>General overview of blood clot formation and elimination. Fibrinogen and fibrin. Prothrombin activation and regulation of thrombin activity. Triggers of blood clotting, amplification of the initiation. (TB)</td>
<td>P: Tumor metabolism</td>
</tr>
<tr>
<td>8</td>
<td>Fibrinolysis. Activation of plasmin. Inhibitors of plasmin. (KE)</td>
<td>P: Tumor metabolism</td>
</tr>
<tr>
<td>9</td>
<td>Inhibitors of blood coagulation and negative feedback mechanisms. (KE)</td>
<td>P: Prothrombin time and activated partial thromboplastin time. Molecular background of inherited thrombophilia</td>
</tr>
<tr>
<td>14</td>
<td>Glutamatergic and GABA-ergic neurotransmission. (TB)</td>
<td>The relationship between metabolism and the functions of the nervous system</td>
</tr>
</tbody>
</table>
Potential overlap(s) with other topics: none
Requirement for special study: not applicable

Policy regarding attending practices; policy regarding absences:
Practices are mandatory. It is not possible to make up for missed practices. In case of absences amounting to more than 2 practices, the semester is not acknowledged. Arriving to a practice with a delay of more than 10 minutes is considered an absence. Practice/seminar participation performance will be evaluated by the tutor: as such, maximum 10 points per semester can be obtained that may count towards the final grade, see under “Grading system” for further details.

Lectures: At the end of each lecture, there will be a Kahoot on the topic of the lecture, consisting of 5 questions; 20 secs are allocated per question. Points can be earned by correctly responding to at least 4 out of 5 Kahoot questions. Maximum 1 point can be earned per lecture, as outlined by the lecturer. Through the Kahoots, students may obtain points that will be added to the points earned at the final exam, as detailed in “Grading system”, see below.

Means of assessing the students’ progress during the semester:
A midterm will take place in the 6th and another in the 11th week, during the practice/seminar (allocated time per midterm: 20 minutes). Midterms may only be taken in person and not through Zoom, unless otherwise indicated. Each midterm will consist of multiple choice questions (MCQs) from which max 20 points can be obtained (10 points per midterm). It is obligatory to gather ≥10 points from both midterms in order to be allowed to sit for the final exam. For those students who fail to amass ≥10 points from both midterms, one or both midterms can be retaken in the last week during the practice/seminar (allocated time per midterm: 20 minutes). The midterm points will be added as “points” to the result of the final exam, as detailed in “Grading system”, see below.

Requirement for acknowledging the semester, and for allowing the student to take the final exam: Attendance of at least 75 % of the practical classes and at least 10 points from both midterms.

Competition: The competition is held on the last week during the practice/seminar (allocated time: 35 minutes) and consists of 70 multiple choice questions (MCQs). The competition may only be taken in person and not through Zoom, unless otherwise indicated. Only students who amass 14 or more points from the midterms (not the retakes) can participate in the competition. Top 10% scorers (from those students enrolled in the Dental Biochemistry II course that participated in the competition) will be invited for an oral exam on the last day of that week. Points obtained from midterms, Kahoot quizzes, or practice/seminar performance (see below), do not count in the competition. Winners will be announced later in the same day, and will be exempted from the final exam.

Exam Type: Final. Form: written test and oral exam, based on material of the official textbook, lectures and practices published at the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).

Exam Requirements: The material for the written test exam is the material of the lectures and practices in the subject, with the corresponding textbook chapters.

Types and modes of grading:
The competition is held on week 13, and the structure of the competition is the same as that of the final.

Grading system: The grade of the final exam is based on the points obtained i) in Kahoot quizzes at the lectures, ii) during the seminars/practices, iii) at the two midterms, iv) at the written MCQ semifinal exam, v) during an oral exam. The written MCQ exam and the oral exam will take place in the same day of the examination period.

The grading system is as follows:
(i) Kahoot: maximum 1 point per lecture.
(ii) Seminar/practice points: maximum 10 points.

Total points from (i) and (ii) cannot exceed 20 points.
(iii) Two midterms: maximum 20 points.
(iv) Written MCQ exam: This test consists of multiple choice questions (MCQs) from which max 100 points can be obtained (allocated time: 100 minutes).
If the score of the MCQ exam is 49 or below, then the grade of the final exam is ‘fail’.
If students reach 50 points on the MCQ exam, the midterm points, practice/seminar performance points and lecture Kahoot points (total max. 40 points) will be added to the MCQ score.

Grade calculation of the final exam from the total points (MCQ+semester):

95-140: grade 5 (excellent)
86-94: grade 4 (good)
71-85: grade 3 (satisfactory)
50-70: grade 2 (pass)

(v) Oral exam: Only those students who obtained at least 50 points at the semifinal MCQ test will be invited for an oral exam. For those who scored 49 and below, a final mark of “1” will be registered in the Neptun, and points obtained during the semester will not count. During the oral exam, the examiner will pick five questions from those MCQs that were correctly answered by the student. If the student will not elaborate properly on 2 or 3 MCQs, his/her MCQ mark will be decreased by one grade (i.e. if MCQ Moodle exam is 3 and the student does not elaborate adequately on 2 or 3 MCQs picked by the examiner, the MCQ grade will be 3-1=2). If the student will not elaborate properly on 4 or 5 oral MCQs, his/her MCQ mark will be decreased by two grades (i.e. if MCQ Moodle exam was 3 and the student does not elaborate adequately on 4 or 5 oral MCQs picked by the examiner, the MCQ mark will be 3-2=1, i.e. “fail”). If MCQ Moodle exam is 2 and the student does not elaborate adequately on 3 or more MCQs picked by the examiner, the MCQ mark will be “fail”. The points from Kahoot and midterms will be added only if the student obtained from MCQ+oral exam a grade of ≥2.

How to apply for the exam: The exam dates are announced on the 12th week of the semester. We provide at least one exam date each week. Applications are made in the Neptun system in accordance with the University Study and Exam Rules.

Opportunities to repeat the exam: A retake is possible on the closest announced exam date at least one day after an unsuccessful exam.

Printed, electronic and online notes, textbooks, tutorials, and literature for online learning (html for online material):
Harper’s Biochemistry (30th edition, or latest)
Online material published in the department’s Moodle e-learning system (https://itc.semmelweis.hu/moodle/).
MOLECULAR CELL BIOLOGY I-II

Institute of Biochemistry and Molecular Biology
Department of Molecular Biology
EOK Building, H-1094 Budapest, Tűzoltó u. 37-47.

Lecturer of the course: Miklós Csala MD, DSc (csala.miklos@med.semmelweis-univ.hu)
Course coordinator: Gergely Keszler MD, PhD (keszler.gergely@med.semmelweis-univ.hu)

Credit: 3
Lessons (in hours): 14 lectures and 28 practicals
Subject code: FOKOMBT306_1A

This subject focuses on the main procedures in molecular biology and cell biology. It serves as a base for several fields in medicine, such as molecular pathology, molecular diagnostics, pharmacology, gene therapy and medical biotechnology.

Lectures:
1. Introduction to molecular cell biology
2. Structure and function of nucleotides and nucleic acids. Packaging of DNA into chromatin
3. DNA packaging in pro- and eukaryotic cells; the role of topoisomerases
4. Structure of the human genome 1
5. Structure of the human genome 2
6. Principles of DNA replication. Replication in prokaryotes
7. Replication in eukaryotes
8. DNA repair
9. Transcription in prokaryotes
10. Transcription in eukaryotes, mRNA processing
11. Regulation of transcription
12. Nuclear receptors. Transcriptional factors, DNA-binding domains
13. MicroRNAs
14. Epigenetics
15. The genetic code, translation 1
16. The genetic code, translation 2
17. The genetic code, translation 3
18. Posttranslational modification of proteins
19. Protein folding
20. Quality control
21. Protein targeting into metabolic compartments 1
22. Protein targeting into metabolic compartments 2
23. Proteostasis, the ubiquitin–proteasome system
24. Mechanisms of autophagy
25. Molecular biology of viruses

Practicals: (4x45 min every other week):
1. Introduction, Biuret test, Ellmann’s reaction, consultation
2. Cell fractions I
3. Cell fractions II
4. Consultation
5. Regulation of beta-galactosidase expression
6. Purification of a bacterially expressed protein by affinity chromatography
7. SDS-PAGE and western blot

Acknowledgment of the semester:
Attendance of at least 75% of the practical lessons is prerequisite of acknowledging the semester. Students can collect “practical points” during the labs. These points are taken into account at the Molecular cell biology II final exam at the end of the academic year.

Examination and grading system:
The oral exam is based on the topic list announced in the beginning of the semester, and it takes place before a committee of two (examiner and co-examiner). Students pick three random questions from the DNA, RNA and Protein group of the following topic list. The exam can be passed if all three topics are sufficiently answered.
Topic list:

I. DNA
1. Chemical structure of nucleotides; primary and secondary structures of nucleic acids (DNA and various RNAs)
2. Condensation levels of DNA in the eukaryotic cells; the role of topoisomerases and chromatin proteins
3. Structure of the human genome: coding and gene regulatory sequences; non-coding genomic sequences: introns, pseudogenes, repetitive sequences
4. Principles of the semiconservative DNA replication; replication fork, leading and lagging strand
5. DNA replication in the pro- and eukaryotic cells; comparison of the enzymes, proteins involved
6. The telomere; function and significance of the telomerase
7. Common types of DNA damage and repair mechanisms; DNA lesions versus mutations
8. Formation of spontaneous point mutations; DNA polymorphism; possible effects of point mutations on the encoded proteins

II. RNA
1. Structure and function of RNA polymerase of E. coli; initiation of transcription in prokaryotes; the prokaryotic transcription unit
2. Termination of transcription in prokaryotes; post-transcriptional RNA modifications in prokaryotic cells
3. The eukaryotic transcription unit; initiation and termination of transcription in the eukaryotic cells
4. Regulation of transcription in eukaryotes
5. Maturation of mRNA
6. Formation and regulatory functions of microRNAs in eukaryotic cells
7. Significance of DNA methylation and histone modifications
8. DNA-binding proteins and their characteristic structural motifs with examples
9. Structure and function of nuclear receptors; steroid-thyroid receptors and the aryl hydrocarbon receptor

III. Proteins
1. The genetic code; codon-anticodon interaction; function and role of aminoacyl-tRNA synthetases
2. Structure and function of the ribosome; the ribosome cycle; role of tRNA in translation
3. Initiation of translation in pro- and eukaryotic cells
4. Regulation of eukaryotic translation; the role of eIF2α phosphorylation
5. Elongation and termination of translation in pro- and eukaryotic cells; pharmacological inhibitors of translation
6. Post-translational modifications of proteins, characteristic modifications in the endoplasmic reticulum
7. Maturation and quality control of proteins; ERAD
8. Protein targeting within the secretory pathway; targeting to peroxisome or mitochondrion; entry of lysosomal proteins and substrates to be degraded into the lysosome
9. The concept of proteostasis; possible modes of intracellular protein degradation
10. Different types of autophagy; role of the lysosomes
11. The lytic replication cycle of bacteriophages; strategies of bacteria and phages to distinguish foreign DNA from their own
MOLECULAR CELL BIOLOGY II

Institute of Biochemistry and Molecular Biology
Department of Molecular Biology
EOK Building, H-1094 Budapest, Tűzoltó u. 37-47.

Lecturer of the course: Miklós Csala MD, DSc (csala.miklos@med.semmelweis-univ.hu)
Course coordinator: Gergely Keszler MD, PhD (keszler.gergely@med.semmelweis-univ.hu)
Credit: 3
Lessons (in hours): 14 lectures and 28 practicals
Subject code: FOKOMBT306_1A

This subject focuses on the main procedures in molecular biology and cell biology. It serves as a base for several fields in medicine, such as molecular pathology, molecular diagnostics, pharmacology, gene therapy and medical biotechnology.

Lectures:
1. Introduction to molecular cell biology
2. Structure and function of nucleotides and nucleic acids. Packaging of DNA into chromatin
3. DNA packaging in pro- and eukaryotic cells; the role of topoisomerases
4. Structure of the human genome 1
5. Structure of the human genome 2
6. Principles of DNA replication. Replication in prokaryotes
7. Replication in eukaryotes
8. DNA repair
9. Transcription in prokaryotes
10. Transcription in eukaryotes, mRNA processing
11. Regulation of transcription
12. Nuclear receptors. Transcriptional factors, DNA-binding domains
13. MicroRNAs
14. Epigenetics
15. The genetic code, translation 1
16. The genetic code, translation 2
17. The genetic code, translation 3
18. Posttranslational modification of proteins
19. Protein folding
20. Quality control
21. Protein targeting into metabolic compartments 1
22. Protein targeting into metabolic compartments 2
23. Proteostasis, the ubiquitin–proteasome system
24. Mechanisms of autophagy
25. Molecular biology of viruses

Practicals: (4×45 min every other week):
1. Introduction, Biuret test, Ellmann’s reaction, consultation
2. Cell fractions I
3. Cell fractions II
4. Consultation
5. Regulation of beta-galactosidase expression
6. Purification of a bacterially expressed protein by affinity chromatography
7. SDS-PAGE and western blot

Acknowledgment of the semester:
Attendance of at least 75% of the practical lessons is prerequisite of acknowledging the semester. Students can collect “practical points” during the labs. These points are taken into account at the Molecular cell biology II final exam at the end of the academic year.

Examination and grading system:
The oral exam is based on the topic list announced in the beginning of the semester, and it takes place before a committee of two (examiner and co-examiner). Students pick three random questions from the DNA, RNA and Protein group of the following topic list. The exam can be passed if all three topics are sufficiently answered.
Topic list:

I. DNA
 1. Chemical structure of nucleotides; primary and secondary structures of nucleic acids (DNA and various RNAs)
 2. Condensation levels of DNA in the eukaryotic cells; the role of topoisomerases and chromatin proteins
 3. Structure of the human genome: coding and gene regulatory sequences; non-coding genomic sequences: introns, pseudogenes, repetitive sequences
 4. Principles of the semiconservative DNA replication; replication fork, leading and lagging strand
 5. DNA replication in the pro- and eukaryotic cells; comparison of the enzymes, proteins involved
 6. The telomere; function and significance of the telomerase
 7. Common types of DNA damage and repair mechanisms; DNA lesions versus mutations
 8. Formation of spontaneous point mutations; DNA polymorphism; possible effects of point mutations on the encoded proteins

II. RNA
 1. Structure and function of RNA polymerase of E. coli; initiation of transcription in prokaryotes; the prokaryotic transcription unit
 2. Termination of transcription in prokaryotes; post-transcriptional RNA modifications in prokaryotic cells
 3. The eukaryotic transcription unit; initiation and termination of transcription in the eukaryotic cells
 4. Regulation of transcription in eukaryotes
 5. Maturation of mRNA
 6. Formation and regulatory functions of microRNAs in eukaryotic cells
 7. Significance of DNA methylation and histone modifications
 8. DNA-binding proteins and their characteristic structural motifs with examples
 9. Structure and function of nuclear receptors; steroid-thyroid receptors and the aryl hydrocarbon receptor

III. Proteins
 1. The genetic code; codon-anticodon interaction; function and role of aminoacyl-tRNA synthetases
 2. Structure and function of the ribosome; the ribosome cycle; role of tRNA in translation
 3. Initiation of translation in pro- and eukaryotic cells
 4. Regulation of eukaryotic translation; the role of eIF2α phosphorylation
 5. Elongation and termination of translation in pro- and eukaryotic cells; pharmacological inhibitors of translation
 6. Post-translational modifications of proteins, characteristic modifications in the endoplasmic reticulum
 7. Maturation and quality control of proteins; ERAD
 8. Protein targeting within the secretory pathway; targeting to peroxisome or mitochondrion; entry of lysosomal proteins and substrates to be degraded into the lysosome
 9. The concept of proteostasis; possible modes of intracellular protein degradation
 10. Different types of autophagy; role of the lysosomes
 11. The lytic replication cycle of bacteriophages; strategies of bacteria and phages to distinguish foreign DNA from their own
Aim of Medical and Dental Physiology course:
The goal of Medical and Dental Physiology course is to give the students the understanding of the concepts and principles of medical and dental physiology. The lectures provide the information base while the seminars and practices provide the student with an opportunity to assimilate and integrate the material. Appropriate clinical perspectives are presented throughout the course.

First semester

1. Introduction, body fluids. Functions of cellular membranes, transport across membranes. Transepithelial transports.
3. Ion channels and resting membrane potential. Action potential. Physiology of nerve cells, synaptic transmission in the central nervous system.
5. Physiology of the blood.
6. Physiology of the heart I: origin and spread of cardiac excitation Cardiac cycle. Regulation of cardiac output.

Second semester

2. Secretory functions of the gastrointestinal tract. Digestion and absorption of food.
3. Endocrine regulations. The hypothalamo-adrenohypophysseal system; growth hormone, somatomedins.
5. Hormonal regulation of intermedier metabolism.
7. Function of the reproductive system: male sexual function; female sexual function; endocrinology of pregnancy, parturition, and lactation.
8. Introduction to neurophysiology. Physiology of nerve & glia cells.
9. Sensory functions.
10. Physiology of hearing and equilibrium.
11. Physiology of vision.
12. Motor functions.
13. Integration of autonomic responses.
14. Electroencephalogram (EEG); sleep phenomena. Learning and memory. Regulation of behavioral mechanisms, motivation; emotion.
Practices, semester I:
- Typing of Blood Groups, Blood Coagulation Test
- Blood cell counting, determination of hemoglobin concentration and hematocrit.
- Leukocyte differential count on peripheral blood smear
- Recording and analyzing the human ECG
- Blood pressure measurement in humans
- Computer simulation: Skeletal and smooth muscle
- Evaluation of acid-base parameters with the Siggaard-Andersen nomogram

Practices, semester II:
- Human pulmonary function tests
- Smooth muscle of rabbit small intestine
- Oral glucose tolerance test (OGTT)
- Electrooculography (EOG) and investigation of the vestibular system
- Reflex function
- Computer simulation: Studies on circulatory reactions of a virtual rat
- Computer simulation: Neuromuscular junction

Attendance on practices and lectures, replacement in case of missed sessions:
The lecture hours per week are 5; the practice hours per week are 3.5. Students must write a lab report for each practice using the Practical Book. The Practical Book should be signed by the teacher not later than one week after the practice. Participation in the practices is compulsory. No more than three absences or no more than 10.5 practice hours from practices are allowed for any reason; otherwise the semester will not be credited. There are no extra practices and missed practices cannot be retaken.

Consequences of absence from sessions and exams:
No more than three absences from practices are allowed for any reason; otherwise the semester will not be credited. There are no extra practices and missed practices cannot be retaken. Failing to certify absence from an exam causes registering “absence” = “nem jelent meg” in the NEPTUN system.

Method of checking acquired knowledge during the study period:
The knowledge of the students is tested in a written form on a weekly base. The written short tests cover the material of lectures of the previous week.

Examination and final exams:
In the examination period the students have to give exam in the first semester and final exam in the second semester.

Requirements of the exam:
Exam: material of the Medical and Dental Physiology I
Final exam: material of the Medical and Dental Physiology I and Medical and Dental Physiology II
The exam is oral exam. The oral exam consists of two theoretical questions (I-II). The overall result of the oral exam is based on the two theoretical grades; a failed (1) theoretical question results in an overall failed (1) exam.
Lists of the theoretical questions can be found in the webpage of the Department of Physiology. The following rules will be enforced during the exams: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the exam place; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Grading of courses:

Exam: The students need to bring ID card and the laboratory report book to participate in the exam. The oral exam consists of two theoretical questions (I-II). Grouping of questions, the topics of the exam can be found in the webpage of the Department of Physiology.
I: 1 and 2 topics of the semifinal exam
II: 3, 4 and 5 topics of the semifinal exam

The overall result of the oral exam is based on the two theoretical grades but a failed (1) theoretical question results in an overall failed (1) exam. The mathematical average of two oral exam grades gives the grade of the exam:

- Excellent (5): 4.51 - 5.00
- Good (4): 3.51 - 4.50
- Satisfactory (3): 2.51 - 3.50
- Pass (2): 2.00 - 2.50
- Fail (1): below 2.00 or in case of failed (1) theoretical question.
The following rules will be enforced during the exam: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the lecture halls or the practice rooms; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Final exam: The final exam consists of a written and an oral part. The written and oral part of the final exam starts at 8:45 by showing up in the selected exam place. Your exam place and examiners are announced in written form at 8:30 (attached to the front door of the corridor of the Physiology Practice Rooms). The students need to bring ID card and the laboratory report book to participate in the exam. The written part consists of 30 questions and takes 45 minutes. Grading of the written part:

- 0-14 correct answers = 1
- 15-18 correct answers = 2
- 19-22 correct answers = 3
- 23-26 correct answers = 4
- 27-30 correct answers = 5

The oral exam starts at 9:45 and consists of two theoretical questions (I-II). Grouping of questions, the topics of the final exam can be found in http://semmelweis.hu/elettan/teaching/second-semester.

I: 1, 2, 3, 4 and 5 topics of the final exam
II: 6, 7 and 8 topics of the final exam

The overall grade of the final exam is the mean of three (written exam grade, two oral exam grades), but a failed (1) theoretical question results in an overall failed (1) exam.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent (5)</td>
<td>4.51 - 5.00</td>
</tr>
<tr>
<td>Good (4)</td>
<td>3.51 - 4.50</td>
</tr>
<tr>
<td>Satisfactory (3)</td>
<td>2.51 - 3.50</td>
</tr>
<tr>
<td>Pass (2)</td>
<td>2.00 - 2.50</td>
</tr>
<tr>
<td>Fail (1)</td>
<td>below 2.00 or in case of failed (1) theoretical question.</td>
</tr>
</tbody>
</table>

The following rules will be enforced during the exam: electronic devices must be kept in the baggage; baggage and coats should be placed next to the wall of the lecture halls or the practice rooms; any form of communication is disallowed; students not complying with these rules will be disqualified immediately.

Exam registration:
Registration for the exam must be recorded through the NEPTUN system.

Rules of repeating exams:
Repetition of the exam is possible at least three days after the unsuccessful trial.

Requirements of the exams:
Exam: material of the Medical and Dental Physiology I
Final exam: material of the Medical and Dental Physiology I and Medical and Dental Physiology II

List of textbooks:
RESTORATIVE DENTISTRY PRE-CLINICAL I

Department of Conservative Dentistry
Head of Department: *Professor János VÁG DMD, PhD.*

Second Semester

Phantom-course (Pre-clinical laboratory course)
Lecturer of course: Beáta KERÉMI DMD, PhD

Manual training (3 hours per week)

Introduction to practice: general Department’s policy. Rules of the house. Distribution of instruments. Handing over of instruments.

- General dental anatomy, Mühlreiter’s signs, tooth marking systems, instruments for dental hard tissue preparation
- Black classification, general rules of preparation, tooth preparation terminology (nomenclature), Preparation of Class I cavity -1st part
- Caries – definition, clinical characteristics, progression, histopathology, zones; Class I cavity preparation-2nd part
- Position of patient and practitioner during treatment, Class V cavity preparation
- Class II cavity preparation
- Midterm test I – cavity preparation, matrix systems and wedges,
- Isolation (relative and absolute)
- Minimal invasive preparation, preparation of foramen coecum
- Composite filling in the posterior region, steps of treatment (adhesive technique)
- Instruments and methods of finishing and polishing
- Midterm test II – making of filling, removing amalgam fillings, preparing modified conventional cavities, treatment of discoloured dental hard tissue
- Class III and Class IV cavities preparation
- Anterior matrices, composite filling preparation in anterior region, steps of treatment (adhesive technique)
- Treatment of root caries, temporary fillings: materials and application

Note: The maximum number of absences in a semester is 3.
During the semester 2 midterm examinations should be passed.
Practical course grade.
GENERAL DENTAL PRECLINICAL PRACTICE

Department of General Dental Preclinical Practice
Head: Prof. Dr. Krisztina Márton D.M.D., Ph.D.

Second Semester

Lectures (1 hour/week) Practices (3 hours/week)

The Department of General Dental Preclinical Practice is responsible for the preparation of dental students for the practical stages of the clinical practice requiring high precision and excellent manual skills. The aim of this special education is to provide the students with a professional preclinical conservative dentistry, prosthodontics, periodontology, oral surgery and orthodontics manual and theoretical training, which will be used in the clinical treatment procedures. It consists of the simulation of the clinical stages on phantom heads, but furthermore students also have the opportunity to study the basics of minimal- and micro invasive dentistry and the most important rules of infection control.

Theoretical lessons:

1. Dental Public Health Of Hungary At The First Decade Of The 21-St Century
2. Oral Diseases
3. Preparation Techniques In Dentistry: Conservative Dentistry And Endo-dontics
5. Role Of Dentistry In The Health Sciences. The Dental Team.
 Environmental aspects in dentistry.
7. Establishment And Instrumentation Of The Dental Clinic
8. Consequences of Loss of Teeth. Types of Prosthetic Appliances
9. Preparation Techniques In Dentistry: Prosthodontics
10. Contamination And Infection Control In Dentistry
11. Disinfection And Sterilization Methods In Dentistry
12. Operative Techniques In Dentistry: Periodontology
13. Operative Techniques In Dentistry: Oral And Maxillofacial Surgery
14. Operative Techniques In Dentistry: Paedodontics And Orthodontics

Recommended textbook:
INTRODUCTION TO ODONTOTECHNOLOGY AND PROSTHODONTICS
PRE-CLINICAL COURSE I-II

Department of Prosthodontics
Head of Department: Prof. Dr. Péter Hermann
Lecturer: Dr. Ida Barbara Kispélyi

Since the creation of an independent training, the Stomatological curriculum has put great emphasis on a preclinical foundation course, the Prosthodontics Propaedeutic course, the syllabus of which has also included mastery of dental techniques, indispensable for a dentist. Until the visit of the EU Committee in the late 90s, the course was structured in such a manner that in the first and second semester of the second academic year students had 3 hours of practices and one hour of lecture per week; during the first semester treatment of complete edentulousness was simulated through fabrication of complete dentures, while in the second semester students prepared 3-unit bridges and single crowns on partial edentulous moulages. During both semesters, medical and dental laboratory steps followed each other just like in real life, and students performed alternatively medical work phases and dental laboratory tasks, for one week each. After the proposal of the EU Committee on the amendment of several courses (including the Prosthodontics Preclinical course), dental laboratory and medical work phases had to be separated sharply, while an independent Odontotechnology course had to be included in the curriculum. According to the request, this Odontotechnology course was built into the theoretical module in order to provide the earliest possible recognition and consolidation of the chosen profession.

Taken more than ten years of experience into account, while maintaining the values that undoubtedly resulted from these changes, we wish to modify those controversial points that in our opinion can be still improved. A sharp separation of the two disciplines (dental techniques and dentistry) rather confuses students, thus they fail to get a grip of the process, and it is the essence that is lost, since these processes are based each on the other. The essence of the new syllabus is the integration of the two courses that are currently taught separately, and thus new and crucial areas (not taught so far) can be emphasized, with concomitant reduction of teaching hours and credit points.

The curriculum of the course concludes with a comprehensive examination at the end of the first semester of the third academic year.

Timing of the Odontotechnology and Prosthodontics Preclinical course:
3rd, 4th and 5th Semester

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module I:
General Dental Material Science, Macroscopic Anatomy II, General Dental Preclinical Practice

Preliminary studies requested for the course of Odontotechnology and Prosthodontics preclinical course module II:
Odontotechnology and Prosthodontics preclinical course module I, Macroscopic Anatomy II

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module III:
Odontotechnology and Prosthodontics Preclinical course module II, Conservative Dentistry and Endodontics, Preclinical I, Molecular Cell Biology II
Odontotechnology and Prosthodontics preclinical course I

Topics of the lectures:
1. Primary impression, primary cast
2. Special trays
3. Labside and chairside steps of making complete denture
4. Types of casts, casting as a kind of information transfer
5. Secondary impression
6. The occlusal rim, centric occlusion
7. Articulators, jaw registration
8. Fabrication of the trial denture, and the try in procedure
9. Fitting of dentures, Short time and long time recall procedures.
10. Types of the prosthetic appliances
11. Gnathological aspects in making complete denture
12. Partial edentulousness, and partial dentures (RPD)
13. Labside and chairside steps of making partial and complex denture
14. Consultation

Topics of the Practices:
1. Introduction, Instrument Delivery
2. Impression Taking for Maxillary and Mandibular Complete Dentures
3. Impression Taking for Maxillary and Mandibular Complete Dentures
4. Outlining The Borders of The Special Trays,
5. Fabrication of Special Trays
7. Fabrication of Maxillary and Mandibular Occlusal Rims
8. Jaw Registration
9. Mounting of Articulators
10. Setting Up Teeth
11. Setting Up Teeth
12. Setting Up Teeth
13. Processing Dentures, Insertion
14. Consultation

Odontotechnology and Prosthodontics Preclinical II

Topics of the lectures (weekly, numbered):
1. Types of the fixed dental restorations
2. Labside and chairside steps of making fixed appliances
3. Fundamentals of tooth preparation, periodontal aspects
4. Impression taking for fix appliances, sectional models, and dies
5. Fabrication of wax pattern, casting of fix appliances, trial of the metal framework of the fix appliances
6. Dowel core restorations
7. Tooth Shade Determination
8. Temporary Dental Restorations
9. Veneering of fixed appliances
10. Metal free fixed restorations, CAD/CAM technology
11. History of implant dentures, labside and chairside steps
12. Explanation of different kind of implant systems. Impression methods of implant cases
13. Dental cements
14. Consultation

Practical sessions
1. Handing out of the instruments introduction
2. Tooth preparation 24 and 27 for fixed partial denture
3. Tooth preparation 24 and 27 for fixed partial denture
4. Tooth preparation 24 and 27 for fixed partial denture
5. Tooth preparation 24 and 27 for fixed partial denture
6. Two-phase impression
7. Antagonistic impression, bite-registration
8. Preparation of the sectional model, mounting of the average value articulator
9. Waxing up of the four-unit bridge: Adapta deep drawing
10. Wax pattern fabrication of the four-unit bridge: outlining and shaping of the occlusal surface
11. Wax pattern fabrication of the four-unit bridge
12. Spruing of the wax pattern, preparation for investing
13. Wax pattern fabrication for a four-unit porcelain fused to metal four-unit bridge
ELECTIVE SUBJECT for Dentistry 2nd year

Title: CULTURE IN MEDICINE, CULTURE OF MEDICINE – Popular Themes of Current Clinically Applied Medical Anthropology

Institute of Behavioral Sciences

Course Director: Prof. Dr. Ferenc Túry
Lecturer: Dr. László Lajtai

Prerequisite: Dental Psychology

Second Semester

Weekly topics of the seminars:
1. „We have never been modern?” – An initiation to critical approaches to evidence base in medicine – How to respond? - / - Discussion of the semester: Requirements and timescale.
2. Alternatives 1: Narratives and explanatory models – Confusions and the lay perspective
3. Alternatives 2: Complementary medicine – Competition at our doorstep
4. Alternatives 3: Healing and folk medicine – Wisdom or beliefs?
5. Alternatives 4: Biomedicine for anthropology, or the twist of perspectives
6. Challenges 1: Migrants, refugees and minorities
7. Challenges 2: Reproduction, sex, age, death and other trends in „western” medicalization
8. Challenges 3: Nutrition and taboos - biopower and social body
9. Challenges 4: Placebo, pharmaceuticals and the rule of pharmaceutical industry
10. Challenges 5: Public medicine, private medicine and the reproduction of inequities
11. Favourite themes 1: Alcohol, drug, and AIDS at crossroads of culture and law
12. Favourite themes 2: Shrinks and madness – CBS and the mirage of the normal
Recapitulation, feedback and evaluation.
LANGUAGE COURSE

Department of Languages for specific purposes

Term 3 Hungarian for Dental Medical Purposes II - FOKONYE320_2A

Hungarian for Dental Medical Purposes II is a course for students who completed the course Hungarian for Dental Medical Purposes I. Course objectives are to extend the range of basic knowledge and skills, as well as to improve the ability to use what has been learnt so far. Students are introduced to dental language to ensure that they use it correctly in practice.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 7 times.

Requirements:
midterms (week 7 and 13), oral test (week 14)
Topics of midterms: see detailed course description
Students who fail a midterm or the oral test have to retake it.

Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester). Students have to write the two midterms and take part in the oral test.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written midterms, the oral test as well as the active participation in classes. Tests under 50% must be retaken. In the latter case, the mark fail will also be calculated towards the final mark. For the oral examination two teachers evaluate separately the grade of the student.

<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–50%</td>
<td>1</td>
</tr>
<tr>
<td>51–60%</td>
<td>2</td>
</tr>
<tr>
<td>61–75%</td>
<td>3</td>
</tr>
<tr>
<td>76–89%</td>
<td>4</td>
</tr>
<tr>
<td>90–100%</td>
<td>5</td>
</tr>
</tbody>
</table>
Detailed course/lecture description:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Revision: Medical record (Internal Medicine)</td>
</tr>
<tr>
<td>2.</td>
<td>Revision: complaint, pain (location, time, type, …)</td>
</tr>
<tr>
<td>3.</td>
<td>The tooth. Parts and material of the tooth Terms for teeth What does DMF mean?</td>
</tr>
<tr>
<td>4.</td>
<td>Number of decayed, missing and filled teeth (based on listening or reading tasks); Dialogues</td>
</tr>
<tr>
<td>5.</td>
<td>Tooth decay 1.</td>
</tr>
<tr>
<td>6.</td>
<td>Brushing teeth</td>
</tr>
<tr>
<td>7.</td>
<td>Summary, 1st written test</td>
</tr>
<tr>
<td>8.</td>
<td>Basics of dentist-patient dialogues 1. Introducing oneself, short case history-taking</td>
</tr>
<tr>
<td>9.</td>
<td>Basics of dentist-patient dialogues 2. Instructions during examination, diagnosis</td>
</tr>
<tr>
<td>11.</td>
<td>Exercises on the topics above (e.g. reading comprehension) Revision: types of teeth, caries, tooth cleaning</td>
</tr>
<tr>
<td>12.</td>
<td>Listening exercises on the topics above Improvised dialogues, vocabulary expansion based on possible responses, strategies for improving speech understanding</td>
</tr>
<tr>
<td>13.</td>
<td>Summary, 2nd test</td>
</tr>
<tr>
<td>14.</td>
<td>Oral test</td>
</tr>
</tbody>
</table>

Textbooks

1. I. Gera: Angol-magyar fogorvosi szótár
2. M. Putz: Magyar fogorvosi szaknyelv I.
3. A. Weidinger: Nyelvtan

Term 4 Hungarian for Dental Medical Purposes III - FOKONYE320_3A

Hungarian for Dental Medical Purposes III is a course for students who completed the course Hungarian for Dental Medical Purposes II Course objectives are to extend the range of basic knowledge and skills, as well as to apply creatively what has been learnt so far. Students focus on professional communication and learn expressions of dental documentation.

Attendance and absence:
Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Certifying absence:
A medical certificate is required if the student has been absent more than 7 times.

Requirements:
midterms (week 7 and 13), oral test (week 14)
Topics of midterms: see detailed course description
Students who fail a midterm or the oral test have to retake it.
Semester signature:
Attendance of lessons is obligatory. Students are allowed to have maximum 3 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester). Students have to write the two midterms and take part in the oral test.

Evaluation:
The evaluation of student performance is based on the marks for the 2 written midterms, the oral test as well as the active participation in classes. Tests under 50% must be retaken. In the latter case, the mark fail will also be calculated towards the final mark. For the oral examination two teachers evaluate separately the grade of the student.

- 0–50% = 1
- 51–60% = 2
- 61–75% = 3
- 76–89% = 4
- 90–100% = 5

Detailed course/lecture description:
1. week Revision: case history-taking, topics of the 3rd semester, dialogues
2. week Fillings (descriptive text, basic vocabulary; dialogues)
3. week Gingivitis (descriptive text, basic vocabulary; dialogues)
4. week Tooth decay 2. (descriptive text, basic vocabulary; dialogues)
5. week Initial steps in differential diagnosis, use of important verbs
6. week „General Health Questionnaire” (discussion, translation, practical use: based on listening and hearing tasks)
7. week Summary, 1st written test
8. week Sentences required by the Faculty of Dentistry 1. (symptoms, medications, medical treatment, heart murmur, hospital, ...)

Weeks 8-12: translating sentences and discussing them using grammatical explanations; searching for similar words, other terms, and making learning easier with vocabulary cards, dialogues, games and associations.

9. week Sentences required by the Faculty of Dentistry 2. (health, heart disease, haemorrhage, ...)
10. week Sentences required by the Faculty of Dentistry 3. (operations, blood pressure, fainting, hereditary diseases, ...)
11. week Sentences required by the Faculty of Dentistry 4. (pregnancy, lactation, infectious diseases, ...)
12. week Sentences required by the Faculty of Dentistry 5. (sensitive teeth, dental calculus, brushing, floss, smoking, alcohol ...)
13. week Summary, 2nd written test
14. week Oral test

Textbooks
1. M. Győrffy: *Mi a panasz?*
2. R. Halász: *Anamnézis magyarul*
3. Á. Silló: *Szituációk*
4. A. Marthy – Á. Végh: *Egészségére!*
5. J. Kovács: *A fogászati szaknyelv alapjai*
6. I. Gera: *Doctor – Patient, Doctor – Assistant Communication*, compiled by Prof. Dr. I. Gera
7. M. Putz: *Magyar fogorvosi szaknyelv I.*
8. I. Gera: *Angol-magyar fogorvosi szótár*
9. A. Weidinger: *Nyelvtan*
Introduction to English Dental Terminology I-II – elective course

Library Informatics - AOVKPK088_1A

Lecturer: Dr. Lívia Vasas PhD. – Central Library
Institute: Semmelweis University Central Library, 1088 Budapest
Duration: One semester, 30×45 minutes (10×3 lessons)

SUGGESTED SEMESTER 5-10.

Exam-form
Credit-value
Minimum/maximum group-size
Practical mark
3 credit-points
8/200

The aim of the subject:
Teaching students how to use/search in literature sources of medicine, analyse the result of their work supporting the proper competencies.

Thematic:
Medical e-catalogues, e-books, e-libraries, databases, scientific resources of internet

Assistant lecturer:
Anna Berhidi, Edit Csajbók, Skultéti Attila, Szluka Péter

Student records officer:

Application deadline:
September 4 -8, 2019

Precondition:
There isn’t.

Introduction, technical details, VPN access, technical details, about the history of the Central Library’s Homepage:
www.lib.semmelweis.hu and its facilities,

UpToDate, ClinicalKey, HS talks:
Biomedical & Lifesciences Collections, EBSCOhost, ProQuest, Pharmacopoeia, Turnitin

Dissertations:
Dart Europe, Open dissertations, OATD,

Catalogs:
books, online books

Semmelweis University catalog Hunteka:
http://hunteka.lib.semmelweis.hu/search
Online book catalog: https://lib.semmelweis.hu/nav/ekonyvek
National Library of Medicine (Bethesda, USA)
Worldcat: https://www.worldcat.org/
Copac: https://copac.jisc.ac.uk/
Books PPT

Scientific publishers and periodicals:
printed/electronic/open access

Browser and matching searching, archive and the newest editions Characterization of periodicals/reviews/journals, ISSN, DOI, Crossmark, Article metrics - Online attention
Publishers: Springer, LWW, Wiley, video journal: JOVE
Nature: https://www.nature.com/
BMC https://www.biomedcentral.com/
PLOS https://www.plos.org/, DOAJ https://doaj.org/, etc.
New routes: Open Science, Open Access
The dangers of publishing on Open Access https://lib.semmelweis.hu/nav/open_access_general_information
Support for Open Access Communication at Semmelweis University https://lib.semmelweis.hu/nav/open_access_tamogatas
The Semmelweis repository https://repo.lib.semmelweis.hu/
The concept of plagiarism, its forms of appearance, Plagiarism Search: Turnitin, Copyright questions

NLM databases: history, Openi: https://openi.nlm.nih.gov/
value added services: registration, advances search.
MeSH, PMC, etc.
Dictionary: https://www.merriam-webster.com/

OVID databases, online books, electronic periodicals, Evidence Based Medicine databases: the role of the EBM in research, full text journals in Ovid databases MEDLINE, PsycINFO, subject heading systems, value-added services, access to the full text version, WHO https://www.who.int/

Bibliographic and citation databases, search engine: Web of Science platform, Google Scholar; citations, general searching in the databases, bibliographic and citation searching on keywords, using Boolean operators, value-added services
Scientometrics: quality of journals: Clarivate Analytics InCites JCR (Science Edition and Social Science Edition), IF: calculating Impact factor; SCImago: SJR

Reference Manager: EndNote, EndNote Online; the role of reference software in modern publishing, Literature searching: Importing and exporting records (from Web of Science, OVID Medline, PubMed) creating own records search facilities within our records and from PubMed; data handling: creating groups, filtering duplicates
Semmelweis Knowledgebase, Scientific Discovery of the Internet: find medical information you can trust, Building search strategies, Google Scholar, Medworm

Summary of the course, Test writing

Consultation, Retake the 1st/2nd test OR Renewal opportunity for each tests
Syllabus of Physical Education

Department of Physical Education

Subject: Physical Education III

Type of Subject: Compulsory
Code of Subject: FOKOTS1007_3A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

The syllabus (preferably a week and numbered):

2nd year, semester I:

1st Week: General information
Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra – curricular activities. Heart rate measurement exercises. Ruffier test and evaluation of the results.

2nd Week: Athletic
Different athletic exercises like throwing, shot put. Preferably outdoors with the aim of learn how to execute the exercise with a proper form and breathing technique.

3rd Week: Tennis
Introducing and learning advanced technical elements (serve, volley) and game.

4th Week: Agility ladder
To perform different exercises to improve speed, balance and concentration. Preferably outdoors, on grass ground.

5th Week: Relay race and competitive games
To improve explosiveness, skills and experience good team spirit.

6th Week: Football
Practicing the technical elements of football in pairs and game situation.

7th Week: Circuit training
Functional exercises with bodyweight and exercises with basic equipment to improve general coordination skills.

8th Week: Badminton
Introducing the technical and tactical elements of doubles game. Game applying all the previously known rules.

9th Week: Ruffier test
Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.

10th Week: Meta
Reminders of the basic need to know about META. Learn tactical elements of the game and using them. Aim to improve ball skill development, reaction time, explosiveness and collective gaming experience.

11th Week: Obstacle course
To complete a built up obstacle course using different creeping-climbing, hovering, pulling, skipping, throwing techniques for general skill development.
12th Week: Mobilisation
Dynamic stretching exercises with and without equipment to prevent the health of the joints by maintaining and developing the mobility of it.

13th Week: Skipping rope
Skill developing exercises with skipping rope individually and in pairs, in place and in motion at different levels.

14th Week: Kettlebell
Different kind of strengthening exercises with kettlebell.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men's football, handball, basketball, volleyball)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence cannot be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in 10 classes (15 times for trainings) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!

Subject: Physical Education IV.

Type of Subject: Compulsory
Code of Subject: FOKOTS1007_4A
Credit: 0
Name of the Lecturer: Várszegi Kornélia

The objectives of Physical Education:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

The syllabus (preferably a week and numbered):

2nd year, semester II:

1st week: General information
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.

2nd week: Basketball
Dribbling and shooting skill improving drills. Games: 1 on 1; 2 on 2; shooting contests, king of the court. Scrimmage.

3rd week: Wall-bar exercises
Enhance strength and balance by climbing, declining, hanging, skipping, pulling, pushing etc. exercises.

4th week: Circuit training
A chain of compete drills in a certain time period with and without equipment. The aim is to improve the general level of strength and stamina.
5th week: **Floorball**
Passing and receiving skill improving drills. Exposing shots on goal (wrist, slap, and snapshots). Scrimmage.

6th week: **Drills in pairs**
Strength, agility, coordination and battling skill improving exercises with a partner incorporated.

7th week: **Volleyball**
Introducing the defensive elements of the game (receiving serves, blocks). Exposing unknown rules. Games.

8th week: **Game-day**
Introducing and practicing different kind of cohesion enhancing games (Tick-Tac-Toe, etc.)

9th week: **Ruffier test**
Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.

10th week: **Circuit training**
Specialized chain of drills for strengthen the shoulder, back, chest, arm and leg muscles, considering the fitness level of the Students.

11th week: **Tennis**
Introducing variations of ground strokes and grip types (slice, topspin, lobs etc.) Exposing the rules of doubles. Games (all around the world, etc.)

12th week: **Badminton**
Exposing the rules and the basic tactical elements of the doubles game. Scrimmage.

13th week: **Core exercises**
Body-weight exercises targeting to strengthen the muscles of the trunk thus develop a strong fascia to protect it from the harmful effects of overdose sitting (studying)

14th week: **Medicine-ball exercises**
Strength and coordination (complex) skill developing exercises by throwing, rolling, passing, lob, shot-put, etc. with a partner incorporated.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men's football, handball, basketball, volleyball)

Requirements to participate in the sessions and the potential for absences:
Active participation in sport classes.

The method of proof for the workshops and the exam absence:
The absence cannot be proved, should make up for the lost lessons.

Requirements for signature at the end of semester (including the number of tasks to be solved learning outcomes and type):
Active participation in 10 classes (15 times for trainings) approved by the staff.

How to prove absence regarding the exam:
Absence must be retaken!
PRE-CLINICAL MODULE

New curriculum to be introduced
Please, follow the updated version on the home page
STUDY PROGRAMME

PRE-CLINICAL MODULE

5th semester

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
</table>
| compulsory | Restorative Dentistry, Pre-clinical II. | C4L1P3 | final# | Medical and Dental Physiology II
Restorative Dentistry Pre-clinical I
Odontotechnology and Prosthodontics, Pre-clinical II |
| compulsory | General and Oral Microbiology | C4L2P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | General and Oral Pathophysiology | C4L2P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Basic Immunology | C3L2P1 | examination | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Hungarian Dental Terminology III. | C2L0P4 | practice mark | Hungarian Medical Terminology II. |
| compulsory | Oral and Maxillofacial Surgery, Pre-clinical course | C2L0P2 | practice mark | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Pathology | C4L3P2 | final# | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Preventive Dentistry I. | C3L1P2 | practice mark | Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.
Medical and Dental Physiology II. |
| compulsory | Odontotechnology and Prosthodontics Preclinical Course III. | C3L0P3 | final# | Odontotechnology and Prosthodontics Preclinical Course II.
General Dental Preclinical Practice |
| compulsory | Medical Aspects of Disaster Preparedness and Response I. | C0L2 | hours/sem | signature |
| compulsory | Physical Education V. | C0L0P14 | signature | |
| **Total Credit** | | | | **30** |

Explanation
15 credits should be gained from the elective subjects during the 5-year
The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
PRE-CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
</table>
| compulsory | Endodontics, Pre-clinical | C4L1P3 | examination# | Restorative Dentistry Pre-clinical II.
| | | | | Preventive Dentistry |
| | | | | Odontotechnology and Prosthodontics Preclinical Course III. |
| compulsory | Oral and Maxillofacial Surgery I. | C4L1P3 | practice mark | Oral and Maxillofacial Surgery, Pre-clinical course, Pathology |
| compulsory | Restorative Dentistry and Endodontics I. | C3L0P3 | practice mark | Restorative Dentistry, Pre-clinical II
| | | | | Odontotechnology and Prosthodontics, Pre-clinical III Preventive Dentistry |
| compulsory | Oral Biology | C4L2P2 | final# | General and Oral Pathophysiology |
| | | | | General and Oral Microbiology, Anatomy (Maxillofacial Anatomy) IV. |
| compulsory | Genetics and Genomics | C2L2P1 | final# | Biochemistry, Molecular and Cellbiology III., Medical and Dental Physiology II. |
| compulsory | Oral Pathology | C3L2P2 | final# | Pathology, General and Oral Microbiology, General and Oral Pathophysiology |
| compulsory | Prosthodontics I. | C4L1P3 | practice mark | Odontotechnology and Prosthodontics Preclinical Course III., Restorative Dentistry, Pre-clinical II. |
| compulsory | Radiation protection | C2L1.5P1 | examination | Biophysics II. |
| compulsory | Hungarian Dental Terminology IV. | C2L0P4 | final | Hungarian Dental Terminology III. |
| compulsory | Oral Diagnostics | C3L1P2 | examination | Conservative Dentistry and Endodontics, Pre-clinical Course I., Odontotechnology and Prosthodontics Pre-clinical Course II. |
| compulsory | Medical Aspects of Disaster Preparedness and Response II. | C0L2 | hours/sem | Medical Aspects of Disaster Preparedness and Response I. |
| compulsory | Physical Education VI. | C0L0P14 | signature | Physical Education VI. |
| compulsory | Dento-Alveolar practice (summer, minimum 1 week) | C0L0P30 | signature | Oral and maxillofacial surgery I, Prerequisite of registering to the 7th semester |

Total Credit 33

The grade influences the qualification of the diploma

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)

IMPORTANT NOTE: Signing up for Physical Education (PE) V. in the 1st semester and for PE VI. in the 2nd semester is compulsory.
LIST OF TEXTBOOKS (The list may change!)

20. Medical Genetics and Genomics (e-book)
21. KUBY Immunology • W. H. Freeman and Company • New York • 2013
22. Immunology seminars (e-book)

Recommended textbooks:

23. Hermann Péter, Szemptéry András: Gnatológia (Semmelweis Kiadó, 2018)
GENERAL AND ORAL PATHOPHYSIOLOGY

Department of Oral Biology
Lecturer: Dr. Ákos Zsembery
Tutor: Dr. Kristóf Kádár

First Semester

Lectures (2 hours per week):

1. Pathophysiology of respiratory diseases
2. Acute and chronic heart failure
3. Causes and consequences of hypertension, effects of long-lasting antihypertensive therapy, atherosclerosis
4. Pathophysiology of circulatory shock
5. Acute and chronic kidney failures
6. Diseases of the esophagus and the stomach
7. Intestinal and pancreatic disorders
8. Acute and chronic disturbance of liver functions and bile secretion
9. Endocrine disorders
10. Diabetes mellitus
11. Symptoms and consequences of diabetes mellitus
12. Causes and symptoms of the most common neurological and psychiatric diseases
14. Disorders of energy balance

Practicals (2 hours per week):

1. ECG 1 - Basics of ECG analysis
2. ECG 2 - Signs of excitation and conduction abnormalities in ECG
3. ECG 3 - Signs of ischemic heart diseases in ECG
4. Cardiology - case discussion
5. Asthma - case discussion
6. Laboratory test of salt-water/acid-base homeostasis
7. Urine analysis
8. Investigation of the GI tract
9. Gastroenterology - case discussion
10. Diagnostic tests of liver- & bile function
11. Endocrine laboratory diagnostics I.
12. Endocrine laboratory diagnostics II.
13. Diabetes mellitus - case discussion
14. Diagnostic methods of neuropsychiatric disorders
15. Laboratory tests of autoimmune diseases

Note: The maximum number of absences in a semester is 3 (practices)
More than 3 absences invalidate the semester
Midterm test from the material of the lectures in the 11th week (1-9 lectures material)
Midterm is the qualification for the Competition (in the 14th week)
PATHOLOGY

1st Department of Pathology
Course director and tutor: Dr. Attila Zalatnai

First Semester

Lectures (3 hours per week)

Introduction. Historical backgrounds.
Acute inflammation. Vascular and cellular events.
Acute inflammation. Morphological patterns.
Chronic inflammation.
Extracellular matrix. Repair. Wound healing.
Transplantation. Immunodeficiency. Autoimmune diseases.
Neoplasia. Classification. Histological diagnosis. Invasion and metastasis.
Growth patterns.
Carcinogenesis.
Epidemiology of malignancies. Preblastomatosis. Screening.
Tumor therapy. Tumor immunology.
Benign and malignant tumors of epithelial and mesenchymal origin.
Developmental and genetic diseases.
Environmental and nutritional pathology
Hemodynamic diseases. Water and electrolyte disturbances.
Edema. Shock.
Embolism. Infarct.
Infectious and parasitic diseases. Viral and bacterial diseases.
Tuberculosis. Syphilis. Leprosy. Diseases caused by fungi, nematodes, cestodes.
Aneurysms. Tumors.
Heart diseases. Congenital, ischemic, hypertensive heart diseases.
Respiratory system. Pathology of larynx and trachea. Lung cancer.
Lesions affecting lung parenchyma.
Small and large intestine. Peritoneum.
Acute and chronic hepatitis.
Liver cirrhosis. Toxic injury. Tumors.
Urinary tract and male reproductive system
Gestational throphoblastic disease.

Practices (2 hours per week)

Lecture Laboratory

AUTOPSY
Schematic meditors.

HISTOLOGY

AUTOPSY

HISTOLOGY

AUTOPSY

HISTOLOGY

AUTOPSY

HISTOLOGY

AUTOPSY

HISTOLOGY

Consultation.

AUTOPSY

AUTOPSY
Lecture

Pathology of the breast.
Disorders of the mononuclear phagocyte system. Acute and chronic myeloproliferative syndromes.
Endocrine system.
Head and neck pathology.
Bones and joints, skeletal muscles.
Pediatric oncology.
Nervous system. Trauma. Circulatory and inflammatory diseases.
Demyelinating and metabolic diseases.
Tumors of the nervous system. Peripheral nervous system.
Pathology of the skin.
Clinicopathological conference

Laboratory

AUTOPSY
AUTOPSY
AUTOPSY
AUTOPSY
HISTOLOGY
AUTOPSY
AUTOPSY
HISTOLOGY
AUTOPSY
AUTOPSY
HISTOLOGY

EXAMINATION (FINAL)

The semifinal examination at the end of the first semester will be a written test. Three different times for the test writing can be chosen. Students are requested to announce the time they have chosen to the tutor of the 1st Institute of Pathology and Experimental Cancer Research until mid – December. Students who have failed the exam on one occasion can retake the exam on the next test-writing day, at least one week from the first trial.

Note: Lectures will be held in the lecture hall of the 1st Institute of Pathology and Experimental Cancer Research.

Autopsy and Histopathology practices will be held in the 1st Institute of Pathology and Experimental Cancer Research.
During the histopathology exercises 100 slides will be studied.
The list of slides will be available at the beginning of the semester.

The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester two midterm examinations should be passed.
ORAL PATHOLOGY

1st Department of Oral, Dental and Maxillofacial Surgery
Lecturer: Dr. Attila Zalatnai

Second Semester

Lectures (2 hours/week) **Practices** (2 hours/week)

- Developmental disturbances in number of teeth. Developmental disturbances in shape and size of teeth.
- Developmental disturbances in structure of the teeth.
- Growth disturbances of teeth. Premature eruption, delayed eruption.
- Disturbances of situation of the teeth. Impacted and embedded teeth. Lobodontia.
- Developmental disturbances of the jaws and the temporomandibular joint.
- Developmental anomalies of the face and soft oral tissue.
- Developmental disturbances of the salivary glands. Etiology of malformations.
- Discoloration of the teeth. Dental plaque. Dental calculus.
- Hypercementosis. Resorption of the teeth.
- Diseases of the pulp. Periapical lesions.
- Homoiotransplantation.
- Inflammation of the oral mucosa and tongue. Halitosis (Stink of the mouth.)
- Cysts of jaws.
- Cysts of the oral floor, neck and salivary glands.
- Focal infection. Diseases of the jaws.
- Physical, heat, chemical and electrical injuries of oral and para-oral structures.
- Diseases of microbial origin of oral and paraoral structures.
- Diseases of the blood and blood forming organs.
- Injury from inorganic chemicals and disturbances of metabolism of oral and paraoral structures.
- Avitaminosis. Mucocutaneous disorders.
- Diseases of accessory nasal sinus. Diseases of the temporomandibular joint.
- Diseases of the nerves and muscles, facial hemihyperplasia and hemihypoplasia.
- Premalignant lesions
- Benign oral epithelial tumors. Benign oral mesenchymal tumors.
- Odontogenic tumors. Benign tumors of the jaws.
- Malignant tumors of epithelial origin.
- Malignant tumors of mesenchymal origin.
- Malignant lymphomas.
- Malignant odontogenic and non-odontogenic tumors of the jaws.
- Staging and grading of oral tumors. Spread of oral and paraoral tumors.
- Regional and general metastases of oral and paraoral tumors.
- Etiology of paraoral tumors.
- Diseases of oral and paraoral lymphoid tissue. Joining of diseases.
- Diseases of salivary glands.
- Benign tumors of salivary glands.
- Malignant tumors of salivary glands.
- Oral and paraoral syndromes.
- General manifestations of oral diseases.
- Forensic oral pathology.

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester.
GENERAL AND ORAL MICROBIOLOGY

Department of Medical Microbiology

Program Director: Dr. Dóra Szabó
Tutor: Dr. Ágoston Ghidán

First Semester

<table>
<thead>
<tr>
<th>Lectures (2 hours per week)</th>
<th>Practices (2 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to microbiology. General bacteriology (morphology, physiology and cultivation of bacteria) Bacterial genetics.</td>
<td>Introduction to basic microbiology. Microscopic examination of bacteria (staining procedures).</td>
</tr>
<tr>
<td>Infections and diseases (pathogenesis of bacterial infection, virulence, importance of biofilm formation). Specific and non-specific host defences. Active and passive immunization.</td>
<td>Cultivation of aerobic and anaerobic bacteria (culture media, colony morphology of bacteria).</td>
</tr>
<tr>
<td>Sterilization and disinfection. Antibacterial chemotherapy (mode of actions, resistance, side effects).</td>
<td>Methods used for sterilization and disinfections (physical and chemical possibilities).</td>
</tr>
<tr>
<td>Gram-positive facultative and obligate anaerobic cocci. Gram-negative facultative anaerobic, microaerophilic and obligate anaerobic cocci and coccobacilli.</td>
<td>Antibiotic susceptibility of bacteria</td>
</tr>
<tr>
<td>Gram-negative facultative anaerobic rods. Gram-negative anaerobic rods.</td>
<td>Gram-positive and -negative cocci and coccobacilli</td>
</tr>
<tr>
<td>Spirochetes. Importance of bacterial infections involving the oral, perioral tissues and salivary glands.</td>
<td>Gram-negative rods (Enterobacteriaceae)</td>
</tr>
<tr>
<td>Medical importance of fungi (general mycology, chemotherapy of fungal infections). Importance of fungal infections involving the oral and perioral tissues.</td>
<td>Gram-negative anaerobic rods (Bacteroides, Prevotella, Porphyromonas, Fusobacterium, Leptotrichia). Gram-positive spore-forming aerobic and anaerobic rods (Bacillus, Clostridia)</td>
</tr>
<tr>
<td>Important respiratory pathogen viruses. Important enterally transmitted viruses.</td>
<td>Medically important protozoa. Medically important helminths.</td>
</tr>
<tr>
<td>Hepatitis viruses. Retroviruses (AIDS). Viruses and cancer.</td>
<td>General virology (cultivation of viruses, cell-virus interactions, serological tests and molecular techniques used in laboratory diagnosis of viral diseases)</td>
</tr>
</tbody>
</table>

More than 3 semester absences invalidate the semester.
BASIC IMMUNOLOGY

Department of Genetics, Cell and Immunobiology

Course director: **Prof. Dr. Edit Buzás**
Tutor: **Dr. Marianna Csilla Holub**

Subject code: FOKGEN037_1A

Prerequisite subject: Anatomy (Maxillofacial Anatomy) IV., Biochemistry, Molecular and Cellbiology III.; Medical and Dental Physiology II

Credits: 3

<table>
<thead>
<tr>
<th>Lectures (2 hr / week)</th>
<th>Practicals / Seminars (1 hr / week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The role, processes, organs and cells of the immune system</td>
<td>Basic terms, the immune system in the lab</td>
</tr>
<tr>
<td>2. Principles of natural immunity</td>
<td>Methods based on antigen-antibody interactions I. Immunoserology</td>
</tr>
<tr>
<td>3. The complement system; inflammation and acute phase reaction</td>
<td>Methods based on antigen-antibody interactions II.</td>
</tr>
<tr>
<td>4. Antigen, antigen presentation and MHCs</td>
<td>Methods based on antigen-antibody interactions III.: Flow cytometry</td>
</tr>
<tr>
<td>5. Antigen receptors and their formation</td>
<td>Complement assays</td>
</tr>
<tr>
<td>6. T lymphocytes and cell-mediated immune response</td>
<td>HLA typing</td>
</tr>
<tr>
<td>7. B lymphocytes and humoral immune response</td>
<td>Vaccination I.</td>
</tr>
<tr>
<td>8. Mucosal immunity</td>
<td>Vaccination II.</td>
</tr>
<tr>
<td>9. Immune response in infections</td>
<td>Biological therapies I.</td>
</tr>
<tr>
<td>10. Immunodeficiencies</td>
<td>Biological therapies II.</td>
</tr>
<tr>
<td>11. Hypersensitivity</td>
<td>Hypersensitivity I</td>
</tr>
<tr>
<td>12. Tolerance and autoimmunity</td>
<td>Hypersensitivity II-IV.</td>
</tr>
<tr>
<td>12. Antitumor immunity</td>
<td>Screening methods for autoantibodies</td>
</tr>
<tr>
<td>13. Immunology of transplantation</td>
<td>Case studies</td>
</tr>
<tr>
<td>14. Immunology of transplantation</td>
<td>Case studies II.</td>
</tr>
</tbody>
</table>

The sequence of lessons may change.

75% minimum attendance of both the lectures and practical lessons is necessary for the end-term signature. Retake for the midterm will be organized for those students, who miss the midterm because of an acute disease, but they have to show up the medical record.

Midterm: written test once in the semester. The midterm is not a requirement for the validity of the semester. Retake (one make up day) will be organized for those students, who miss the midterm because of an acute disease, but they have to show up the medical record.

Exam: written test in the exam period. The exam grade will be calculated from the sum of midterm scores and exam scores. For passing you have to reach more than 50 % of both the exam scores and total scores.

Literature:

KUBY Immunology • W. H. Freeman and Company • New York • 2013

Immunology seminars (e-book): http://gsi.semmelweis.hu (The user name and password is on the course datasheet of the Neptun.)
RESTORATIVE DENTISTRY, PRE-CLINICAL II

Department of Conservative Dentistry
Head of Department: János Vág DMD, PhD

First semester

Lectures (1 hour per week):

1. The concept, localization, and progression of caries in the anatomical crown
2. Fundamental concepts and clinical application of the adhesive technique
3. Composites - material science (composition, classification, properties)
4. Glass ionomer cements and other polymeric materials (composition, indication, and application)
5. Application of liner, base, and temporary fillings. Polishing, removal, and toxicology of amalgam fillings
6. Cervical lesion and its complex treatment
7. Classification (inlay/onlay/overlay/endocrown/veneer/tabletop) and materials for indirect restorations. Indications, contraindications, materials, and clinical steps for metal inlays
8. Aesthetic (composite, ceramic, hybrid) indirect restorations. Dome concept
10. Materials and cementation of indirect aesthetic restorations (material science of adhesive cement, surface treatments of the tooth and the restoration, clinical steps of cementation)
11. Equipment of the dental office, rules of clinical practices, infection control
12. Patient admission and treatment plan (general rehabilitation and sequence of restorative and endodontic dental treatments)
13. Preparation of student’s case presentations, basic of dental photography
14. Caries diagnostic tools

Manual training (3 hours/week):
Theoretical, practical steps of preparing inlays, onlays, overlays; steps of preparing them in the dental laboratory; use of the CAD/CAM systems; use of oral scanners; digital workflow of single restoration.

List of textbooks:

Note: Attendance at the practices is compulsory, and absences at any one practice may not exceed 25% of the total number of practices (the maximum number of absences is 3). Three delay of less than 15 minutes will be considered as one absence. Delay of more than 15 minutes from the practice will also be considered as absence. There is no possibility to make up the practice. More than 3 absences invalidate the semester. During the semester two midterm tests must be passed. The work done in the practicals is continuously monitored and evaluated by the practical supervisors. Final oral exam: questions from two topic groups and identification of an extracted human tooth, recognition & application of an instrument (e.g., matrix placement), analysis of a prepared cavity. If any part of the examination is unsatisfactory, the result of the examination, and therefore the mark, is also unsatisfactory.
ENDODONTICS, PRE-CLINICAL

Department of Conservative Dentistry
Head of Department: János Vág DMD, PhD

Second semester

Lectures (1 hour per week):

1. Pulpal and periapical pathology
2. Concept, purpose, indication, contraindication, and limitation of root canal therapy. Emergency procedures in endodontics
4. Preventive endodontics: the importance of pulp protection. Endodontic diagnostics
7. Evaluation of endodontic outcome. The revision of root canal treatment
8. Root canal obturation techniques (cold and warm gutta-percha techniques)
9. Relationship between endodontic and periodontal lesion, vertical root fracture
10. Aesthetic and functional restoration of root canal treated teeth (post and core buildup, single crown, endocrown, indirect restorations)
11. Endodontic treatment of accidentally damaged teeth
12. Surgical interventions in restorative dentistry and endodontics (crown lengthening, drainage, apicectomy, hemisection, bicuspidation, amputation)
13. Restorative and endodontic treatment for patients requiring special care. Odontogenic focal infection

Clinical practice (3 hours per week).
Anatomy of roots, root canals and periapical space; theoretical basics of endodontics; symptoms, diagnosis and therapy of pulpal diseases and their consequences; access openings of the pulp chamber, root canal preparation and obturation on plastic endodontic practice blocks and extracted human teeth

Note: Attendance at the practices is compulsory, and absences at any one practice may not exceed 25% of the total number of practices (the maximum number of absences is 3). Three delay of less than 15 minutes will be considered as one absence. The delay of more than 15 minutes from the practices will be considered as absence. There is no possibility to make up the practice. The work done in the practicals is continuously monitored and evaluated by the practical supervisors. Throughout the semester the students must complete weekly small tests. During the semester two midterm exam must be passed. Semifinal oral exam: questions from two topic groups and identification of an extracted human tooth and endodontic instruments.
RESTORATIVE DENTISTRY AND ENDODONTICS I.

Department of Conservative Dentistry
Head of Department: Dr. János Vág DMD, PhD

Second semester

The subject is taught with three practical hours per week, there is no lecture.

Objectives of the exercises: thorough patient examination, taking of medical and dental history, stomato-oncological screening, establishing the diagnosis, preparing a treatment plan, removing calculus, routine application of isolation procedures, preparation, and restoration of simple cavities. Caries lesion treated with fillings. Learning the basic skills for dental assisting.

Note: A minimum of 75% attendance is required at the practices, absences at any way may not exceed 25% of the practices practices (the maximum number of absences is 3). Practical grade is based on the evaluation of work and knowledge presented at clinical practice.
PREVENTIVE DENTISTRY

Department of Conservative Dentistry
Head of Department: Dr. János Vág DMD, PhD
Tutor: Dr. Károly Bartha DMD, PhD

First semester, Lectures 2 hours/week, Practices/Seminars 2 hours/week

Detailed course/lecture description[i]: *(to facilitate credit recognition in other institutions)*

Lectures:

<table>
<thead>
<tr>
<th>Week</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Preventive dentistry- introduction</td>
<td>Bartha K.</td>
</tr>
<tr>
<td></td>
<td>Dental caries, Etiology of caries. Dental plaque</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caries incipient and remineralisation</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>The Role of diet in the caries prevention</td>
<td>Molnár E.</td>
</tr>
<tr>
<td></td>
<td>Cervical sensitivity, dentinal hypersensitivity and erosion</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Fluorides in the caries prevention</td>
<td>Bartha K.</td>
</tr>
<tr>
<td></td>
<td>Toxicology of fluorides</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Oral hygiene - Toothpaste</td>
<td>Molnár E.</td>
</tr>
<tr>
<td></td>
<td>Oral hygiene - Toothbrush</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Prevention in pregnancy and from the intrauterine life to the age of three</td>
<td>Németh F.</td>
</tr>
<tr>
<td></td>
<td>Dental treatment and prevention in case of elderly patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategy for prevention of periodontal diseases</td>
<td>Nagy P.</td>
</tr>
<tr>
<td>8.</td>
<td>Integrated preventive dentistry – prosthodontics</td>
<td>Szántai B.</td>
</tr>
<tr>
<td></td>
<td>Integrated preventive dentistry – gnathology</td>
<td>Jász M.</td>
</tr>
<tr>
<td>9.</td>
<td>Integrated preventive dentistry – conservative dentistry</td>
<td>Lohinai Zs.</td>
</tr>
<tr>
<td></td>
<td>Possibilities in prevention of orthodontic anomalies</td>
<td>Németh F.</td>
</tr>
<tr>
<td>11.</td>
<td>Environmental and iatrogenic damaging factors in dentistry</td>
<td>Bartha K.</td>
</tr>
<tr>
<td></td>
<td>Infection control</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Fissure-sealing</td>
<td>Molnár E.</td>
</tr>
<tr>
<td></td>
<td>The role of dental hygienists in the dental practice</td>
<td>Németh R.</td>
</tr>
<tr>
<td>13.</td>
<td>Environmental protection.</td>
<td>Demeter T.</td>
</tr>
<tr>
<td></td>
<td>Profilaxis in the school</td>
<td></td>
</tr>
</tbody>
</table>

Practices/Seminars:

<table>
<thead>
<tr>
<th>Week</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Clinical workplace</td>
<td>Seminar</td>
</tr>
<tr>
<td>2.</td>
<td>Clinical workplace</td>
<td>practice</td>
</tr>
<tr>
<td>3.</td>
<td>Dental status, medical/dental history</td>
<td>Seminar</td>
</tr>
<tr>
<td>4.</td>
<td>Medical history, Dental status</td>
<td>practice</td>
</tr>
<tr>
<td>5.</td>
<td>Medical history, Dental status</td>
<td>practice</td>
</tr>
<tr>
<td>6.</td>
<td>Cariesdiagn.</td>
<td>practice</td>
</tr>
<tr>
<td>7.</td>
<td>Cariesdiagn.</td>
<td>practice</td>
</tr>
<tr>
<td>8.</td>
<td>Oral hygiene indices</td>
<td>Seminar</td>
</tr>
<tr>
<td>9.</td>
<td>Plaque staining</td>
<td>practice</td>
</tr>
<tr>
<td>10.</td>
<td>Oral hygiene</td>
<td>Seminar</td>
</tr>
<tr>
<td>11.</td>
<td>Periodontal Indexes, scaling</td>
<td>practice</td>
</tr>
<tr>
<td>12.</td>
<td>Periodontal Indexes, scaling</td>
<td>practice</td>
</tr>
<tr>
<td>13.</td>
<td>Caries Risk Test</td>
<td>practice</td>
</tr>
<tr>
<td>14.</td>
<td>Polishing</td>
<td>practice</td>
</tr>
</tbody>
</table>
PROSTHODONTICS I.

Second Semester

1. The reasons and the consequences of tooth loss
2. Complain, medical history, extra-oral and intra-oral examination, treatment plans and prognosis at edentulous patient
3. Infection control in dentistry. The upper and the lower denture bearing area
4. First impression, casting, outline of the special tray
5. Second (working) impression, mucostatic and mucodisplacive techniques. Beading and boxing, casting of working impression
6. Basic gnathology (OVD, RVD, freeway space, RCP, ICP, Posselt diagram)
7. Basic gnathology (canine guidance, unilateral and bilateral balanced occlusion)
8. Jaw registration (type of articulators, face bow registration)
9. Mounting in articulator, setting up the teeth
10. Try-in procedure, flasking and packing (processing) at complete denture
11. Fitting and advice to the patient. Short time and longtime recall procedures
12. Complex functional approach. Implant techniques
14. Relining, rebasing, repairing of complete denture

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester two midterm examinations should be passed. Practical course grade.
INTRODUCTION TO ODONTOTECHNOLOGY AND PROSTHODONTICS PRE-CLINICAL COURSE III.

Department of Prosthodontics
Head of Department: Prof. Dr. Péter Hermann
Lecturer: Dr. Ida Barbara Kispélyi

Since the creation of an independent training, the Stomatological curriculum has put great emphasis on a preclinical foundation course, the Prosthodontics Propaedeutic course, the syllabus of which has also included mastery of dental techniques, indispensable for a dentist. Until the visit of the EU Committee in the late 90s, the course was structured in such a manner that in the first and second semester of the second academic year students had 3 hours of practices and one hour of lecture per week; during the first semester treatment of complete edentulousness was simulated through fabrication of complete dentures, while in the second semester students prepared 3-unit bridges and single crowns on partial edentulous moulds. During both semesters, medical and dental laboratory steps followed each other just like in real life, and students performed alternatively medical work phases and dental laboratory tasks, for one week each. After the proposal of the EU Committee on the amendment of several courses (including the Prosthodontics Preclinical course), dental laboratory and medical work phases had to be separated sharply, while an independent Odontotechnology course had to be included in the curriculum. According to the request, this Odontotechnology course was built into the theoretical module in order to provide the earliest possible recognition and consolidation of the chosen profession.

Taken more than ten years of experience into account, while maintaining the values that undoubtedly resulted from these changes, we wish to modify those controversial points that in our opinion can be still improved. A sharp separation of the two disciplines (dental techniques and dentistry) rather confuses students, thus they fail to get a grip of the process, and it is the essence that is lost, since these processes are based each on the other. The essence of the new syllabus is the integration of the two courses that are currently taught separately, and thus new and crucial areas (not taught so far) can be emphasized, with concomitant reduction of teaching hours and credit points.

The curriculum of the course concludes with a comprehensive examination at the end of the first semester of the third academic year.

Timing of the Odontotechnology and Prosthodontics Preclinical course:
3rd, 4th and 5th Semester

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module I:
General Dental Material Science

Preliminary studies requested for the course of Odontotechnology and Prosthodontics preclinical course module II:
Odontotechnology and Prosthodontics preclinical course module I

Preliminary studies requested for the course of Odontotechnology and Prosthodontics Preclinical course module III:
Odontotechnology and Prosthodontics Preclinical course module II
ODONTOTECHNOLOGY AND PROSTHODONTICS PRECLINICAL COURSE – practices

First Semester

Odontotechnology and Prosthodontics Preclinical III.

Topics of the practices:

1. Delivering of the instruments
2. Tooth preparation for solo crown, tooth 13
4. Tooth preparation for porcelain veneer, tooth 21
5. Midterm. Tooth preparation for porcelain veneer, tooth 21, Grading
6. Wax pattern fabrication for acrylic crown, tooth 21.
7. Fabrication of light cured acrylic solo crown, tooth 13
8. Finishing and polishing of the acrylic crown, made for tooth 21
9. Grading
10. Midterm. Finishing and polishing of the light cured crown made for the 13 tooth. steps of constructing metal based removable partial dentures. Wax pattern fabrication a mandibular metal base plate.
11. Wax pattern fabrication for a maxillary metal base plate. Grading
12. Steps of making an implant retained dental prosthesis. Impression taking for an implant retained prosthesis (open special tray method)
14. Practical final examination
First Semester

Practices (2 hours per week)
1. Oral surgery as a part of general surgery, Anamnesis, patient examination
2. The surgical anatomy of the teeth
3. The splanchnocranium. The Maxillary Nerve
4. The mandible, the Mandibular Nerve
5. The injection (instrumentation, rules, techniques)
6. Midterm (written)
7. Surgical hygiene. The principle of antiseptic and aseptic
8. The operation theater
9. Oral surgical instrumentation
10. The removal of teeth/ practice on phantom
11. The removal of teeth/ practice on phantom
12. The removal of teeth/ practice on phantom
13. The removal of teeth/ practice on phantom
14. Semester closing midterm (oral + practical)
15. Practicing, repetition
ORAL AND MAXILLOFACIAL SURGERY I.

Second Semester

<table>
<thead>
<tr>
<th>Lectures (1 hour per week)</th>
<th>Practices (3 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The history of oral surgery</td>
<td>Surgical anatomy of the jaws and teeth</td>
</tr>
<tr>
<td>Clinical examination and diagnostics</td>
<td>Local anesthesia</td>
</tr>
<tr>
<td>Pain control. The physiologic and psychologic</td>
<td>Oral and maxillofacial surgical aspects of pain instruments</td>
</tr>
<tr>
<td>The mode of action of local anaesthetics.</td>
<td>Clinical diagnosis, medical</td>
</tr>
<tr>
<td></td>
<td>The pharmacological properties of local examination of the patients anaesthetic drugs</td>
</tr>
<tr>
<td>The technique of local anaesthesia Part I. (anaesthesia of teeth)</td>
<td>Midterm demonstration</td>
</tr>
<tr>
<td>The technique of local anaesthesia Part II. of the tongue, the lip, the bucca</td>
<td>Practicing simple tooth extraction</td>
</tr>
<tr>
<td></td>
<td>(Matas, block of n. alv. sup. ant., anaesthesia)</td>
</tr>
<tr>
<td>The technique of local anaesthesia Part III.</td>
<td>Practicing simple tooth extraction</td>
</tr>
<tr>
<td></td>
<td>(Inflammed tissues, trismus)</td>
</tr>
<tr>
<td>Summerising clinical implications /video/ Complications of local anaesthesia.</td>
<td>Practicing tooth extraction</td>
</tr>
<tr>
<td></td>
<td>Conscious sedation in dentistry</td>
</tr>
<tr>
<td>Indication and contraindication of tooth removal Operation technique of dentoalveolar surgery Part I. (surg. tools, flaps, suturing)</td>
<td>Minor oral surgery</td>
</tr>
<tr>
<td>Operation technique of dentoalveolar surgery Part II. (complications of tooth removal, surgical root removal) (video)</td>
<td>Minor oral surgery</td>
</tr>
<tr>
<td>Problems with the eruption of teeth. The removal of the impacted teeth</td>
<td>Midterm Demonstration</td>
</tr>
<tr>
<td>Guest speaker</td>
<td>Minor oral surgery</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>Minor oral surgery</td>
</tr>
<tr>
<td>Consultation</td>
<td>Midterm Demonstration</td>
</tr>
</tbody>
</table>

Note: Lectures will be held in the lecture hall of the Department of Maxillofacial Surgery and Dentistry. The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester three midterm examinations should be passed. Practical course grade (five-scale).
ORAL BIOLOGY

Lecturer: Dr. Ákos Zsembery
Tutor: Dr. Kristóf Kádár

Second Semester

Lectures (2 hours per week):

1. Matrix of mineralised tissues. Anorganic components, mineralisation and bioapatites
2. Osteogenesis, bone resorption
3. Development of the tooth germ
4. Dentinogenesis, cementogenesis. Dentin permeability
5. Amelogenesis
6. Hemopoietic stem cell transplantation
7. Bleeding disorders. Pathophysiology and its relevance in everyday dentistry
8. Morphology and function of salivary glands. Saliva, disorders of salivary secretion
9. Tooth eruption and tooth movement
10. Tumor formation in the oral cavity
11. Oral sensation, olfaction, deglutition
12. Morphology and functional properties of the pulp, circulation of the oral cavity. Pulpitis and dental pain
13. Inflammation - general features, pathomechanism, types
14. Wound healing. Ionizing radiation, oral consequences of therapeutic irradiation

Practices (2 hours per week):

1. Calcium homeostasis
2. Chewing
3. Hard tissue - fluoride
4. Hematology I.
5. Hematology II.
6. Hematology III.
7. Hemostasis
8. Measurement of salivary flow and salivary diagnostics
9. Dental plaque
10. Oral defence
11. Case presentation – periodontal diseases and systemic conditions
12. Oral clearance
13. Gingival sulcus and the crevicular fluid
14. Molecular diagnostics in dentistry, gene polymorphisms

The maximum number of absences from practice in a semester is 3!
More than 3 absences invalidate the semester.

Midterm from the material of the lectures in the 12th week (1-10 lectures material)
Midterm is the qualification for the Competition (in the 14th week)
RADIATION PROTECTION

Department of Oral Diagnostics
Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Lecturer: Dr. Bence Tamás Szabó
E-mail: oralis.diagnosztika@dent.semmelweis-univ.hu

Third year second semester

Lectures (1,5 hours per week)

1. Atomic structure, radioactivity, ionizing radiations.
2. Interaction of ionizing radiations with materials, dosimetry, physical dose concepts
3. Principles of radiation protection, dose limits
4. Public exposure
5. Biological effects of the radiation
6. Radiation protection of the patients
7. Radiation protection in dentistry
8. X-ray equipments
9. Radiation protection regulation aspects
10. Radiation protection legalisation in Hungary
11. General rules of ionizing radiation applications
12. Nuclear and radiological accidents. Prevention, emergency plan
13. Medical exposure
14. Consultation, written pre-test

Practices (1 hour per week)

1. Possible tools and methods of basic nuclear measurements.
3. Measurement X-rays absorption
4. Measurements of half-value layer
5. Describing the use of ionization chamber
6. Describing the use of G-M Tube
7. Describing the use of scintillation detector
8. Describing the use of thermoluminescent dosimeter
9. Personal dosimetry
10. Describing isotope diagnostics – contamination measurements
12. Technical parameters that affect the quality of x-rays
13. The application of X-ray films in dental radiology
14. Tools of reducing the patients’ radiation exposure and their application

Notes: Students must attend on the practices. The signature will be refused, if the student was absent in more than 25% of the duration of the practices. Closing semi-final
Lectures (1 hour per week)
1. Introduction to Oral Diagnostics. Importance and rules of dental diagnostics and dental record.
2. Patient history. Risk patients
3. Extraoral and intraoral examination Stomato-oncological screening.
4. Detection and diagnosis of the carious lesions. Non-carious lesions of the tooth.
5. Principles of endodontic diagnostics.
6. Examination methods in the periodontology
7. Diagnosis and treatment of temporomandibular disorders
8. Evaluation of the edentulous patient. Fundamental principles of prosthetic therapy
9. Orthodontic diagnostics
10. Physiology and diagnostics of salivary glands. Diagnostic procedures of halithosis
11. Laboratory tests for the dental office (microbiological, haematological, clinical chemistry, immunological, histopathological, genetic)
13. Pain assessment in the oral diagnostics
14. Influence of oral inflammatory diseases on the systemic conditions

Practices (2 hours per week)
1. Guiding of the patient, infection control
2. Communication with the patient
3. Position of patient and doctor, correct use of examination equipments, correct use of protective equipments
4. Patient examination and case description
5. Anamnesis, analysis of systemic diseases and medications influencing dental treatment
6. Periodontal Indices, Overview of Angle Classes
7. Fábián-Fejérdy’s classification
8. Recording the dental status
9. Additional tests: sensitivity tests, Diagnodent, Diagnocam
10. Additional examinations: ordering an X-ray, referring the patient to another department or place of care
11. Care for high-risk patients
12. Examination of the oral mucosa, primary and secondary lesions
13. Care of infectious patients
14. Focal infection examination

Notes: Students must attend on the practices.
The signature will be refused, if the student was absent in more than 25% of the duration of the practices.

Textbook:

Recommended books:
ORAL MEDICINE I.

Department of Oral Diagnostics
Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Lecturer: Prof. Dr. Csaba Dobó Nagy
E-mail: oralis.diagnosztika@dent.semmelweis-univ.hu

Third year 2nd semester
Practices (1 hour per week)
1. Stomato-oncological screening
2. Developmental disorders
3. Physical, chemical and iatrogenic harms
4. Bacterial diseases
5. Viral diseases
6. Fungal pathogens
7. Diseases of the lips
8. Diseases of the tongue
9. Diseases of the immune system
10. Vesicobullosus and granulomatous oral diseases
11. Oral manifestations of diseases of organs and organ systems
12. Precancerous lesions and conditions
13. Benign tumors
14. Malignant tumors

Notes: Students must attend on the practices.
The signature will be refused, if the student was absent in more than 25% of the duration of the practices.
During the practices, the students’ performance is assessed on a five-point scale at each practice occasion. The arithmetic mean of the obtained grades determines the practical mark.

Textbook:

Recommended books:
GENETICS AND GENOMICS

Department of Genetics, Cell- and Immunobiology
Course director: Prof. Dr. Edit Buzás
Course coordinator: Dr. F. Ágnes Semsei
Subject code: FOKGEN181_1A
Prerequisite subject: Medical Biochemistry, Molecular and Cell Biology III., Medical and Dental Physiology II
Credit: 2

Lectures (2 hours per week):
1. Introduction to human genetics, the human genome
2. Monogenic inheritance (Autosomal inheritance)
3. Role of sex in inheritance
4. Genetic variations
5. Chromosomal aberrations I.
6. Chromosomal aberrations II.
7. Epigenetics
8. Introduction to genomics. Methods in genomics
9. Genomic approach of complex inheritance
10. Pharmaco- and nutrigenomics
11. Midterm
12. Gene and genome manipulation
13. Genetics of biological processes
14. Population genetics and genomics; Genome and environment

Practices (1 hour per week):
1. Cytogenetics I.
2. Cytogenetics II.
3. Molecular genetic methods and applications in human genetics I.
4. Molecular genetic methods and applications in human genetics II.
5. Pedigree analysis: autosomal inheritance I. (AD)
6. Autosomal inheritance II. (AR)
7. Sex-linked inheritance I. (XR)
8. Sex-linked inheritance II. (XD, mitochondrial)
9. Complex inheritance
10. Consultation
11. Case studies
12. Genetic aspects of cell cycle and cell division disorders
13. Meiosis, gametogenesis; pre-implantation genetic testing
14. From genes to bedside

Important notes:
Students must visit at least 75% of the lessons. More than three absences from the practice or more than three absences from the lecture invalidate the semester, no signature is given. There are no extra practices.
There is one midterm during the semester. Spare midterm is organized for those students, who miss the midterm because an acute illness, but they have to show up the medical record to the tutor in one week. There is no opportunity to improve the midterm scores.
After the course there is a written exam (single choice and essay questions, family tree, karyogram, evaluation of molecular genetic studies etc.). The exam grade is calculated from the sum of midterm scores (maximum 40) and exam scores (maximum 60). Students have to reach more than 50 % of both the exam scores and total scores to pass the exam. In the third exam midterm scores are not calculated.

Core text: Medical Genetics and genomics (e-book)
Lecture and practice presentations and additional texts are available on the homepage: http://gsi.semmelweis.hu (The user name and password is on course datasheet of the Neptun)
MEDICAL ASPECTS OF DISASTER PREPAREDNESS AND RESPONSE I-II.

Directorate for Safety Technology
Department for Disaster Management and Education
Supervisor: Simon Mátyás
Lecturer: Csaba Csendes
Type of Course: indispensable
Credit value: 0

First and Second Semester

Purpose of the lecture:
The goal of the subject is to provide basic knowledge of the definition, mission, reasons and circumstances of establishment of civil protection/disaster management, on its place and role in the country’s defense/protection system; to provide information on the types of disasters and their features. Based on experience gained in real incidents, to provide information on the peculiarities of disaster management and the tasks of medical authorities in this context.

The syllabus:
5th semester, 2 teaching hours: (M1) Concept, mission, tasks and establishment of civil protection and disaster management in Hungary. Types and features of disasters, the disaster vulnerability of Hungary, the organizational system of the protection against disasters, command and control of protection, the role of medical authorities.

6th semester, 2 teaching hours: (M2) The early warning system and signals of disaster management. The elimination of the consequences of disasters, the staff work applied during protection. Features and activities of Hungarian disaster management organizations and authorities, international possibilities of disaster management and the lessons learnt, demonstrated by examples.

Requirements and the potential for absences to participate in the sessions:
The subject consists of 4 modules. Module 1 does not have any prerequisites; module 2 anticipates the fulfillment of module 1. Students must register to attend the course announced as required. Those who are unable to fulfill module 1 or 2 (do not attend), may participate in a supplementary lesson in the 1st semester of the following year.

The method of certificate for the workshops and the exam absences:
Certificate of absence: medical, official – court of justice, local government, Students’ Union, etc.

The mid-term controls’ (reports, midterm) number, topic and date, replacements and repairs:
Method of making up for the absence justified by certificate: participation in a supplementary lesson.

Requirements for the signature:
Students must participate in the lesson announced to acquire signature, or in case of absence justified by certificate, in a supplementary lesson. Only registered students may participate in a supplementary lesson announced.

The method of grading: signature

Type of examination: none

Requirements: none, students must fulfill the obligation to attend the lessons.

Application for exam: none

Changing procedure for exam application: none

Absence from the examination: none

Notes, textbooks, study aids and literature list:
László Major PhD, Ronald Barham PhD, Dr. György Orgován PhD: Medical Aspects of Disaster Preparedness & Response
ELECTIVE SUBJECTS

Modern research methods in dentistry

Leader of the course: **Prof. Gábor Varga**
1st semester – 2 credits
Wednesdays at 17.00-18.30 (2x45minutes)

Topics to be covered:
1. Stem cells and scaffolds
2. Gingival blood circulation and inflammation – Laser Doppler Flowmetry
3. Isolation, maintenance, differentiation and in vitro functional assays of oral stem cells and progenitors
4. CAD/CAM techniques and LASCA
5. Care for children having cleft lip and palate
6. Patch clamp electrophysiology technique
7. Investigation of epithelial transport
8. Investigation methods of implant stability
9. Psychosomtics - examination of saliva samples
10. Clinical periodontal research
11. Dental epidemiological studies, saliva as a diagnostic factor
12. Structural studies of non-decalcified hard tissues
13. Micro CT investigations
14. Real time 3D rendering of oral tissues

Requirements:
1. Participation in the course compulsory, absences do not exceed 25% of the total number of hours.
2. The tasks to be fulfilled during the semester:
3. create a professional interview (3-5 pages, word doc) with one of the lecturer on the course

Challenges in modern dental research

Leader of the course: **Prof. Gábor Varga**
2nd semester – 2 credits
Wednesdays at 17.00-18.30 (2x45minutes)

Topics to be covered:
1. Artificial organs and tissues; artificial salivary glands - biological regeneration of the human glands
2. Anesthesia in dentistry
3. Saliva as diagnostic factor
5. Gene therapy in dentistry
6. Laboratory animals for dental research - possible alternative methods; animal studies - pros and cons
7. Homeopathy in dentistry
8. Medical and dental use of stem cells; isolation and possible use of tooth-derived stem cells in craniofacial regeneration
9. **Gene polymorphism – SNP – dental genomics – what is the use?**
11. Smile design – aesthetics and dental/medical ethics
12. GERD and dental erosion
13. Implantology
14. Biodentin and alternatives in dentistry

Requirements:
1. Participation in the course compulsory, absences do not exceed 25% of the total number of hours.
2. **PowerPoint presentation, lecture and leading related discussion**
3. **critical written review of one Researcher Student Conference presentation**
LANGUAGE COURSE

Department of Languages for specific purposes

1st semester: Hungarian Dental Terminology IV.

Topics of the course

1. Week Revision: tooth, tooth brushing, tooth decay, fillings, DMF, questions during case history taking, questions on pain, complaint (…)
2. Week Revision: sentences required by the Faculty of Dentistry, which were studied so far (Part 15)
3. Week Revision: General Health Questionnaire (Directed) situational game for developing speech comprehension, new strategies
 Sentences required by the Faculty of Dentistry 6. (vocabulary of taking dental impression, …)
4. Week Situation games, dentist-patient dialogues
 Sentences required by the Faculty of Dentistry 7. (filling change, light curing resin …)
5. Week Dialogues based on X-ray findings (eg. filling wearing down, etc.)
 Sentences required by the Faculty of Dentistry 8. (tooth extraction, I am removing the suture …)
6. Week Sentences required by the Faculty of Dentistry 9-10. (tooth colour, loose dental prosthesis, oral lesions caused by ill-fitting dentures…)
 Revision: clinical course, steps of medical treatment
7. Week Summary, 1st written test – “sample final” based on Sentences required by the Faculty of Dentistry 1-10.
8. Week Sentences required by the Faculty of Dentistry, 11-12.: presentation of items needed for care (saliva extractor, mask, Lidocain with short / long needle, upper left molar forceps, saliva scarf, coffer-dam, clasp, etc.)
 Asking for dental instruments: Sentences with I would like a … (“Szeretnék egy…-t!”).
 New topic: dental calculus
9. week Sentences required by the Faculty of Dentistry, 13-14.
 Revision of previous topics (cleaning teeth, tooth decay, fillings, gingivitis)
 New topic: root canal treatment (what does it mean, what are its steps, what does the dentist use, etc.)
10. week Sentences of the Conservative Dentistry Final
 New topic: orthodontics.
11. week Sentences required by the Faculty of Dentistry: „please + imperative” sentences, with grammatical explanations (eg. Please keep..., please help, please mix…).
12. week Filling out a questionnaire based on a listening task + DMF (Repetition)
 Revision: topics of the final, Sentences accounted for by the Faculty of Dentistry, case history and treatment
13. week Summary, 2nd written test
14. week Oral test

Requirements

Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Students have to reach more than 50 % of the score from the 2 written tests and the oral exam.

Textbooks

Teaching material based on authentic dental documentation, compiled by the instructors of the Department of Languages for Specific Purposes

I. Gera: Doctor – Patient, Doctor – Assistant Communication, compiled by Prof. Dr. I. Gera
I. Gera: Angol-magyar fogorvosi szótár
M. Putz: Magyar fogorvosi szaknyelv I.
A. Weidinger: Magyar fogorvosi szaknyelv ED III. (Kurzusjegyzet)
A. Weidinger: Nyelvtan
2nd semester: Hungarian Dental Terminology V.

Topics of the course
1. week Revision: Final topics covered in previous semesters, sentences required by the Faculty of Dentistry
2. week Prosthodontics, taking dental impression
3. week Gingivitis
4. week Dental calculus, removal of calculus
5. week Oral hygiene, dental care
6. week Tooth decay
7. week Filling, filling replacement
8. week 1st test, Case reports based on clinical practice
9. week Root canal treatment
10. week Tooth extraction
11. week Teeth whitening, Orthodontics
12. week Dental implants
13. week X-ray
14. week Sample final exam – written and oral

Requirements for signature: Attendance of lessons is obligatory. Students are allowed to have maximum 7 absences a semester. In case of more absences, the teacher may deny giving the signature. Students who miss a class, can make up for it (max. two times a semester).

Final: consisting of a written exam with a listening test and oral interview, 51% is required in both parts of the exam to pass. The final grade is calculated from the average of the grades achieved in the written and the oral part of the final exam. Students have to pass both parts. The oral competencies are assessed by two examiners separately and the grade is based on the average of the scores awarded by the two examiners.

Textbooks
Teaching material based on authentic dental documentation, compiled by the instructors of the Department of Languages for Specific Purposes
I. Gera: Doctor – Patient, Doctor – Assistant Communication, compiled by Prof. Dr. I. Gera
I. Gera: Angol-magyar fogorvosi szótár
M. Putz: Magyar fogorvosi szaknyelv I.
A. Weidinger: Magyar fogorvosi szaknyelv ED III. (Kurzusjegyzet)
A. Weidinger: Nyelvtan
COMPULSORY SUMMER PRACTICE

MINIMUM 1-WEEK (30 hours) – MAXIMUM 4-WEEK PROGRAM IN DENTO-ALVEOLAR SURGERY

Practicing tooth extractions
Practicing local anesthesia
Assisting at minor oral surgical procedures
Practicing post-surgical patients’ management
Carrying out surgical tooth extraction under supervision
Carrying out minor dento-alveolar surgical procedures under supervision
Students should work at the assigned hospital or dental clinic 6 hours a day, five days a week.

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!
Physical Education V.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description*: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate Frisbee, advanced ultimate Frisbee, Zumba

1x90 mins./week sessions:
women’s football, ice hockey, beginner tennis, beginner tennis 2,

4x3 hrs. and 1x2 hrs. session packages:
Hiking 1, Hiking 2.

2x90 mins./week sport training (competitive sport, for qualified only):
cheer dance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
mat the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

The number of active participations for physical education classes is 10 (once a week), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!

*Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors
Physical Education VI.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description*: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations. 1107 Bp, Zágrábi utca 14.

1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate Frisbee, advanced ultimate Frisbee, Zumba

1x90 mins./week sessions:
women's football, ice hockey, beginner tennis, beginner tennis 2,

4x3 hrs. and 1x2 hrs. session packages:
Hiking 1, Hiking 2.

2x90 mins./week sport training (competitive sport, for qualified only):
cheer dance, cheerleader, men's football, handball, basketball, volleyball

Fee-based:
mat the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

The number of active participations for physical education classes is 10 (once a week), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!

*Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors
CLINICAL MODULE

New curriculum to be introduced
Please, follow the updated version on the home page
STUDY PROGRAMME

CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology I.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics II.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics I., Prosthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine I</td>
<td>C3L2P1</td>
<td>practice mark</td>
<td>General and oral pathophysiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery II.</td>
<td>C4L1P3</td>
<td>examination</td>
<td>Oral and Maxillofacial Surgery I., Oral Pathology Radiation protection</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology I.</td>
<td>C2L1,5P0,5</td>
<td>examination</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology I.</td>
<td>C4L2P2</td>
<td>examination</td>
<td>Pathology, Biochemistry, Molecular and Cellbiology III. Medical and Dental Physiology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics II.</td>
<td>C6L1P6</td>
<td>examination</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I., Radiation protection</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Neurorology</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Psychiatry</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dental Ethics</td>
<td>C2L2P0</td>
<td>examination</td>
<td>Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gnathology</td>
<td>C3L1P2</td>
<td>final#</td>
<td>Prosthodontics I., Conservative Dentistry and Endodontics I., Oral Diagnostics</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Public Health</td>
<td>C3L1,5P2</td>
<td>final#</td>
<td>General and Oral Microbiology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Emergency Dentistry I.</td>
<td>C0L1P1.5</td>
<td>signature</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education VII.</td>
<td>C0L0P14</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Pediatrics</td>
<td>C1L1P0.5</td>
<td>semi-final</td>
<td>Internal Medicine I., Pathology</td>
</tr>
</tbody>
</table>

Total Credit 38

The grade influences the qualification of the diploma
C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>General and Dental Radiology II.</td>
<td>C1L0P1</td>
<td>final#</td>
<td>General and Dental Radiology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics II., Prosthodontics II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics Pre-Clinical</td>
<td>C1L0P1</td>
<td>practice mark</td>
<td>Oral Biology, Pathology, Oral Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Internal Medicine II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Internal Medicine I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery III.</td>
<td>C4L1P3</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery II., Pharmacology, Toxicology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology II.</td>
<td>C4L1P3</td>
<td>examination</td>
<td>Periodontology I., Internal Medicine II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pharmacology, Toxicology II.</td>
<td>C4L2P2</td>
<td>final#</td>
<td>Pharmacology, Internal Medicine I</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics III.</td>
<td>C4L1P4</td>
<td>practice mark</td>
<td>Prosthodontics II., Conservative Dentistry and Endodontics II., General and Dental Radiology I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Surgery</td>
<td>C3L2P1</td>
<td>final#</td>
<td>Internal Medicine I., Pathology</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology I.</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Oral and Maxillofacial Surgery II., Periodontology I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Emergency Dentistry II.</td>
<td>C0L0P1.5</td>
<td>signature</td>
<td>General and Dental Radiology I., Emergency Dentistry I.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Ophthalmology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Otorhinolaryngology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pathology, Anatomy (Maxillofacial Anatomy) IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>General Dentistry practice (summer, 4 weeks)</td>
<td>C0L0P30</td>
<td>signature</td>
<td>Prosthodontics III, Restorative Dentistry and Endodontics III, Periodontology II, Prerequisite of registering to the 9th semester</td>
</tr>
<tr>
<td>compulsory</td>
<td>Physical Education VIII.</td>
<td>C0L0P14</td>
<td>signature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>elective</td>
<td>Basic Restorative Digital Dentistry</td>
<td>C1L1P0</td>
<td>examination</td>
<td></td>
</tr>
</tbody>
</table>

Explanation

- **15 credits** should be gained from the **elective subjects** during the 5-year studies – see the elective list after the 3rd year study program
- # The grade influences the qualification of the diploma
- C = Credit point
- L = Lecture (hours/week)
- P = Practice (hours/week)

IMPORTANT NOTE: Signing up for **Physical Education (PE) VI.** in the 1st semester and for **PE VIII.** in the 2nd semester is compulsory.
LIST OF TEXTBOOKS (The list may change!)

7. Rajna Péter: Ideg- és elmegyógyászati szakkifejezések

Recommended textbooks:

18 J. Okeson: Management of Temporomandibular Disorders and Occlusion, 7th ed. 2012, Mosby
24. Hermann Péter, Szentpétery András: Gnatológia (Semmelweis Kiadó, 2018)
PHARMACOLOGY, TOXICOLOGY I-II.

Department of Pharmacology and Pharmacotherapy

Obligatory
Credit: 4 (7th semester), 4 (8th semester)
Lecturer: László Köles, MD, PhD, Associate Professor

Pharmacology deals with the effects, mechanisms of actions, adverse effects, interactions and clinical administration of drugs used in the clinical practice as well as with their fate in the body. It also specifies the rules of prescription writing. It is based on and synthesizes the knowledge of basic, pre-clinical and clinical subjects such as physiology, biochemistry, oral pathology and internal medicine.

Thematics

First Semester

1. Introduction to pharmacology. Pharmacodynamics I.
2. Pharmacokinetics. Pharmacodynamics II.
4. Pharmacology of the adrenergic system. Sympathomimetics and sympatholytics
5. Skeletal muscle relaxants. Pharmacology of the smooth muscles
6. Drugs used in coagulation disorders, drugs against bleeding. Agents used in anemias.
7. Antiarrhythmic drugs. Positive inotropic agents. Treatment of acute and chronic heart failure
8. Diuretics and antidiuretics. Antihypertensive agents

10. Bronchodilators. Antiinflammatory agents used in bronchial asthma. Antitussive agents and expectorants. Histamin and antihistamines

2nd semester

1. Immunosuppressive drugs (cytotoxic agents, inhibitors of cytokine gene expression, antibodies and fusion proteins) Retinoids
2. Local anesthetics. NSAIDs. Drugs for gout. Antimigraine drugs
3. Opioids. Adjuvant analgesics. Introduction to CNS pharmacology
5. Sedatives, hypnotics and anxiolytics. Antidepressants and antianxiety drugs.
6. General anesthetics. Antiepileptics
8. Antiviral drugs. Antibacterial drugs inhibiting cell wall biosynthesis.
10. Antihelminthic and antiparasitic and antiparasitic drugs. Antibiotics inhibiting bacterial nucleic acid synthesis. Miscellaneous other antibiotics.
12. Cancer chemotherapy: Small molecule signal transduction inhibitors, large molecule signal transduction inhibitors, drugs activating the immune system.
Prescription writing continuously during the whole semester.
The attendance of a minimum of 75 % of lectures and practices is necessary for the end term signature of the semester (according to Examination and Studies Regulations). Replacement of classes is not offered by the department automatically. Nevertheless, if the number of absences exceeds the critical limit due to health problems (in this case medical certification is necessary), the student can ask for consultation once in a semester. If this request is accepted, this consultation can replace one not-attended regular class in a semester. The students exceptionally also can attend the classes of other seminar groups in the same week.

With the exception of ask for consultation in case of exceeding the critical number of absences (see above) no certification of the reason being absent from the practices and lectures is needed.
In case of not attending the exam we act according to the Examination and Studies Regulations.

Two midterm tests will be organized during both semesters. The results of the midterms may influence the final grade of the semifinal or final exam (± half grade). The participation is not obligatory, and so we do not offer the possibility to repeat or rewrite it. The students are informed about the detailed schedule and topics of the midterms at the beginning of the semester.

The attendance of a minimum of 75 % of lectures and practices is necessary for the end term signature.

The exam grade is determined by exam performance.
The oral exam is conducted by the lecturer of the practice. The final examination is conducted by leading instructors (Associate Professors and Professors), but the department chair may allow (by recommendation of the dean) the participation of senior lecturers. In both exams one question from each question list have to be drawn. A previous written prescription writing exam at the lecturer of the practice is the part of the final exam.
If the student fails at any parts of the exam, the evaluation (grade) of the whole exam is “failed”.
Only in case of exam there is a possibility to offer the semifinal mark: (please, refer to The Study and Examination Policy Faculty of Medicine, Dentistry and Pharmacy (shortly Study Policy) Section 17 point 12): If the results of the first two midterms (written tests) reach minimum 80%, the student receives the possibility to take the third midterm (oral exam) during the last week of the study period. The topics of the third midterm cover the whole material of the semester. In case the result of this midterm is four or five the Head of Department may offer this mark as the acknowledgment of the student’s performance during the semester.

Exam:

Oral exam, at the end of the 7th university semester (from the topics of Pharmacology I.).
Oral final exam (from the topics of the whole subject – Pharmacology I-II) at the end of the 8th university semester. A previous written prescription writing exam at the lecturer of the practice is the part of the final exam.
Examination (7th semester): testing of the student in a subject of the 1st Pharmacology semester.
Final exam (8th semester): testing of the student in a subject of both semesters – the entire subject of Pharmacology, including a previous written prescription writing exam.

Registration:
In the NEPTUN system.

Modifying:
In the NEPTUN system, according to the Examination and Studies Regulations.

A vizsgáról való távolmaradás igazolásának módja:

According to the Examination and Studies Regulations.

Textbook:

Further study material:
On the homepage of the department: http://semmelweis.hu/pharmacology/graduate-education/faculty-of-dentistry/
INTERNAL MEDICINE I.

Department of Internal Medicine and Oncology, 2/a Korányi S. u., Budapest, H-1083
Course director: prof. István Takács
Course coordinator: dr. Péter Studinger
Credits: 3
Lectures: 1 hour / week
Practices: 2 hours / week

Exam: No formal exam, signature and evaluation based on activity during practices: excellent (kiválóan megfelelt), pass (megfelelt) or fail (nem felelt meg).

Objective of the course: Primary objective of the course is to have the student to acquire the basic skills of obtaining a proper medical history, learn the bases of physical examination and other methods of patient evaluation, establishing diagnosis and treatment plan. Diseases of the endocrine, gastrointestinal and urogenital system will be reviewed, with special emphasis on their dental significance.

Lectures:

- Medical patient interview, comprehensive health history, techniques of physical examination. Alterations of the skin.
- Assessment of vital signs. Role of physical examination in emergency situations. Examination of a patient in shock, sudden dyspnea.
- Examination of the chest, common abnormal findings.
- Examination of the abdomen, common abnormal findings.
- Diagnosis treatment of thyroid diseases and their relevance to dentistry.
- Types, diagnosis and treatment of diabetes mellitus, relevance to dentistry.
- Diseases of the calcium metabolism, diseases with altered bone composition.
- Diseases of the upper gastrointestinal tract, malabsorption and their relevance to dentistry.
- Diseases of the lower gastrointestinal tract, gastrointestinal neoplasms.
- Diseases of the liver and biliary tract, their relation to dental diseases.
- Acute diseases of the urogenital system, electrolyte disturbances.
- Causes and management of chronic kidney disease.
- Diagnosis and management of the most common intoxications.
INTERNAL MEDICINE II.

1st Department of Internal Medicine

First Semester

Lectures (2 hours per week) **Practices** (1 hour per week)

1. Immunologic principles. Lymphocytic system.
2. Immunoglobulins. Types of immunologic reactions.
6. Hemolytic anemias.
8. Waldenström’s macroglobulinemia.
15. Drug allergy. Contact dermatitis.
16. Immunodeficiency diseases.
28. Cytomegalovirus. Epstein-Barr virus. Influenza. AIDS.

Note: The maximum number of absences in a semester is 3
More than 3 absences invalidate the semester examination
CONSERVATIVE DENTISTRY AND ENDODONTICS II.

Department of Conservative Dentistry
Head of Department: János Vág DMD, PhD

First semester

Detailed curriculum of lectures (1 hour per week):
1. Preventive endodontics: significance of pulp protection. Diagnostics in endodontics
2. Endodontic microbiology
3. Endodontics: Access preparation and length determination
4. Endodontics: cleaning and shaping of root canals
5. Shaping of the Root Canal System: hand and rotary instrumentation techniques
6. Obturation techniques (cold and warm gutta-percha techniques)
7. Evaluation of Endodontic Outcomes. Revision
8. Radiology in Conservative Dentistry
9. Endodontic management of traumatic dental injuries
10. Definitive restorations of root canal treated teeth, post and core build-up, single crowns
11. Surgical treatments related to Endodontics. Methods and indications.
13. Planning complex dental treatment
14. Interactive treatment planning

Clinical practice (3 hours per week).

Note: A minimum of 75% attendance is required at the practices, absences at any way may not exceed 25% of the practices (the maximum number of absences is 3). During the semester a midterm exam must be passed and one documented clinical case must be presented to validate the semester by earning the signature. The midterm takes place around the 10th week, and held online on the Moodle system. Practical grade: consists of midterm, „small tests“, and evaluation of work and knowledge presented at clinical practice.
CONSERVATIVE DENTISTRY AND ENDODONTICS III.

Second semester

Detailed curriculum of lectures (1 hour per week):
1. Evidence based dentistry
2. Microscope in endodontic treatments
3. Special cavity preparations
4. Post restorations
5. Preparing esthetic inlays and their cementation
6. Chairside CAD/CAM
7. Esthetics in dentistry and bleaching of teeth
8. Thesis defense
9. Indications and preparations for veneers
10. Treatment of non-carious cervical lesions: surgical and restorative approach
11. Difficulties during root canal treatment and their management
12. Endodontic and periodontal interrelationships
13. Surgical interventions in conservative dentistry (resection, crownlengthening)

Clinical practice (3 hours per week).

Note: A minimum of 75% attendance is required at the practices, absences at any way may not exceed 25% of the practices (the maximum number of absences is 3). During the semester a midterm exam must be passed and one documented clinical case must be presented to validate the semester by earning the signature. The midterm takes place around the 10th week, and held online on the Moodle system. Practical grade: consists of midterm, „small tests“, and evaluation of work and knowledge presented at clinical practice.

PROSTHODONTICS II.

First Semester

Topic of the lectures (weekly, numbered):
1. The reasons and the consequences of tooth loss
2. Infection control in prosthodontic
3. Preparation for fixed restorations
4. Fixed temporary restorations
5. Impression for fix restorations
6. Minimal invasive prosthodontic treatment
7. Removable partial dentures
8. Major connectors of upper and lower RPD
9. Indirect and direct retainers of RPD
10. Gnatological aspect of fix and removable partial dentures
11. Clinical and laboratorial steps of fixed partial dentures
12. Fix appliances, types of crown and bridges
13. Prosthetic aspects of implantology
14. Consultation
Prosthodontics III.

Second Semester

Topic of the lectures (weekly, numbered):

1. Diagnosis and treatment planning
2. Classification of the partially edentulous dental arches
3. Tooth sade determination
4. Treatment planning for the class 0. dental arche
5. Treatment planning for the class 1A. and 1B. dental arches
6. Treatment planning for the class 2A. dental arches
7. Treatment planning for the class 2B. dental arches
8. Treatment planning for the class 2A/l. and 3. dental arches
9. Maxillo – facial prosthetics
10. Implants in prosthodontics
11. Parodontologic aspects of Prosthodontic Treatments
12. Construction of Complex Dentures
13. Consultation

BASIC RESTORATIVE DIGITAL DENTISTRY

Second Semester

Department of Prosthodontics

Head of Department: *Prof. Dr. Péter Hermann*
Lecturer: *Dr. Judit Borbély*

Lectures

1. Introduction to digital dentistry
2. Direct and indirect CAD CAM workflow
3. Standard Tessellation Language
4. Intraoral scanning systems with lab connection
5. Cad/Cam materials
6. Digital communication, shade selection
7. Virtual articulators
8. Intraoral scanning in vitro
9. Intraoral scanning in vivo
10. Prostho planning for navigated implant surgery
11. 3 D printing
12. Dental system Lab CAD fixed
13. Dental system Lab CAD removable
14. Summarizing Digital Course/Test
SURGERY

I. Department of Surgery Department Section of Surgery

Second Semester

<table>
<thead>
<tr>
<th>Lectures (2 hours per week)</th>
<th>Practices (1 hour per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery of the neck. Thyroid and parathyroid</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Surgical treatment of the chest wall, breast, pleura, lung and mediastinum</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Oesophagal surgery (injuries, diverticula, malignant diseases)</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Gastric and duodenal surgery (benign diseases)</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Gastric and duodenal surgery (malignant diseases)</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Surgery of gall-bladder and extrahepatic biliary system</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Surgery of the small intestines and colorectum (benign and malignant diseases)</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Appendicitis</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Surgery of the liver, pancreas and spleen. (injuries, inflammatory diseases and tumors)</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Bowel obstructions</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Hernias</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Basic principles in vascular surgery</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Shock. Cardiopulmonary resuscitation. intensive therapy</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>General principles of traumatology. First aid.</td>
<td>Visiting operating theater</td>
</tr>
<tr>
<td>Traumatological management of catastrophes. Burned patients.</td>
<td>Visiting patients’ ward</td>
</tr>
<tr>
<td>Urology Consultation</td>
<td>Visiting patients’ ward</td>
</tr>
</tbody>
</table>

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester
Practical course grade
Final examination
ORAL AND MAXILLOFACIAL SURGERY II.

Department of Oro-Maxillofacial Surgery and Stomatology
Tutor: Dr. Kinga Körmöczi

First Semester

Lectures (1 hour per week)

Odontogenic inflammation I.
Pathology, pathophysiology and microbiology of pyogenic inflammation
Work safety protection training.
Odontogenic inflammation II.
Clinical features, diagnostics, therapy. The question of dental foci.
Odontogenic inflammation III.
Maxillofacial inflammation
Odontogenic cysts I.
Clinical classification of odontogenic cysts, the pathogenesis of their formation. Diagnosis, differential diagnosis
Odontogenic cysts II.
The surgery of odontogenic cysts. Cystectomy, cystostomy, decompression methods
Endodontic surgery
Indications and operative technique of apicectomy.
Retrograde root filling. The hemisection of teeth
Oral surgical aspects of the maxillary sinus I. (Pathology, diagnostics)
Oral surgical aspects of the maxillary sinus II. (Sinus apertus)
Written midterm
The surgery of impacted teeth I.
Disorders of the eruption of third molars. Clinical aspects of the prognosis of third molars. Diagnostics of mandibular third molars
The surgery of impacted teeth II.
Surgical technique of the removal of mandibular third molars. Post-operative follow-up treatment of mandibular third molars, complications of their removal.
Clinical features of maxillary third molars
The surgery of impacted teeth III.
Disorders of the eruption of upper canines. Prognosis, diagnosis and surgical treatment. Clinical features of other impacted and supernumerary teeth.
Special need dentistry

Practices (3 hours per week) Practising minor oral surgery

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester three midterm examinations should be passed.
ORAL AND MAXILLOFACIAL SURGERY III.

Department of Oro-Maxillofacial Surgery and Stomatology

Second Semester

Lectures (1 hour per week)
1. Developmental anomalies I.
3. Developmental anomalies II.
4. Surgical management of dysgnathia.
5. Dentoalveolar trauma.
6. Injuries of neighbouring soft tissues, principles of management.
8. Maxillofacial surgical aspects of peripheral nerve disorders.
 (Diagnosis and management)
10. Non-odontogenic cysts.
12. Preprosthetic surgery I.
14. Preprosthetic surgery II.
16. Written midterm
18. Salivary gland diseases. Diagnostics and therapy
20. Consultation

Practices (3 hours per week)
Practising minor oral surgery

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester three midterm examinations should be passed
Practical course grade
First semester

The aim of training
Preparing the dental students for the practical education of orthodontic health care, focusing primarily on the development of the manual skills.

Training form and time frame
Practical education: 1 hour/week
Form of examination: practical mark based on the practical performance
Comment: The practical education takes place in 7x2 hours. Training starts in the spring semesters only.

The minimal conditions of participation
Successful final examination of oral biology subject

The used method
According to the detailed syllabus, presentation of the current appliance types on a sample, and/or with multimedia methods. The activation of the appliances, wire- and arch bending practiced individually. Individual practice of bracket bonding with the help of typodonts and phantoms. The students are working under the supervision and management of the instructor.

Detailed syllabus
1. The categorization of appliances, the basic principles of their functions, basics of the orthodontic biomechanics
2. The function of the discernible appliances, their activation, elements, wire bending practice
3. The characteristics of metallic alloys used in orthodontics, their usability, wire bending practice
4. The activation of the appliances, their elements, accessories, bracket bonding systems
5. The operation principle of the typodont, its application, the use of the ligatures
6. Arch bending on a model, using typodont
7. Friction-proof systems, loop bending methods
GENERAL AND DENTAL RADIOLOGY I.

Department of Oral Diagnostics
Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Lecturer: Prof. Dr. Csaba Dobó Nagy
E-mail: oralis.diagnosztika@dent.semmelweis-univ.hu

First Semester

Lectures (1 hour per week)
1. Normal anatomy of the teeth
2. Normal anatomy of the jaws, development of the teeth
3. Interpretation of radiographs
4. Caries, pulp cavity; Extraction of the teeth
5. Periapical lesions; Root canal filling
6. Periodontal disease
7. Cysts of the jaws; Resorption of the teeth
8. Hypercementosis, tumors, anomalies
9. Extraoral techniques
10. Panoramic radiography
11. Cone-beam CT
12. Digital imaging systems
13. Imaging of the temporomandibular joint

Practices (2 hour per week)
1. Tooth anatomy
2. Anatomical landmarks. Part one
3. Anatomical landmarks. Part two
4. Caries
5. Development of the teeth, extraction
6. Periapical lesions
7. Periodontal disease
8. Cysts
9. Hypercementosis, tumors, resection
10. Anomalies, Midterm
11. Complex practice, selected X-ray images
12. Practicing bisecting technique
13. Practicing parallel technique
14. Analyzing the intraoral X-ray images of the exam

Note: Students must attend on the practices.
The signature will be refused, if the student was absent in more than 25% of the duration of the practices. Successful completion of the midterm („satisfactory” mark at least) and attendance on the practices according to the Study and Examination Policy.
GENERAL AND DENTAL RADIOLOGY II.

Department of Oral Diagnostics
Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Lecturer: Prof. Dr. Csaba Dobó Nagy
E-mail: oralis.diagnosztika@dent.semmelweis-univ.hu

Second Semester

Practices (1 hour per week)
1. Panoramic anatomy of hard and soft tissues I.
2. Panoramic anatomy of hard and soft tissues II.
3. Interpretation of panoramic imaging, errors on panoramic radiographs.
4. Anomalies and developmental disorders
5. Periapical lesions and periodontal diseases 1. Midterm
6. Odontogenic and non-odontogenic cysts
7. Dysplasia, hypercementosis, regressive alterations of teeth 2. Midterm
8. Tumors
9. TMJ pathology
10. Pathologic disorders of paranasal sinuses
11. Fractures in the dentomaxillofacial region 3. Midterm
12. Radiologic signs of certain treatments
13. Incidental findings on panoramic X-ray images
14. Analyzing the X-ray images of the final exam

Note: Students must attend on the practices.
The signature will be refused, if the student was absent in more than 25% of the duration of the practices.
Successful completion of the midterm („satisfactory” mark at least) and attendance on the practices
according to the Study and Examination Policy.
Final exam
PSYCHIATRY

Tutor: Dr. János Réthelyi
Department of Psychiatry and Psychotherapy

Lectures: 1/week

Textbook:

Schedule
- Subject of psychiatry, classification of disorders, diagnostic methods
- Case demonstration (psychiatric interview, signs and symptoms)
- Affective disorders
- Case demonstration (depression)
- Anxiety, anxiety disorders, somatoform disorders
- Case demonstration (anxiety disorder)
- Organic psychiatry
- Case demonstration (dementia)
- Substance related disorders
- Case demonstration (alcohol abuse)
- Schizophrenia and associated disorders
- Case demonstration (schizophrenia)
- Emergency in psychiatry, legal aspects
- Case demonstration, consultation

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. exam: written exam (multiple choice)
NEUROLOGY

Tutor: Dr. Sándor Ilniczky

First Semester

Classroom lectures:
- Cranial nerves and the brainstem
- The motor system
- The sensory system, pain syndromes
- Altered consciousness. Emergency in neurology
- Diagnosis and treatment of cerebrovascular disorders
- Epilepsy and sudden loss of consciousness
- Movement disorders
- Inflammatory disorders and tumors of the nervous system

Bedside practice, patient demonstration
- Recognition of neurological symptoms – examination of cranial nerves
- Examination of the motor system
- Evaluation of neurological symptoms
- Emergency in neurology
- Demonstration of cerebrovascular patients
- Diagnosis of epilepsies
- Special investigation of patients with movement disorders

Requirements:
- Attendence of the lectures
- Participation on the patient demonstration (maximum 1 absence from 7 practices)
- Semifinal exam: the written exam consists of 50 simple choice questions, including the topics of the lectures and the basic literature listed below. For those who are not able to be present at the written exam, or fail, we provide a date for oral exam.

Basic reading:

Suggested reading:
PERIODONTOLOGY I, II.

Department of Periodontology

First Semester

Lectures (1.5 hours per week)
Practices (0.5 hour per week)
Credit 2

Second Semester

<table>
<thead>
<tr>
<th>Lectures (1 hour per week)</th>
<th>Practices (3 hours per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Periodontology</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>The morphology of the periodontium, histology and embryology of the periodontium</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>The dental plaque. Its origin and role in the periodontal diseases. Periodontal microbiology</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Oral immunobiology</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Oral immunopathology</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Drugs and chemicals used in the periodontology</td>
<td>Midterm Demonstration</td>
</tr>
<tr>
<td>Pathomechanism of the periodontal disease</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Clinical forms of periodontal diseases</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Acute necrotizing ulcerative gingivitis</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Pregnant gingitis, Periodontal diseases with endocrine background.</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Non-plaque related periodontal conditions</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Oral mucous membrane diseases located on the gingiva</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Periodontal diseases of the child and adolescents</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Epidemiology of the periodontal diseases</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Periodontal diseases and the patients’ behavior</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Periodontitis as a behavioral disease</td>
<td>Midterm Demonstration</td>
</tr>
<tr>
<td>Oral prophylaxis and prevention of periodontal diseases</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Measures of individual and group education and motivation</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Periodontal charting, periodontal indices</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Medical and dental history of the periodontal patients</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>General appraisal of the etiology of periodontal disease</td>
<td>Clinical practice</td>
</tr>
<tr>
<td>Rational for therapy. Consultation</td>
<td>Clinical practice</td>
</tr>
</tbody>
</table>

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester two midterm demonstrations should be passed.
PUBLIC HEALTH

Tutor: *Dr. András Terebessy*

English Dental

Lectures (1.5 hours per week)	**Practicals** (2 hours per week)
Definition of Public Health; Past, present and future of Public Health | Introduction Basic demographical data
Demography: International and Hungarian situation | Public Health Program of EU
General epidemiology Analytical and intervention methods on field of chronic non-communicable diseases | Visit into the Central Kitchen of the University
Lifestyle: smoking, alcohol consumption, drug-abuse | Practical aspects of epidemiological investigations: study-planning and analysis
Epidemiology and prevention of non-communicable diseases I | Dentist’s task on prevention of non-communicable diseases I: smoking, alcohol consumption and drug-prevention
Epidemiology and prevention of non-communicable diseases II | Dentist’s task on prevention of non-communicable diseases II: HBP-prevention
Epidemiology and prevention of Cancer | Dentist’s task on prevention of non-communicable diseases III: cancer-prevention Screening-screening programs
Environmental health: water, soil, air | Dentist’s task on environmental health problems
Occupational health | Dentist’s task on occupation diseases prevention
Basics of healthy diet; Nutrition disorders | Assessment of nutritional status; nutritional disorders;
Mother-, child and youth health care | Basics of healthy diet; Computer planning and controlling diet in public catering
General Epidemiology of communicable diseases – International and Hungarian aspects | Family planning, Youth health
Nosocomial Infections Reemerging, emerging and deliberately emerging infections | General epidemiology of communicable diseases Immunization, Vaccination programs
Ethic of Public Health | Sterilization, disinfection Laboratory investigations in case of communicable diseases Nosocomial infections
Structure and financing of Health Care Systems | Food-hygiene; food-borne diseases
DENTAL ETHICS

First Semester

Bioethics
Course Syllabus.

Institute of Behavioral Sciences
Course Director: Prof. Dr. József Kovács
(28 hours)

Course objectives:
a. To enable students to recognize ethical issues when encountered in everyday clinical practice and research
b. To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
c. To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patient research subjects and fellow health care professionals
d. To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health

Lectures

1. week
Basic concepts of ethics.
Descriptive ethics, normative ethics, metaethics.
General ethics and applied ethics.
Bioethics, medical ethics, health care ethics. Similarities and differences.
The role of bioethics in a pluralistic society.
The relationship between law and ethics.
Reasoning in ethics. The most common mistakes.

2. week
Normative theories of ethics.
Deontological theories of ethics. (The Golden Rule, Kant and the categorical imperative, the principle of double effect, W.D. Ross and the prima facie duties,)
Teleological theories of ethics. (Act and rule utilitarianism.)
Theories of natural law.
Contractarian theories of ethics. (The theory of justice of John Rawls)

3. week
The basic principles of dental ethics.
The principle of respect for autonomy.
The principle of non-maleficence.
The principle of beneficence.
The principle of justice.
Arguments against „principalism”.

4. week
The concept of health and disease.
Naturalistic definitions of health.
The medical model of defining health.
Normativist definitions of health.
Some questions of psychiatric ethics.

5. week
Informed consent.
Simple consent and paternalism in medicine.
The emergence of the doctrine of informed consent.
Standards for information disclosure for patients.
When is informed consent not necessary?
Standards of competence and incompetence.
The right to refuse medical treatment.
Some psychological and communicational aspects of informed consent.

6. week
Information disclosure to terminally ill patients. Telling the truth to patients.
The history of information disclosure to terminally ill patients.
Pros and cons for lying to terminally ill patients.
The weaknesses of the arguments in favour of lying.
The dying process according to E. Kübler-Ross.
How to communicate the bad news to terminally ill patients.
The physician’s relationship with the relatives of the deceased patient.
7. week
Justice in Health Care I. Ethical questions of macroallocation.
Higher and lower level macroallocational problems.
The role of personal responsibility in maintaining health.
The principles and practice of rationing in contemporary health care systems. (Soft and hard rationing.)
Medical ethics and medical economics. Ethical questions of cost-benefit and cost effectiveness analysis. The QALY.
The problem of right to health care. (The libertarian, the liberal and the socialist views about the right to health care.)
The role of the market and that of the state in the health care system.
Ethical problems of financing health care. (Fee-for-service, capitation, fixed salary, DRG-system, etc.)
Setting health care priorities in Oregon.
Attempts to define a just health care system.

8. week
Ethical questions of reproductive medicine.
Abortion.
Artificial insemination from donor.
In vitro fertilization, surrogate motherhood.
Ethical questions of genetic counseling.
Ethical questions of embryo experimentation.

9. week
Justice in Health Care II. Ethical questions of microallocation.
Moral dilemmas in the allocation of scarce medical resources.
The concept of microallocation.
Ethical analysis of various selection criteria. (Medical benefit, psychological ability, supportive environment, social value criterion, resources required criterion, age, ability to pay, random selection, personal responsibility for the illness, etc.)

10. week
Ethical questions of animal experimentation.
History of the thinking about the moral status of animals.
The philosophical significance of the Darwinian conception of nature.
The views of Peter Singer: antispeciesism.
The views of Tom Regan: animal rights.
Ethical questions of experimentation on animals on the basis of a moderate animal protectionist’s view.
Critical anthropomorphism.
Alternatives to animal experimentation.

11. week
Euthanasia and the withholding of life-sustaining treatment
Definitions.
The sanctity of life versus the quality of life doctrine.
Is there any difference between active and passive euthanasia?
Refusal of life sustaining treatment by competent and incompetent patients.
Possibilities to extend the autonomy of patients: living will, durable power of attorney, substituted judgement, etc.
The concept of medically futile treatment.
Ethical problems of the treatment of handicapped newborns. (The debate about the treatment of spina bifida babies, the Baby Doe case, the legal situation, etc.)

12. week
Ethical questions of human experimentation.
Possible forms of experimentation on humans.
Contradiction between the two roles of the physician. (Healer and scientist.)
The ethics of Randomized Controlled Clinical Trials. (RCT) Randomization and prerandomization.

13. week
Ethical questions of organ- and tissue transplantation.
Some problems of justice concerning kidney transplantation and chronic haemodialysis.
Ethical questions of transplantation from living kidney donors.
The concept of death.
Ethical questions of organ harvesting from the dead.
The debate about the market of organs.
Ethical questions of using embryo- or foetal tissue in human therapy.
Ethical problems of using anencephal newborns as organ donors.

14. week
The rights of patients.
The role of patient’s rights in the transformation of the paternalistic physician-patient relationship.
Moral versus legal rights.
A list of basic rights of patients.
Mechanisms to ensure the realizations of patient’s rights. (Patient’s rights advocates, ombudsman, hospital ethics committees, institutional review boards, arbitration, etc.)
Course Faculty:
Prof. József Kovács, MD, PhD, (Head of the Department of Bioethics), 210-2930/56350;
e-mail: kovjozs@net.sote.hu
Ágnes Dósa, MD, JD, PhD e-mail: dosaagi@yahoo.com
Imre Szebik, MD, PhD e-mail: szebimre@net.sote.hu
Jeno Lorincz, MD, JD e-mail: lorjen@net.sote.hu

Department:
Institute of Behavioral Sciences
Department of Bioethics
NET Building, 19th, 20th floor
Tel: 210-2953
Secretary: NET Building, 20th floor, Room-2005

List of questions
1. Deontological theories of ethics.
2. Utilitarian theories of ethics.
3. The principles of dental ethics
4. Justice and dental ethics: the allocation of scarce medical resources.
5. Paternalism in dental practice
6. Informed consent
7. Information disclosure for terminally ill patients
8. Advance Directives
9. Experimentation on human subjects
10. Objection to Transplantation of Organs and Counterarguments
11. Ethical problems of live organ donation
13. Organ donation from brain-dead donors: presumed consent
14. Active and Passive Euthanasia
15. Withdrawing and withholding life sustaining treatment.
16. Models of the dentist-patient relationship
17. Ethical issues related to treating patients with partially compromised capacity
18. Professional norms and bad outcomes
19. Ethical questions raised by HIV and AIDS in dental practice
20. Confidentiality issues in dental practice
21. Moral issues related to the HIV positive dentist
22. Possible criteria for distributing the society’s resources
23. Social justice – the free market view of justice
24. Ethical issues in advertising dental services
25. Professional obligations in dentistry

Textbook:
Conrad Fischer—Caterina Oneto (2009): USMLE Medical Ethics: The 100 cases you are most likely to see on the exam (Second edition) New York: Kaplan Publishing ISBN: 9781419553141

Important:
To participate on at least 75% of the total number of lessons is a prerequisite of getting the signature. Doctor’s certificate is required to justify absence from the lessons and the exam.
Sign up for the exam: through the Neptun system.
GNATHOLOGY – lectures and practices

Department of Prosthodontics
Lecturer: Prof. Dr. Péter Hermann

First Semester

Lecture (1 hour/week)
Practice (2 hours/week)

Topic of the lectures (weekly, numbered):

1. Introduction To The Physiology Of The Stomatognathic System
2. Morphology Of The Stomatognathic System
3. Jaw Positions
4. Intercuspal Position, Retruded Contact Position, Occlusal Alterations
5. Mandibular Movements
6. Occlusal Concepts
7. Articulators
8. Face-bow Transfer, Mounting Of Articulators
9. Periodontal Considerations Of Occlusion, Occlusal Trauma
10. Gothic Arch Tracing, Ultrasonic Registration And Examination Of The TMJ
11. Examinations And Differential Diagnosis Of Occlusal Problems
12. Role Of Occlusion In The Clinical Practice, Parafunctions
13. Temporomandibular Disorders
14. Test
IMPLANTOLOGY I. – lecture

Department of Oro-Maxillofacial Surgery and Stomatology

Lecture: 1 hour/week

Course Syllabus:

Practice: 1 hour/week

Practice of Implantology complements and deepens the knowledge obtained during the theoretical course

- Diagnostics – X-ray diagnostics, CBCT analysis, introduction of X-ray and surgical template
- Introduction of the implant surgery through the system of the Straumann – emphasize on the unique properties of the system (surface, comparison of 1-stage / 2-stage surgical method
- Introduction of the implant prosthodontics through the SIC system – emphasize on the unique properties of the system, prothetics of the SIC system. Practicing the steps of the prosthetics on a model, cad-cam based prosthetic abutment, safe on four concepts, platform switching, Balance healing screws and and abutments
- Guided bone regeneration through the products of Geistlich company – introduction of the methods of bone augmentation techniques, sinus-lifting, lateral bone augmentation practicing on models
- Introduction of the guided implant surgery Nobel Biocare Guide System overview – emphasize on the unique properties of the system
- Introduction of the failures of implantology and their solutions through the Osstem system – emphasize on the unique properties of the system, practicing on models
EMERGENCY DENTISTRY

Department of Community Dentistry
Head of department and lecturer: Dr. Orsolya Németh

1st semester: lecture and practice
2nd semester: only practice

lecture: 1 hour/week
practice: 1,5 hour/week

The purpose of the subject is that the dental student would be able to recognize and cope with the possible daily emergency cases at the dental practice.
In the 21st century dental emergency does not mean only extractions. It also includes Conservative Dentistry, Prosthetics, Pedodontics, Orthodontics as well as Periodontal aspects.
The curriculum of the Emergency Dentistry is an integral part of the other subjects, but it is necessary to teach this special field of dentistry separately. Department of Community Dentistry is responsible for all Budapest and Pest region dental care, therefore is able to provide sufficient number of patients for practical education.

COMPULSORY SUMMER PRACTICE

4-weeks (120 hours) at a Dental Office
(Conservative Dentistry of Periodontology)

The student has to practice whole-scale comprehensive dental treatment including: Oral Prophylaxis, Restorations, Root Canal Therapy and Minor Prosthodontics as well as Er. Management.

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!
Physical Education VII-VIII.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0

Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description*: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.

1107 Bp, Zágrábi utca 14.

1×60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate Frisbee, advanced ultimate Frisbee, Zumba

1×90 mins./week sessions:
women’s football, ice hockey, beginner tennis, beginner tennis 2,

4×3 hrs. and 1×2 hrs. session packages:
Hiking 1, Hiking 2.

2×90 mins./week sport training (competitive sport, for qualified only):
cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
mat the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Important note: Document certifying the completion of the practice must be handed in at registration! Registration to the next year is not allowed without it!

* Detailed and numbered for each week of theoretical and practical lessons one by one, indicating the names of lecturers and instructors
CLINICAL MODULE

New curriculum to be introduced
Please, follow the updated version on the home page
STUDY PROGRAMME

CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>examination</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry I.*</td>
<td>C2L0P6</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III. Prosthodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics IV</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III., Prosthodontics III.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Forensic Dentistry</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxillofacial Surgery IV.</td>
<td>C5L1P5</td>
<td>practice mark</td>
<td>Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Implantology II.</td>
<td>C2L1P1</td>
<td>final#</td>
<td>Implantology I. Oral and Maxillofacial Surgery III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics I.</td>
<td>C5L1P4</td>
<td>practice mark</td>
<td>Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology III.</td>
<td>C3L1P2</td>
<td>practice mark</td>
<td>Periodontology II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Prehospital Emergency Medicine</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics IV.</td>
<td>C3L0P3</td>
<td>practice mark</td>
<td>Prosthodontics III., Conservative Dentistry and Endodontics III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral Medicine II.</td>
<td>C1L1P0</td>
<td>final#</td>
<td>Oral Medicine I., Oral Diagnostics</td>
</tr>
</tbody>
</table>

Total Credit: 32

*at the Dept. of Prosthodontics or at the Dept. of Conservative Dentistry

#The grade influences the qualification of the diploma.

15 credits should be gained from the elective subjects during the 5-year studies.

C = Credit point
L = Lecture (hours/week)
P = Practice (hours/week)
CLINICAL MODULE

<table>
<thead>
<tr>
<th>subjects code</th>
<th>subjects</th>
<th>credit code</th>
<th>prerequisites code</th>
<th>prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>compulsory</td>
<td>Clinical Dentistry II.*</td>
<td>C3L0P6</td>
<td>practice mark</td>
<td>Clinical Dentistry I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Conservative Dentistry and Endodontics V</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Conservative Dentistry and Endodontics IV, Prosthodontics IV.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Dermatology</td>
<td>C1L1P0.5</td>
<td>final#</td>
<td>Pharmacology, Toxicology II.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Gerostomatology</td>
<td>C2L1P1</td>
<td>examination</td>
<td>Gnathology, Prosthodontics IV., Oral medicine II.</td>
</tr>
<tr>
<td>obligatory elective</td>
<td>Obstetrics and Family Planning</td>
<td>C1L1P0</td>
<td>examination</td>
<td>Internal Medicine III., First Aid</td>
</tr>
<tr>
<td>compulsory</td>
<td>Oral and Maxilloficial Surgery V.</td>
<td>C4L1P3</td>
<td>final#</td>
<td>Oral and Maxilloficial Surgery IV.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Orthodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Orthodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Pedodontics II</td>
<td>C6L1P5</td>
<td>final#</td>
<td>Pedodontics I.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Periodontology IV.</td>
<td>C3L1.5P2</td>
<td>final#</td>
<td>Periodontology III.</td>
</tr>
<tr>
<td>compulsory</td>
<td>Prosthodontics V.</td>
<td>C3L0P3</td>
<td>final#</td>
<td>Prosthodontics IV., Conservative Dentistry and Endodontics IV.</td>
</tr>
<tr>
<td>Criterion requirement</td>
<td>1 Semmelweis Symposium*</td>
<td>C0L24P0</td>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit

32

Diploma work

C20

Important note: Signing up for Physical Education (PE) IX. in the 1st semester and for PE X. in the 2nd semester is compulsory.

Explanation

- **15 credits** should be gained from the **elective subjects** during the 5-year studies – see the elective list after the 3rd year study program
- # The grade influences the qualification of the diploma
- C = Credit point
- L = Lecture (hours/week)
- P = Practice (hours/week)
- *Semmelweis Symposium only for 3rd or 4th year students
LIST OF TEXTBOOKS (The list may change!)

Recommended textbooks:

8. Online: www.lib.sote.hu – Adatbázisok, adattárak – OVID – Books@OVID – Dermatology – Fitzpatrick’s Dermatology in General Medicine
10. European federation of Preiodontology – efp.org
11. International Team for Implantology – iti.org
12. ITI Treatment Guide – iti.org/ITI-Treatment-Guide
22. Hermann Péter, Szentpétery András: Gnatológia (Semmelweis Kiadó, 2018)
GEROSTOMATOLOGY

Department of Community Dentistry
Head of department: Dr. Orsolya Németh
Lecturer: Dr. Péter Kivovics

lecture: 1 hour/week
practice: 1 hour/week

In developed countries, the number of older people is increasing year by year. This is largely due to disease control, adequate nutrition, widespread basic health care and relatively long periods without war.
The majority of patients appearing in the dental office are considered elderly. Our course aims to provide an opportunity to gain a deeper understanding of the theoretical and practical knowledge of dental and oral surgery for elderly patients.

CLINICAL DENTISTRY I.-II.

There is no lecture on the subject of Clinical Dentistry, at the beginning of the practices the previously acquired theoretical curriculum from conservative dentistry and prosthodontics will be repeated in the form of a mandatory consultation, in weekly shifts.

OTORHINOLARYNGOLOGY AND HEAD AND NECK SURGERY

Lecturer: Prof. Dr. László Tamás
Tutor: Dr. Beáta Bencsik

First Semester

<table>
<thead>
<tr>
<th>Lectures (1 hour per week)</th>
<th>Practices (0,5 hour week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The role of otorhinolaryngology in dentistry and medicine. Clinical anatomy of the ear. Diseases of the external ear.</td>
<td>Routine clinical examinations in practice.</td>
</tr>
<tr>
<td>Diseases of the salivary glands. Emergency management of suffocation. Conicotomy and tracheotomy. Foreign bodies in the trachea and oesophagus</td>
<td></td>
</tr>
</tbody>
</table>

579
PEDIATRICS

2nd Department of Pediatrics
Tutor: **Dr. Judit Müller**

First Semester

Lectures (1 hour per week) *Practices* (0.5-hour week)

- Development and Growth
- Childhood Nutrition and its Disorders
- Fluid and Electrolyte Disorders
- Newborn Infant: Diseases and Disorders
- Genetic Disorders
- Congenital Heart Diseases
- Respiratory Diseases
- Neurologic and Muscular Disorders
- Endocrine Disorders
- Infectious Diseases, Immunization
- Gastrointestinal Tract Disorders
- Hematologic Disorders
- Malignant Diseases in Childhood
- Kidney and Urinary Tract Diseases
- Allergic Diseases

PROSTHODONTICS IV-V.

First Semester

- Clinical practices, Integrated practices
- Treatment of partial edentulousness, fixed and removable dentures.
- No lectures.

Second Semester

Clinical practices integrated with the conservative dentistry. Complex treatment of different cases.
No lectures.
CONSERVATIVE DENTISTRY AND ENDODONTICS IV.

Department of Conservative Dentistry
Head of Department: Dr. János Vág DMD, PhD

First semester

The subject is taught with four practical hours per week, there is no lecture.

During the exercises the students deal with root canal treatments and revisions within the framework of clinical care under the supervision of practice leader.

Note: A minimum of 75% attendance is required at the practices, absences at any way may not exceed 25% of the practices practices (the maximum number of absences is 3). During the semester one documented clinical case must be presented to validate the semester by earning the signature. The midterm takes place around the 10th week and held online on the Moodle system. Semifinal oral exam: questions from two topic groups, presentation of a documented endodontic case and evaluation of an intraoral radiograph (teeth, diagnosis and therapy).

CONSERVATIVE DENTISTRY AND ENDODONTICS V.

Second semester

Detailed course/lecture description:
Detailed weekly curriculum:
The subject is taught with three practical hours per week, there is no lecture.
During the exercises the students more independently and widely deal with the activities of the field of conservative dental care in the framework of clinical care under the supervision of the practice leader.

List of textbooks, lecture notes and recommended textbooks:

Note: Attendance at the practices is compulsory, and absences at any one practice may not exceed 25% of the total number of practices (the maximum number of absences is 3)..During the semester one documented clinical case must be presented to validate the semester by earning the signature. Final oral exam: students (A) must present the best three well-documented clinical cases validated by the practice teacher done at conservative or clinical practice during the entire time of their gradual course, (B) choose one-one question from three topic groups (dental materials, conservative dentistry, endodontics)
ORAL AND MAXILLOFACIAL SURGERY IV.

Tutor: Dr. Kinga Körmöczi

First Semester

Lectures (1 hour / week)

Precanceroses.
Benign tumors of the soft tissues in the head and neck region.
Benign tumors of the bone tissues in the head and neck region.
Malignant tumors of the head and neck region. I.
 (Diagnostics, pathology, epidemiology)
Malignant tumors of the head and neck region. II.
 (Surgical therapy)
Malignant tumors of the head and neck region. III.
 (Complex therapy)
Secondary treatment of cleft lip and palate. Orthognatic Surgery
Biomaterials.
Esthetical consideration in maxillofacial surgery
Risk patient treatment in oral surgery I.
 (internal diseases, fainting, antifebrile and painkiller
treatment)
Ambulantory narcosis in head and neck surgery,
coagulopathies, anticoagulant treatment.
Sinus lifting.
Dentoalveolar deformities.
Guest speaker
Consultation

Practices (5 hours / week)

Practicing minor oral surgery

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester three midterm examinations should be passed.
Practical course grade
ORAL AND MAXILLOFACIAL SURGERY V.

Second Semester

Lectures (1 hour / week) **Practices** (3 hours / week)
- Diseases of the temporomandibular joint Part I. (Pathology, diagnostics)
- Diseases of the temporomandibular joint Part II. (Therapy)
- Peripheral nerve disorders in the head and neck region. Rehabilitation after the paresis of the Facial nerve
- Antibiotic treatment in dental surgery
- Maxillofacial reconstructive surgery Part I. (Reconstruction of soft tissues and bone by local flaps)
- (Reconstruction by microvascular grafts)
- Modern diagnostic methods in oral and maxillofacial surgery
- Systematic diseases in the head and neck region
- The promotion of the osteogenesis by distraction methods
- Biomaterials in the maxillofacial surgery
- Guest speaker
- Consultation

Practice
- Two weeks’ clinical practice at the in-patient ward of the clinic
 (1st week in the morning, 2nd week in the afternoon hours, every day)
- Practical course grade and **final** examination

Note:
- The maximum number of absences in a semester is 3.
- More than 3 absences invalidate the semester.
- During the semester three midterm examinations should be passed.
PEDODONTICS I.

Department of Orthodontics and Pediatric Dentistry

Head of Department: Dr. Noémi Katinka Rózsa D.M.D., Ph.D.
Phone: (1)-4591500/ 59268
E-mail: noemirozsa65@gmail.com

Tutor: Dr. László Miklós Kaán D.M.D., PhD.
Phone: (1)-4591500 / 59270
E-mail: kaanm@dent.semmelweis-univ.hu

First Semester

Lectures (1 hour/week)

1. The subject, signification and interactions of paediatric dentistry
2. Tooth development, anatomy and dentition of primary teeth
3. Developmental disturbances of permanent and primary teeth
4. Caries of primary teeth. Treatment possibilities
5. Consecutive illnesses of caries in primary dentition
6. Mechanism of second dentition. Physiological and pathological significance
7. Caries and treatment of permanent teeth
8. Consecutive illnesses of caries in permanent dentition
9. Psychological aspects of dental treatment during childhood
10. Filling materials in Paediatric Dentistry
11. Dental radiology in Paediatric dentistry
12. Dental anomalies in syndromes
13. Root-canal treatment of immature teeth, apexogenesis, apexification
14. Special aspects of prevention in paediatric dentistry and orthodontics

Practice (4 hours/week)
Treatment of patients.
Type of evaluation: Practical grade (1-5 grading system)
PEDODONTICS II.

Second Semester

Week	Lectures (1 hour/week)
1. | Pain control and anaesthesia during childhood
2. | Traumatic injuries of primary teeth
3. | Traumatic injuries of permanent teeth, complex therapy solutions
4. | Non- and minimally invasive dentistry
5. | Prosthetics in Paediatric dentistry
6. | Periodontology and oral diseases during childhood
7. | Dental attendance of children suffering from general diseases
8. | The management of children with special needs
9. | Aetiology and treatment methods of hard tissue discoloration
10. | Administration of medicine in pedodontics
11. | Oral surgery during childhood
12. | Non- and minimal invasive interventions in paediatric dentistry
13. | Molar-Incisor-Hypomineralisation Syndrom (MIH)
14. | Consultation Courses (obligatory and elective) which in part or entirely overlap

Practice (5 hours/week)
- Treatment of patients.
- Types of evaluation:
 - Practical grade (1-5 grading system)
 - Final examination. Evaluation of the whole subject matter. (1-5 grading system).
ORTHODONTICS I.

Department of Orthodontics and Pediatric Dentistry

Head of Department: Dr. Noémi Katinka Rózsa D.M.D., Ph.D.
tel: (1)-4591500/ 59268
E-mail: noemirozsa65@gmail.com

Tutor: Dr. László Miklós Kaán D.M.D., PhD.
Phone: (1)-4591500 / 59270
E-mail: kaanm@dent.semmelweis-univ.hu

First Semester

Lectures (1 hour/week)

1. The subject, significance of orthodontics, its relation to caries and periodontal diseases
2. Historical survey of orthodontics. Classification and terminology of malocclusion
3. Diagnosis of malocclusions I.
4. Diagnosis of malocclusions II. X-ray diagnosis
5. Aetiology; hereditary and acquired anomalies. Functional anomalies.
6. The timing of the orthodontic treatment
9. Removable appliances II. Functional appliances
10. Space gaining in orthodontics. Arch expansion and molar distalization
12. Multibond techniques II. Orthodontic wires and the phases of orthodontic treatment
13. Modern techniques in orthodontics: splint appliances 1
14. Aesthetics in orthodontics

Practice (4 hours/week)

Treatment of patients.

Type of evaluation: Practical grade (1-5 grading system)
ORTHODONTICS II.

Second Semester

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures (1 hour/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Normooclusion. Local and general anomalies.</td>
</tr>
<tr>
<td>3.</td>
<td>Treatment of distooclusion.</td>
</tr>
<tr>
<td>4.</td>
<td>Treatment of mesiooclusion</td>
</tr>
<tr>
<td>5.</td>
<td>Extraction in orthodontics.</td>
</tr>
<tr>
<td>6.</td>
<td>Complex treatment of orthodontic anomalies combined with missing teeth</td>
</tr>
<tr>
<td>7.</td>
<td>Surgical-orthodontic treatments</td>
</tr>
<tr>
<td>8.</td>
<td>Complex therapy of cleft lip and palate</td>
</tr>
<tr>
<td>9.</td>
<td>Retention and relapse.</td>
</tr>
<tr>
<td>13.</td>
<td>Digital techniques and workflow in orthodontics</td>
</tr>
<tr>
<td>14.</td>
<td>Consultation</td>
</tr>
</tbody>
</table>

Practice (5 hours/week)

Treatment of patients.

Types of evaluation:
- Practical grade (1-5 grading system)
- Final examination. Evaluation of the whole subject matter (1-5 grading system).
PERIODONTOLOGY III.

Department of Periodontology

First Semester

Lectures (1 hour/week)

1. Correlation between periodontology and orthodontics
2. Periodontal aspects of prosthetic rehabilitation
3. Morphology of periodontal defects. Indications of periodontal surgery
4. Periodontal surgery I. General introduction
5. Periodontal surgery II. Surgical correction of gingival enlargement
6. Periodontal surgery III. Periodontal resective/reparative surgery
7. Biology of periodontal tissue. Basics of regenerative techniques
8. Clinical application of periodontal regenerative techniques I.
9. Clinical application of periodontal regenerative techniques II.
10. Treatments of furcation defects
11. Biological mediators in periodontal surgery
12. Mucogingival surgery I.
13. Mucogingival surgery II. / Written exam
 Alveolar ridge preservation techniques

Practices (2 hours/week)

Clinical practice
Clinical practice
Clinical practice
Clinical practice
Clinical practice
Midterm Demonstration
Clinical practice
Clinical practice
Clinical practice
Clinical practice
Midterm Demonstration
Clinical practice
Clinical practice

Note: The maximum number of absences in a semester is 3.
More than 3 absences invalidate the semester.
During the semester two midterm demonstrations should be passed.
Practical course grade
PERIODONTOLOGY IV.

Second Semester

Lectures (1.5 hours/week)

<table>
<thead>
<tr>
<th>Week Lectures (Part One)</th>
<th>Seminar (2 hours/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Biology of periodontal and periimplant tissues</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>2. Periodontal aspects of implantology, augmentations I</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>3. Periodontal aspects of implantology, augmentations II</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>4. Is periodontitis a risk factor in implant dentistry?</td>
<td>Ambulatory patient care</td>
</tr>
<tr>
<td>5. Periimplantitis. Background and management</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>6. Comprehensive case presentations I. (perio-prot direct/indirect, surg)</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>7. Comprehensive case presentations II. (perio/plastic surg - impl)</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>8. Comprehensive case presentations III. (perio-non-surg/surg - impl)</td>
<td>Surgical assistance</td>
</tr>
<tr>
<td>9. Comprehensive case presentations IV. (perio- (reg)/ortho/protho)</td>
<td>Literature review</td>
</tr>
<tr>
<td>10. Supportive therapy in periodontology and implant dentistry</td>
<td>Clinical case conference</td>
</tr>
<tr>
<td>11. Periodontal diagnostic consultation</td>
<td>Differential diagnosis</td>
</tr>
<tr>
<td>12. Written exam</td>
<td>Consultation</td>
</tr>
</tbody>
</table>

Note: The maximum number of absences in a semester is 3. More than 3 absences invalidate the semester. During the semester two midterm demonstrations should be passed. Practical course grade and final exam
ORAL MEDICINE II.

Department of Oral Diagnostics
Address: Bp. VIII., Szentkirályi u. 47. 1088
Phone: 459-1500/59161, 317-1044
Lecturer: Prof. Dr. Csaba Dobó Nagy
E-mail: oralis.diagnosztika@dent.semmelweis-univ.hu

First Semester

Lectures (1 hour per week)

2. Oral infections I.
3. Oral infections II.
5. Dental aspects of systemic diseases and their treatments.
7. The aim of molecular oncology in the success of diagnosis and therapy of oral tumors.
8. Oral diseases affected by immune system I. (Vesiculo-bullous diseases, Oral lichen)
9. Oral diseases affected by immune system II. (Aphtae and other ulcers)
12. The aim of focal infections in dentistry.
13. Interactive differential diagnostics I.
14. Interactive differential diagnostics II.

Note: Final exam

Textbook:

Recommended books:
IMPLANTOLOGY II.

Department of Oro-Maxillofacial Surgery and Stomatology
Lecturer: Dr. Árpád Joób-Fancsaly

Lectures (1 hour/week)

Course Syllabus:

Bone replacement:
- Guided Bone Regeneration /GBR/. Bone grafting procedures in the outpatient surgery.
- Osteogenesis, bone transplantation. Distraction osteogenesis.
- The sinus-lift procedure. Indications, contraindications, surgical techniques.
- The periodontal aspects of implant therapy.
- Nobel-Biocare implant system.
- ITI- Straumann implant system.

Implant prosthodontics:
Crows on implants. Fixed dental prosthesis on implants. Mesio-structures, combined /fixed-removable/ prosthesis on implants.
Esthetic considerations in implant surgery. Surgical management of soft tissues.
Comprehensive lecture. Implant therapy in the practice. Planning and completing in different anatomical situations.

Guided surgery in oral implantology.

Implant failures. Biological, mechanical complications and their management.

Practice: No practice only lecture according to the new curriculum

Final exam

Practice of Implantology complements and deepens the knowledge obtained during the theoretical course

- Diagnostics – X-ray diagnostics, CBCT analysis, introduction of X-ray and surgical template
- Introduction of the Straumann system – emphasize on the unique properties of the system (surface, comparison of 1-stage / 2-stage surgical method, Implant Surgery overview through the system
- Introduction of the SIC system – emphasize on the unique properties of the system, Prothetics of the SIC system. Practicing the steps of the prosthetics on a model, cad-cam based prosthetic abutment, safe on four concepts, platform switching, Balance healing screws and abutments
- Guided bone regeneration through the products of Geisthich company – introduction of the methods of bone augmentation techniques, sinus-liftig, lateral bone augmentation practicing on models
- Smart Guide System overview – emphasize on the unique properties of the system, introduction of the guided implant surgery
- Osstem system overview – emphasize on the unique properties of the system, introduction of the failures of implantology and their solutions, practicing on models
PREHOSPITAL EMERGENCY MEDICINE

National Ambulance Service
Program Director: Dr. Gábor Göbl
Tutor: Dr. László Gorove

First Semester

Topics
The principles of emergency medicine.
The field assessment.
Patient assessment.
Transportation trauma
BLS – AED, ACLS
Prehospital care of the injured patient
Analgesia, anesthesia in the emergency care
Unconsciousness, confused states
Acute chest syndromes. ACS
Acute cardiac failure. Arrhythmias in the emergency care
The shock process. Evaluation and in field management of shock conditions.
Stroke syndromes. Hypertensive emergencies.
Acute dyspnea. Artificial ventilation on the spot
Acute abdominal syndromes
Toxicology in the emergency care
Pediatric oxylogy
Obstetrical first aid
CPR revision

Note: participation at 75% of lessons is necessary. Compensation is possible using the notes of the lectures and the recommended book.
Mode of certifying absences: Oral in case of absence from lectures, written in case of absence from examination within 3 working days.
Requirement of the semester signature in the lecture book: Participation at the lectures in 75% of cases.
It will be tested, whether the student is able to recognize and manage emergencies.
DERMATOLOGY

Lecturer: Dr. Bernadett Hídvégi
Tutor: Dr. Bernadett Hídvégi

Department of Dermatology, Venerology and Dermatooncology

Second Semester

Lectures (1 hour per week) Practices (0.5 hour week)

Lecture

Introduction to Dermatology.
Diagnostic procedures, anatomy, functions of skin comparing to oral mucosa.
Elementary lesions. Autoimmune bullous diseases.
Sexually transmitted diseases (syphilis, gonorrhoea, NGU, HPV).
AIDS, herpes virus infections.
Skin tumors. Malignant melanoma, basal cell carcinoma, squamous cell carcinoma.
Benign tumors, paraneoplastic syndromes.
Allergic skin diseases, drug allergy.
Dermatitis, eczema, implication for dentists.
Atopic dermatitis, urticaria, psoriasis.
Bacterial skin diseases.
Cutaneous and mucosal diseases caused by fungi.
Treatment modalities.
Dermatological treatment.
Seborrheic dermatitis, acne.
Cutaneous and oral manifestations of internal diseases.
Final examination
OBSTETRICS AND FAMILY PLANNING

Dept. of Obstetrics and Gynecology
Head of Department: Prof. Dr. Nándor Ács

Second Semester

Lectures (1 hour/week)

Anatomy and physiology of the genital organs. The menstrual cycle.
Conception.
Prenatal care, diagnosis of pregnancy.
Normal pregnancy and development of the fetus.
Changes in maternal anatomy and physiology during pregnancy.
Spontaneous abortion. Ectopic pregnancy.
EPHgestosis. Hyperemesis.
Medical complications during pregnancy. Gestational diabetes.
Infections in obstetrics and gynecology.
Normal labour and delivery.
Abnormalities of labour and delivery.
Normal and abnormal puerperium.
Neonatology.
Gyn. endocrinology. Family planning.
Sterility, infertility.
Genetic counseling, fetal anomalies.
OPHTHALMOLOGY

Dept. of Ophthalmology
Program director: Dr. Zsuzsa Récsán
Tutor: Dr. Zsófia Hargitai

First Semester

Lectures (1 hour/week)

Introduction. History of ophthalmology.
Conjunctivitis (“red eye”).
Keratitis (“red eye”).
Uveitis (“red eye”). Differential diagnostic approach of the “red eye”.
Basics of optics.
Glaucoma (pathomechanisms).
Glaucoma (conservative and surgical treatment).

Practical guide (0.5 hour/week)

Anatomy of the eye. Patient’s history.
Objective and subjective symptoms of eye-diseases.
Eyelids and lacrimal system.
Examination of the anterior segment of the eye (focal light, slit lamp).
Refractive errors. Checking of visual acuity.
Basics of orthoptics.
Examination of the refractive media and retina. (Ophthalmoscope)
Diagnosis of glaucoma (perimetry, checking of intraocular pressure, gonioscopy.)
Treatment of glaucoma.
First aid in cases of ocular injuries.
First aid in sudden visual loss.
Differential diagnostic approach of the “red eye”.
Differential diagnostic approach of the “painful” eye.
Consultation.
FORENSIC DENTISTRY

Department of Forensic Medicine
Tutor: Dr. Zoltán Szőlősi

First Semester

Lectures (1 hour/week)
- The discipline of forensic medicine, relation to law, the legal aspects of dentistry
- Injuries
- Asphyxia
- Identification
- Toxicology I.
- Toxicology II.
- Alcohol and narcotics
- The legal aspects of clinical medicine I.
- The legal aspects of clinical medicine II.
- Facial and cranial injuries
- Sudden death, SIDS
- Risk and malpractice in dentistry
- Forensic psychiatry
- Autopsy demonstration
- Autopsy demonstration

Physical Education IX-X.

Lessons (in hours): 14 lectures: 0 practicals: 14 seminars: 0
Lecturer of the course: Várszegi, Kornélia
Contact: Testnevelési és Sportközpont
Phone: +36-1/ 264-1408

Detailed course/lecture description: (to facilitate credit recognition in other institutions)

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations. During the academic year, students can also choose the „Other” course category, where they record their weekly physical activity independently.

Students who cannot choose anything from the sports offer or who are forced to fulfill the conditions of participation on their own due to a lack of space can register for the “independent sports activity” course as part of the Physical Education course in the Neptune system.

In cases, a questionnaire is sent to the students through the Neptune system:
- The questionnaire can be filled in from Monday to Sunday in a semester (no entries can be made in advance or afterwards).
- Students must assure themselves that they have completed the questionnaire truthfully.
- It is a minimum requirement for the signature that a training of 1x60 minutes per week is completed and this is recorded in the questionnaire.

Free of charge:
2x90 mins./week sport training (competitive sport, for qualified only): cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.
ELECTIVE SUBJECTS FOR Dentistry 3rd, 4th and 5th year

PREVENTION AND CLINICAL SCREENING OF ORAL MALIGNANCIES

Department of Oral Diagnostics
(Orális Diagnosztikai Osztály, Bp. VIII., Szentkirályi u. 40. 1088
Phone: 317-6600; 317-0951; fax: 317-9199)
Tutor: Prof. Dr. Gábor Nagy D.M.D., Ph.D

I. Theoretical background

Incidence of intraoral tumours is very high, and Hungary has a leading position in Europe. Among men this is the third in ranking the causes of death, and regarding the whole population it has the seventh place.

The two main risk factors are smoking and alcohol consumption, the combination of these multiple the risk rate. Nowadays it is noteworthy that the frequency of oral cancers is increasing in younger age groups and among women lacking the before mentioned risk factors.

II. Methods of oral cancer screening

1. Population based methods – large number of people invited to take part in a cancer screening, which could be combined with a general dental health assessment.
2. Opportunistic screening

This mean the comprehensive dental examination of a particular patient attending a dental service. This screening is not only concentrating on detection of oral premalignacies oral malignancies, but also other developmental and inflammatory lesions.

Basic investigative methods of head and neck region
detailed case history (with special aspects on tumors, life style, persistent, non-healing lesions)
Precise extra- and intraoral physical examination
Novel visual examination procedures (e.g. Veloscope)

Conclusion
Screening for oral malignancies is a very important part of dental examination. Lesions, persisting two weeks after eliminating any irritating factor a special clinical examination including histology is needed. In this way the survival possibilities of oral cancer patients could be enhanced largely.
This shows the extreme importance of this subject in dental and medical education as well.
THEMATICS

Contemporary diagnostics of oral premalignancies and cancers

1. Importance of oral malignancies
 Epidemiology, morbidities and mortality data
2. Etiological factor and pathomechanismus of oral tumors
3. Rate and efficacy of different screening methods (screen or not to screen)
4. Basic clinical signs and symptoms of oral malignancies and premalignancies I.
5. Basic clinical signs and symptoms of oral malignancies and premalignancies II.
6. Consultation
7. Possibilities of early detection and prevention
8. Diagnostic process of oral malignancies I. Traditional physical examination
9. Diagnostic process of oral malignancies II. Traditional physical examination
10. Diagnostic process of oral malignancies novel Procedures (e.g. lighting devices)
11. Contemporary diagnostically possibilities and a multidisciplinary cooperation
12. Social and dental rehabilitation after the treatment of oral cancer
13. Consultation / Examination

PEDODONTIC AND ORTHODONTIC PREVENTION – for the 4th year, 7th semester

ORTHODONTIC DIAGNOSIS I-II. – both for the 4th year, 7th and 8th semester

Department of Pedodontics and Orthodontics

1 lecture / week
1 credit point

DIGITAL ORTHODONTICS – for the 5th year, 9th semester

Department of Pedodontics and Orthodontics

1 lecture / week
1 credit point

PEDODONTIC AND ORTHODONTIC PREVENTION

ORTHODONTIC DIAGNOSIS I-II. – both for the 5th year

Department of Pedodontics and Orthodontics

1 lecture / week
1 credit point
DIRECT AESTHETIC DENTISTRY 4th year

Department of Conservative Dentistry
Head of the Department: Dr. Zsuzsanna Tóth
Tutor: Dr. Kamil Al-Katib, Dr. Zsolt Döbrentey

Durations: 1 lecture and 3 practice
Every class: 3h (4x45 min)
Credit value: 1 credit point
Maximum group size: 50

Direct Aesthetic Dentistry I. (basic course) – 1st semester (autumn)

This elective course is for dental students having finished successfully Conservative Dentistry III.

1st week: theory

2nd week: practice
Anterior wax-up. Proper design of cervico - oro – vestibular - incisal dimensions. Perikymata, grooves, character lines, and its effect on the visual dimension of the tooth.

3rd week: practice
Restorations in the front region. Preparation of a standardized full composite first incisor using the anatomical stratification technique.

4th week: practice
Medium size restoration in the molar region. Creation of appropriate cusps-fissure relation.

Direct Aesthetic Dentistry II. (advanced course) – 2nd semester (spring)

This elective course is for dental students having finished successfully Direct Aesthetic Dentistry I.

1st week: theory

2nd week: practice
Direct veneer for randomized middle-aged “patients

3rd week: practice
Rebuilding the veneer for elderly patient.

4th week: practice
Large restoration in the molar region. Creation of appropriate cusp- fissure relation, using stain technique for making the restoration more life-like.
POSTGRADUATE COURSES

Head of Secretariat: Dr. János Gerle
Address: Budapest, district 8., Szentkirályi u. 47.
(7th floor., room no. 751.)
E-mail: szkepz@dent.semmelweis-univ.hu
E-mail: gerle.janos@dent.semmelweis-univ.hu
Phone: 266-7006
Fax: 266-4715

Administrators:
Ms. Erika Sviderszky Blahó
Office hours: Monday, Tuesday 13.30-15.30, Wednesday, Thursday 9.00-12.00
Phone: 266-7006, fax: 266-4715, e-mail: szkepz@dent.semmelweis-univ.hu

Ms. Veronika Gecse
Office hours: Monday, Tuesday 13.30-15.30, Wednesday, Thursday 9.00-12.00
Phone: 266-7006, fax: 266-4715, e-mail: szkepz@dent.semmelweis-univ.hu

Postgraduate courses are available at the Faculty of Dentistry at Semmelweis University, ending with a specialty exam in the following fields:
1. Pedodontics
2. Orthodontics
3. Periodontology
4. Dentoalveolar Surgery
5. Prosthetic Dentistry
6. Endodontics

The language of the postgraduate courses and the specialty exams is Hungarian. The courses convey theoretical knowledge and practical skills.

If you wish to take a specialty exam you must meet the following requirements:
you can take a specialty exam after 36 months of professional practice fulfilled as an employee, according to Hungarian law. To complete this practice, therefore, you must obtain a work permission.
professional practice includes theory and treating patients. You will need a good command of the Hungarian language to understand theory, and be able to communicate with patients
Non-European citizens must have their degree nostrificated
FACULTY OF PHARMACEUTICAL SCIENCES
The curriculum of the credit-based system for student enrolled for the 5th year in the 2022-2023 academic year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER 2017/2018/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Practice)</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKASKG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Theory)</td>
<td>4+1</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYASKASE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Pract.)</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYINFBEIG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Theory)</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYINFBEIE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics I. (Practice)</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYFIZBIFG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYFIZBIFE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology I. (Practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGENBILG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYGENBILE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Terminology**</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKOTRG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics I. (Practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYEGYMATG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYEGYMATE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYTSITSN1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Sciences, Propedeutics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYEYTPPE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology I. *</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>20</td>
<td>27+6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>General and Inorganic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Analytical Chemistry I. (qualitative)</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>General and Inorganic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>Biology I.</td>
<td>examination</td>
</tr>
<tr>
<td>Anatomy Practice</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. Practice</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Introduction to Health Informatics I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II.</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Introduction to Health Informatics I.</td>
<td>examination</td>
</tr>
<tr>
<td>Biophysics II. Practice</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Biophysics I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biology II. Practice</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Botany I.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. Practice</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education II.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>First Aid</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology II.*</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>20</td>
<td>28+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. SEMESTER 2018/2019/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) I.</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>Analytical Chemistry (qualitative) Mathematics II. General and Inorganic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKAKVG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>General and Inorganic Chemistry II. Mathematics II. Biophysics II.</td>
<td>examination</td>
</tr>
<tr>
<td>GYFKTFIKE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany II. Practice</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYNOVGYNG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany II. Practice</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>final #</td>
</tr>
<tr>
<td>GYNOVGYNE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry I. Practice</td>
<td>–</td>
<td>5.5</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative) Introduction to Health Informatics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSZKSZKG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry I.</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative) Introduction to Health Informatics II.</td>
<td>examination</td>
</tr>
<tr>
<td>GYSZKSZKE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education III.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYTSITSNG3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology III. *</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>11</td>
<td>18.5</td>
<td>25+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 4. SEMESTER 2018/2019/2 | | | | | |
| Analytical Chemistry (quantitative) II. | – | 5 | 3 | Organic Chemistry I. Analytical Chemistry (quantitative) I. | practical mark |
| Practice GYASKAKKG2A | | | | | |
| Analytical Chemistry (quantitative) II. | 2 | – | 6 | Organic Chemistry I. Analytical Chemistry (quantitative) I. | final # |
| Practice GYASKAKKE2A | | | | | |
| Biochemistry I. | 3 | – | 3 | Biology II. Organic Chemistry I. Biophysics II. | examination |
| GYOBIBIKE1A | | | | | |
| Physical Chemistry II. | 1 | 4 | 5 | Physical Chemistry I | practical mark |
| GYFKTFIKG2A | | | | | |
| Colloid Chemistry I. | 2 | – | 2 | Physical Chemistry I | examination |
| GYKOLKOLE1A | | | | | |
| Organic Chemistry II. Practice | – | 5.5 | 4 | Organic Chemistry I. | practical mark |
| GYSZKSZKG2A | | | | | |
| Organic Chemistry II. | 4 | – | 5 | Organic Chemistry I. | final # |
| GYSZKSZKE2A | | | | | |
| Hungarian Medical Terminology IV.* | – | 4 | 2 | Hungarian Medical Terminology III. | practical mark |
| GYLEKMSZG4A | | | | | |
| Physical Education IV. | – | 1 | 0 | | signature |
| GYTSITSNG4A | | | | | |
| Summer Practice I.** | – | 35 | 4 | Analytical Chemistry II. Organic Chemistry II. | practical mark |
| GYSZGNSZG1A | | | | | |</p>
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total:</td>
<td>12</td>
<td>19.5</td>
<td>28+4+4**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. SEMESTER 2019/2020/1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry II. Practice GYOBIBKKG2A</td>
<td>–</td>
<td>1,5</td>
<td>0</td>
<td>Organic Chemistry II. Biochemistry I.</td>
<td>signature</td>
</tr>
<tr>
<td>Biochemistry II. GYOBBIBE2A</td>
<td>2,5</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I. Medical Terminology</td>
<td>final #</td>
</tr>
<tr>
<td>Physiology I. Practice GYKIKEITG1A</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>Biochemistry I. Medical Terminology</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Physiology I. GYKIKEITG1A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>Biochemistry I. Medical Terminology</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry I. GYGYGKYG1A</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>Analytical Chemistry (quantitative) II. Organic Chemistry II. Physical Chemistry II. Medical Terminology</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmaceutical Technology I. GYGYIGYT1A</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Organic Chemistry II. Colloid Chemistry I. Analytical Chemistry (quantitative) II. Medical Terminology</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Basic Immunology GYGENIMUE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II. Medical Terminology Anatomy</td>
<td>examination</td>
</tr>
<tr>
<td>Colloid Chemistry II. GYKOLKOLG2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Colloid Chemistry I. Analytical Chemistry (quantitative) II. Organic Chemistry II.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Hungarian Medical Terminology V. GYLEKMSZG5A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology IV.</td>
<td>final</td>
</tr>
<tr>
<td>Total:</td>
<td>15.5</td>
<td>16.5</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology II. Practice GYKIKELET2A</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>Biochemistry II. Physiology I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Physiology II. GYKIKELTE2A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final #</td>
</tr>
<tr>
<td>Pharmacognosy I. Practice GYFMMGGNGD2A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmaceutical Botany II. Biochemistry II. Pharmaceutical Chemistry I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmacognosy I. GYFMMGGNE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry II. Practice GGYKGYKKE2A</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Colloid Chemistry I. Biochemistry II. Pharmaceutical Chemistry I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry II. GGYKGYKKE2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology GYMIKGMIE2A</td>
<td>3</td>
<td>–</td>
<td>5</td>
<td>Biochemistry II. Physiology I. Basic Immunology</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology Practice GYMIKGMIG2A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Technology II. Practice GGYGITY2A</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Pharmaceutical Chemistry I. Colloid Chemistry I. Pharmaceutical Technology I.</td>
<td>practical course grade</td>
</tr>
<tr>
<td>Pharmaceutical Technology II. GGYGITY2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Summer Practice II.** GYSZGNSZG2A</td>
<td>–</td>
<td>35</td>
<td>4</td>
<td>Pharmaceutical Chemistry II. Pharmaceutical Technology II.</td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>17</td>
<td>32 + 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmacognosy I. Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Chemistry II. Physiology II.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) III.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharm. Chemistry II. Physiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) III.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Chemistry II. Physiology II.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Physiology II. Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Pharm. Microbiol. Basic Immunology</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III.</td>
<td>–</td>
<td>9</td>
<td>5</td>
<td>Pharm. Chemistry II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td>Pharm. Chemistry II. Pharm. Techn. II.</td>
<td>examination</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology (theory) I.</td>
<td>3</td>
<td>–</td>
<td>2</td>
<td>Pharmaceutical Chemistry II. Pharm.</td>
<td>examination</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II. Pharm. Microbiol.</td>
<td>examination</td>
</tr>
<tr>
<td>Principles of Professional Ethics I.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>19</td>
<td>31 + 1**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Toxicology (practice) II. GYGYHHAITEG2A</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>Pharm. and Tox. I. Pharm. Techn. III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II. GYGYHHATE2A</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>Pharm. Chemistry III. Basic Med. Pathop. I.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV. GYKGYI26G4A</td>
<td>-</td>
<td>9</td>
<td>6</td>
<td>Pharm. Techn. III. Pharm. Chemistry III. Pharmacognosy II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV. GYKGYI26E4A</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>Intro. to Health Inf. II. Hist. of Scienc.and Prop. Pharm. Techn. III.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacy Administration (theory+practice) I. GYEGYGIMG1A</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Pharm. and Tox. I. Mathematics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Introduction to Pharmacoeconomics (pract.) GYETEBFOG1A</td>
<td>-</td>
<td>1</td>
<td>1**</td>
<td>Pharm. and Tox. I. Mathematics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory) GYFMGFTAE1A</td>
<td>1</td>
<td>-</td>
<td>1**</td>
<td>Pharmacognosy II.</td>
<td>examination</td>
</tr>
<tr>
<td>Basics of Pharmaceutical Management (pra.) GYEGYGGMG1A</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. I. Mathematics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology (theory) II. GYUGYI185E2A</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Industrial Pharmaceutical Technology I. Industrial Pharmaceutical Technology III.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) II. GYGYHKAE2A</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Basic Med. Pathop. I. Pharm. and Tox. I.</td>
<td>final*</td>
</tr>
<tr>
<td>Public Health (practice) GYNEINETG1A</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathophysiology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory) GYNEINEGE1A</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Basic Medical Pathophysiology I.</td>
<td>examination</td>
</tr>
<tr>
<td>Diploma Work I. GYSZDSZDG1A</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>Passing all semi-finals and finals of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>22</td>
<td>28 + 2**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I.</td>
<td>–</td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV. Basic Medical Pathophysiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV. Basic Medical Pathophysiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>B. Med. Pathoph. II., Pharm. and Tox. II., Pharm. Techn. IV., Public Health</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Pharm. and Tox. II. Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Administr. I. Pharm. Techn. IV. Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II. Hist. of Scienc. and Prop.</td>
<td>examination</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>Pharmacy Administr. I. Pharm. Techn. IV.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharm. and Tox. II.</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharm. Techn. IV. Pharm. Administr. I.</td>
<td></td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8</td>
<td>–</td>
<td>Pharm. Techn. IV. Pharm. Administr. I. Public Health</td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12/week</td>
<td>19/week</td>
<td>18 +8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. SEMESTER 2021/2022/1
10. SEMESTER 2021/2022/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice II. GYSZGGSZVG2A</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compulsory Practice I. GYSZGGSZVG1A</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense GYSZDDIVE1A</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II. GYSZDSDKG2A</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II. GYKANG071E2A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>1/sem.</td>
<td>40</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) III.</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Practice I. (9. semester)</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice II. (10. semester)</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/élev</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Introduction to Pharmacoeconomics (pract)</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. I. Mathematics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacognosy II.</td>
<td>examination</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) I. GYLEKMSZG1A</td>
<td>–</td>
<td>4</td>
<td>6</td>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II. Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharmaceutical Chemistry II. Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The curriculum of the credit-based system for students enrolled for the 4th year in the 2021/2022 academic year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry I. (Practice) GYASKASKG1A</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Theory) GYASKASE1A</td>
<td>4+1</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Pract.) GYINFBEIG1A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Theory) GYINFBEIE1A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Biophysics I. (Practice) GYFIZBIFG1A</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics I. (Theory) GYFIZBIFE1A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Biology I. (Practice) GYGENBILG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology I. (Theory) GYGENBILE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Medical Terminology** GYLEKOTRG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics I. (Practice) GYEYMATG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics I. (Theory) GYEYMATGE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education I. GYTSITSNG1A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>History of Sciences, Propedeutics GYEYTPTE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>Hungarian Medical Terminology I. * GYLEKMSZG1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>20</td>
<td>29+4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>General and Inorganic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Analytical Chemistry I. (qualitative)</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>General and Inorganic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>Biology I.</td>
<td>examination</td>
</tr>
<tr>
<td>Anatomy Practice</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. Practice</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Introduction to Health Informatics I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II.</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Introduction to Health Informatics I.</td>
<td>examination</td>
</tr>
<tr>
<td>Biophysics II. Practice</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Biophysics I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biology II. Practice</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Botany I.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. Practice</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education II.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>First Aid</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology II.*</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>20</td>
<td>28+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (quantitative) I. GYASKAKVG1A</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>Analytical Chemistry (qualitative) Mathematics II. General and Inorganic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Chemistry I. GYFKTFIKE1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>General and Inorganic Chemistry II. Mathematics II. Biophysics II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Botany II. Practice GYN0VGYNG2A</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany II. GYN0VGYNE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Biology II. Pharmaceutical Botany I.</td>
<td>final #</td>
</tr>
<tr>
<td>Organic Chemistry I. Practice GYSZKSZKG1A</td>
<td>–</td>
<td>5.5</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative) Introduction to Health Informatics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry I. GYSZKSZKE1A</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative) Introduction to Health Informatics II.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education III. GYTSIT5NG3A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology III. * GYLEKMSZG3A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>11</td>
<td>18.5</td>
<td>25+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
4. SEMESTER 2019/2020/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (quantitative) II. Practice GYASKAKKG2A</td>
<td>–</td>
<td>5</td>
<td>3</td>
<td>Organic Chemistry I. Analytical Chemistry (quantitative) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) II. GYASKAKKE2A</td>
<td>2</td>
<td>–</td>
<td>6</td>
<td>Organic Chemistry I. Analytical Chemistry (quantitative) I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biochemistry I. GYOBBIKE1A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biology II. Organic Chemistry I. Biophysics II.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Chemistry II. GYFKTFIKG2A</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>Physical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Colloid Chemistry I. GYKOLKOLE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physical Chemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Organic Chemistry II. Practice GYSZKSZKG2A</td>
<td>–</td>
<td>5,5</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry II. GYSZKSZKE2A</td>
<td>4</td>
<td>–</td>
<td>5</td>
<td>Organic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Hungarian Medical Terminology IV.* GYLEKMSZG4A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education IV. GYTSITSN4A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I.** GYSZGN5SZG1A</td>
<td>–</td>
<td>35</td>
<td>4</td>
<td>Analytical Chemistry II. Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12</td>
<td>19.5</td>
<td>28+4+4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. SEMESTER 2020/2021/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (practice) II. GYOBIBKIG2A</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>Organic Chemistry II. Biochemistry I.</td>
<td>signature</td>
</tr>
<tr>
<td>Biochemistry (theory) II. GYOBIKIE2A</td>
<td>2.5</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiology (practice) I. GYTLMEIANG1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Biochemistry I. Medical Terminology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) I. GYTLMEIEN1A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory+practice) I. GYGYKGKMG1A</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>Analyt. Chem. (quant.) II. Organic Chemistry II. Physical Chemistry II. Medical Terminology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic of Dietetics (theory) GYGYITPAE1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I. GGYIGYTG1A</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Organic Chemistry II. Colloid Chemistry I. Physical Chemistry II. Medical Terminology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>GYLMIKLDE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Immunology (theory) GYGENIMUE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II. Medical Terminology Anatomy</td>
<td>examination</td>
</tr>
<tr>
<td>Colloid Chemistry (practice) II. GYGYIKLDG2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Colloid Chemistry I. Physical Chemistry II. Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Principles of Professional Ethics I. GYKGTO071E1A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V. GYLEKMSZG5A</td>
<td>–</td>
<td>4</td>
<td>2**</td>
<td>Hungarian Medical Terminology (pract.) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V. GYTSITSNG5A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16.5</td>
<td>15.5</td>
<td>25 + 3**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology (practice) II.</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYTLMELNG2A</td>
<td></td>
<td></td>
<td></td>
<td>Physiology I.</td>
<td></td>
</tr>
<tr>
<td>Physiology (theory) II.</td>
<td>5</td>
<td>–</td>
<td>6</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>GYTLMELNE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmac. Botany II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYFMGGD1G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYKGMG2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>GYGYKGYKE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice)</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Physiology I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYMIKGMIG1A</td>
<td></td>
<td></td>
<td></td>
<td>Basic Immunology</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory)</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>GYMIKGMBE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGYIGYT2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Chemistry I.</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Colloid Chemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>GYGYIGYTE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYTSITSNG6A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSSZG239G4A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Techn. II.</td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>17</td>
<td>31 + 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II. GYFMGGGNDG2A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharmacognosy I, Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II. GYFMGGGDE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) III. GYGKYKG3A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Pharm. Chemistry II, Physiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) III. GYGKYKE3A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I. GYGYHHATG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Physiology II, Pharm. Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I. GYGYHAITE1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Pharmac. Microbiol, Basic Immunology</td>
<td>examination</td>
</tr>
<tr>
<td>Basics of Pharmacoeconomics (theory) GYETEFOAG1A</td>
<td>0</td>
<td>1</td>
<td>1**</td>
<td>Mathematics II, Passing in the same term with Pharmacology and Toxicology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III. GYGYIGTYG3A</td>
<td>–</td>
<td>9</td>
<td>5</td>
<td>Pharm. Chemistry II, Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III. GYGYITE3A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) I. GYGYHKE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II, Pharmac. Microbiol.</td>
<td>examination</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I. GYGIIIGTE1A</td>
<td>3</td>
<td>0</td>
<td>2**</td>
<td>Pharm. Technology II, Pharm.Chem.and Anal.I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education VII. GYTSITSG7A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>21</td>
<td>29 +3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Toxicology (practice) II. GYGYHHHATE2A</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>Pharm. and Tox. I. Pharm. Techn. III. Basic Med. Pathop. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II. GYGYHHHATE2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Pharm. and Tox. I. Pharm. Techn. III. Basic Med. Pathop. I.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV. GYGYVIGYTE4A</td>
<td>–</td>
<td>9</td>
<td>6</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV. GYGYVIGYTE4A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacy Administration I. (theory+practice) GYEGYGIMG1A</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Basics of Pharmacoec. Hist. of Scienc. and Prop. Pharm. Techn. III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology (theory) II. GYGYHKKAE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Pathop. I. Pharm. and Tox. I.</td>
<td>final*</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory) GYFMGFTAE1A</td>
<td>1</td>
<td>–</td>
<td>1**</td>
<td>Pharmacognosy II.</td>
<td>examination</td>
</tr>
<tr>
<td>Basics of Pharmaceutical Management (practice) GYEGYGGM1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Basics of Pharmacoecconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Products of Veterinary Medicine (theory) GYGYIAGKE1A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Ph. Technology III. Ph. Microbiology</td>
<td>examination</td>
</tr>
<tr>
<td>Public Health (practice) GYNEINETG1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathophysiology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory) GYNEINEGE1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education VIII. GYKTSI116G8A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma Work I. GYSZDSZDG1A</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>Passing all semi-finals and finals of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>22</td>
<td>27 +1**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I.</td>
<td>–</td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV. Basics of Phytother.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Pharm. and Tox. II. Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Administr. I. Pharm. Techn. IV. Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II. Pharm. Techn. IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. II. Hist. of Scienc. and Prop.</td>
<td>examination</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education IX.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>–</td>
<td>Pharmacy Administr. I. Pharmac. Techn. IV.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharmac. and Tox. II.</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>Pharmac. Techn. IV. Pharmacy Administr. I.</td>
<td></td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8/</td>
<td>–</td>
<td>Pharmac. and Tox. II. Pharmac. Techn. IV.</td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12/week</td>
<td>40/week</td>
<td>18 +8**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
10. SEMESTER 2022/2023/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice II.</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compuls. Practice I. GYSZGSZVG1A</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense GYSZDDIVE1A</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II.</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I. (9. semester)</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice II. (10. semester)</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/1évé</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Basics of Pharmacoeconomics</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Pharm. and Tox. I. Math. Mathematics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Phytotherapy (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacognosy II.</td>
<td>examination</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I.</td>
<td>3</td>
<td>0</td>
<td>2**</td>
<td>Pharm. Technology II. Pharm.Chem.and Anal.I.</td>
<td>examination</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>–</td>
<td>6</td>
<td>4</td>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II. Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharmaceutical Chemistry and Analysis Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The curriculum of the credit-based system for students enrolled for 3rd year in the 2021/2022 academic year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER 2019/2020/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Practice)</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYASKASKG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry I. (Theory)</td>
<td>4+1</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYASKASKE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Pract.)</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYINFBEIG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Health Informatics I. (Theory)</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYINFBEIE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics I. (Practice)</td>
<td>–</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYFIZBIFIG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYFIZBIFE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology I. (Practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYGENBILG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYGENBILE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Terminology**</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKOTRG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics I. (Practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYEGYMATG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics I. (Theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYEGYMATE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYTSITSNG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Sciences, Propedeutics</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>examination</td>
</tr>
<tr>
<td>GYEGYTPPE1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Medical Terminology I. *</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYLEKMSZG1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>20</td>
<td>29+4**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry II. GYASKASK2E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>General and Inorganic Chemistry I.</td>
<td>final #</td>
</tr>
<tr>
<td>Analytical Chemistry I. (qualitative) GYASKANKG1A</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>General and Inorganic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy GYANTANAE1A</td>
<td>2</td>
<td>–</td>
<td>4</td>
<td>Biology I.</td>
<td>examination</td>
</tr>
<tr>
<td>Anatomy Practice GYANTANAG1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. Practice GYINFBEIG2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Introduction to Health Informatics I.</td>
<td>signature</td>
</tr>
<tr>
<td>Introduction to Health Informatics II. GYINFBEIE2A</td>
<td>1</td>
<td>–</td>
<td>2</td>
<td>Introduction to Health Informatics I.</td>
<td>examination</td>
</tr>
<tr>
<td>Biophysics II. Practice GYFIZBIFG2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics II. GYFIZBIFE2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Biophysics I.</td>
<td>final #</td>
</tr>
<tr>
<td>Biology II. Practice GYGENBILG2A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology II. GYGENBILE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final #</td>
</tr>
<tr>
<td>Pharmaceutical Botany I. GYNOVGYNG1A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. Practice GYEYMATG2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics II. GYEYMAETE2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Mathematics I. Introduction to Health Informatics I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education II. GYTSITSNG2A</td>
<td>–</td>
<td>1</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>First Aid GYTRAELSE1A</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology II.* GYLEKMSZG2A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology I.</td>
<td>practical mark</td>
</tr>
</tbody>
</table>

Total: 16 20 28+2

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (quantitative) (practice) GYKASK066G1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>General and Inorganic Chemistry II. Analytical Chemistry (qualitative)</td>
<td>practical mark</td>
</tr>
<tr>
<td>Analytical Chemistry (quantitative) (theory) GYKASK066E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physical Chemistry for Pharmacists (theory+practice) GYKGYI122G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II. Mathematics II. Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) I. GYKSZK123E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Physiology (practice) I. GYKTLM068G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Anatomy Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) I. GYKTLM068E1A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>Biology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Biochemistry (theory+practice) I. GYKBMT069G1A</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>Gen. and Inorg. Chem. II. Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic Immunology (theory) GYKGEN070E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Principles of Professional Ethics I. GYKANG071E1A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) III. GYLEKMSZG3A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education III. GYKTSI116G3A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18.5</td>
<td>17.5</td>
<td>29+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SEMESTER 2020/2021/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (theory) II. GYKBMT069E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I. Organic Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Colloid Chemistry (theory+practice) GYKGYI072G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Phys. Chem. for Pharm. Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (practice) II. GYKSKZK123G2A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) II. GYKSKZK123E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiology (practice) II. GYKTLMO68G2A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Physiology I. Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II. GYKTLMO68E2A</td>
<td>5</td>
<td>–</td>
<td>6</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice) GYKGYI073G1A</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Physiology I. Phys. Chem. for Pharm. Hist. of Scienc. and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biotechnology (theory) GYKGYI074E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education IV. GYKTSI116G4A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV. GYLEKMSZG4A</td>
<td>–</td>
<td>4</td>
<td>2**</td>
<td>Hungarian Medical Terminol. (practice) III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Practice I. GYKANG238G1A</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Analytical Chem. (quant.) Medical Terminology</td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I. GYSSZG234G4A</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II. Analytical Chem. (quant.)</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
<td>20/sem. 4x40/sem</td>
<td>26+2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Chemistry (practice) I. GYKGYK076G1A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Analytical Chem. (quant.) Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) I. GYKGYK076E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I. GYKGYI126G1A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Physiological Pharm. and Pharmaceutical dosage forms, Colloid Chem., Medical Terminology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice) GYKGYI078G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice) II. GYKFMSG079G2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Biology II, Biotechnology Pharmaceutical Botany I.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory) II. GYKFMSG079E2A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Dietetics (theory) GYKGYI168E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II, Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice) GYKMİK081G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory) GYKMİK081E1A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory) GYKLMI082E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II, Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice) GYKGYH083G1A</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Physiology II, Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V. GYLEKMSZG5A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V. GYKTSI116G5A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
</tbody>
</table>

Total: 17 18 27

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. SEMESTER 2021/2022/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmaceutical Botany II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Chem. I.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology II. (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Patho.I. Dietetics Pharm. Microbiology</td>
<td>final*</td>
</tr>
<tr>
<td>Veterinary Pharmaceuticals (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharm. Techn. I. Pharm. Microbiology</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Patho.I. Physiological Pharm. and Pharmaceutical dosage forms</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharm. Chem. and Anal.; Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>13</td>
<td>20/semester</td>
<td>26+4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. SEMESTER 2022/2023/1					
Pharmacognosy (practice) II.	–	4	2	Pharmacognosy I.	practical mark
Pharmacognosy (theory) II.	2	–	3		final*
Instrumental Pharmaceutical Analysis (practice)	–	5	4	Pharm. Chem. II. Pharm. Techn. II.	practical mark
Instrumental Pharmaceutical Analysis (theory)	2	–	2	Pharm. Chem. II. Pharm. Techn. II.	examination
Pharmacology and Toxicology (practice) II.	–	2	2	Basic Med. Patho. II. Pharm. and Tox. I.	practical mark
Pharmacology and Toxicology (theory) II.	3	–	3	Pharm. and Tox. I.	examination
Pharmaceutical Technology (practice) III.	–	8	5	Pharm. Techn. II.	practical mark
Pharmaceutical Technology (theory) III.	2	–	2	Pharm. Techn. II.	examination
Biological Drugs (theory)	2	–	2	Pharm. Chem. II. Pharm. and Tox. I. Biotechnology	examination
Introduction to Pharmacoeconomics (practice)	–	1	1	Mathematics II. Pharm. and Tox. I.	practical mark
Industrial Pharmaceutical Technology I.	3	0	2	Pharm. Techn. II.; Pharm.Chem.and Anal.I.	examination
Physical Education VII.	–	1	–		signature
Total:	**14**	**21**	**26+2**		

* Counts to the qualification of the diploma

** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology and Toxicology (practice) III.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmacology and Toxicology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV.</td>
<td>–</td>
<td>8</td>
<td>4</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV.</td>
<td>2</td>
<td>–</td>
<td>5</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacy Administration (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharmac. and Tox. II. Intr. to Pharmacoeco.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathophysiology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Phytotherapy (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacognosy II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical management (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Introduction to Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical management (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Diploma Work I.</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>Passing all semi-finals and finals of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology III. Industrial Pharm.Tech. I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education VII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td>20</td>
<td>27+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>–</td>
<td>40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV. Phytotherapy</td>
<td>Examination</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV.</td>
<td>Examination</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV.</td>
<td>Examination</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Pharmac. and Tox.III. Pharmacy Administ.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacy Admin. I. Pharm. Techn. IV. Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmacy Admin. I. Pharm. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox.III. Pharm. Techn. IV.</td>
<td>Examination</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox.III. Hist. of Scienc.and Prop.</td>
<td>Examination</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education IX.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28</td>
<td>28</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>Pharmacy Administr. I. Pharm. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. and Tox. III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. Techn. IV. Pharmacy Administr. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>Pharmac. and Tox. III. Pharm. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12/week</td>
<td>40/week</td>
<td>24+8**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
10. SEMESTER 2023/2024/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice II.</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II.</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam II.</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Hungarian Medical Terminology (practice) III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Techn. II.; Pharm. Chem. and Anal. I.</td>
<td>examination</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology III. Industrial Pharm.Tech. I.</td>
<td>examination</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) III.</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice I.</td>
<td>--</td>
<td>40</td>
<td>4</td>
<td>Organic Chemistry II. Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>--</td>
<td>40</td>
<td>4</td>
<td>Pharmaceutical Chemistry and Analysis Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The curriculum of the credit-based system for students enrolled from 2020

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Inorganic Chemistry (practice) I. GYKASK106G1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>General and Inorganic Chemistry (theory) I. GYKASK106E1A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Informatics (practice) GYKDEI107G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (practice) I. GYKFIZ108G1A</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (theory) I. GYKFIZ108E1A</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Biology (practice) I. GYKGEN109G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology (theory) I. GYKGEN109E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>First Aid (practice) GYKTRA110G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Terminology (practice) GYKLEK154G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics for Pharmacists (practice) GYKEGY112G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics for Pharmacists (theory) GYKEGY112E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Introduction to Pharmaceutical Studies (methodology, law) (theory) GYKEGY113E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>History of Pharmaceutics and Propedeutics (theory) GYKFMG153E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Principles of Professional Ethics I. GYKGT0071E1A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education I. GYKTSI116G1A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) I. GYKLEK155G1A</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>11.5</td>
<td>18.5</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lecture (hour/week)</td>
<td>Practice (hour/week)</td>
<td>Credit</td>
<td>Prerequisites</td>
<td>Exam type</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>General and Inorganic Chemistry (theory) II. GYKASK106E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Gen. and Inorg. Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Analytical Chemistry (theory+practice) I. GYKASK117G1A</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>Gen. and Inorg. Chemistry I., Introd. to Pharm. Studies, Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Anatomy (practice) GYKANT118G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I., Pharm. Terminology, First Aid</td>
<td>signature</td>
</tr>
<tr>
<td>Anatomy (theory) GYKANT118E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Biophysics (practice) II. GYKFIZ108G2A</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (theory) II. GYKFIZ108E2A</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Biology (practice) II. GYKGEN109G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology (theory) II. GYKGEN109E2A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Communication and Information Networks (theory+practice) GYK MAG120G1A</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Introd. to Pharm. Studies</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basics of Economics (theory) GYKEMK121E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Mathematics for Pharm., Introd. to Pharm. Studies</td>
<td>semi–final</td>
</tr>
<tr>
<td>Physical Chemistry for Pharmacists (theory+practice) GYKG YI122G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Gen. and Inorg. Chemistry I., Biophysics I., Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) II. GYKLEK155G2A</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td>Hungarian Pharmaceutical Terminology (practice) I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education II. GYKTSI116G2A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (theory) II. GYKASK117E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Colloid Chemistry (theory and practice) GYKGYI072G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Physic. Chem. for Pharm., Biophysics II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (practice) I. GYKSZK123G1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) I. GYKSZK123E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Physiology (practice) I. GYKTLM124G1A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Anatomy, Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) I. GYKTLM124E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Biochemistry (theory+practice) I. GYKBMT069G1A</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>Gen. and Inorg. Chem. II., Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Basic Immunology (theory) GYKGEN070E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) III. GYKLEK155G3A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Hungarian Pharmaceutical Terminology (practice) II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education III. GYKTSI116G3A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>17.5</td>
<td>16.5</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (theory) II. GYKBMT069E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Biochemistry I., Organic Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>Organic Chemistry (practice) II. GYKSZK123G2A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) II. GYKSZK123E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice) GYKGYI073G1A</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Physiology I., Physic. Chem. for Pharm., History of Pharm. and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (practice) II. GYKTLM124G2A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Physiology I., Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II. GYKTLM124E2A</td>
<td>6</td>
<td>–</td>
<td>6</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Biotechnology (theory) GYKGYI074E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice) GYKGYI078G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Practice I. GYKANG238G1A</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Analytical Chemistry II., Pharmaceutical Terminology</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) IV. GYKLEK155G4A</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>final</td>
</tr>
<tr>
<td>Physical Education IV. GYKTSI116G4A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I. GYSSZG234G1A (1 week)</td>
<td>–</td>
<td>40/week</td>
<td>1/2/3/4</td>
<td>depending on the number of the weeks</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSSZG234G2A (2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYSSZG234G3A (3 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYSSZG234G4A (4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18</td>
<td>+20/semester</td>
<td>26</td>
<td>+3 +1/2/3/4</td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice) GYKFMG125G1A</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Biology II., Biotechnology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory) GYKFMG125E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Dietetics (theory) GYKGYI168E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II., Biochemistry II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Technology I. (theory+practice) GYKGYI126G1A</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Physiological Pharmaceutics and Pharm. dosage forms, Pharmaceutical Terminology, Nanotechnology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (practice) I. GYKGYK127G1A</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Analytical Chemistry II., Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (theory) I. GYKGYK127E1A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice) GYKMIK081G1A</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory) GYKMIK081E1A</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice) GYKGYH128G1A</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Physiology II., Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory) GYKLMI082E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II., Biochemistry II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Statistics for Pharmacists (theory+practice) GYKEGY129G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Mathematics for Pharm., Physiological Pharmaceutics and Pharm. dosage forms, Informatics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V. GYKTSG116G5A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18</td>
<td>15</td>
<td>27</td>
<td>Counts to the qualification of the diploma</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Lecture (hour/week)</td>
<td>Practice (hour/week)</td>
<td>Credit</td>
<td>Prerequisites</td>
<td>Exam type</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology II. (theory+practice)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Basic Med. Pathoph. I., Pharmac. Microbiology, Dietetics</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmacological Botany</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry and Analysis I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharm. Techn. I., Pharm. Chem. and Anal. I., Statistics for Pharmacists</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Veterinary Pharmaceuticals (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmaceutical Techn. I., Pharmac. Microbiology</td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Pathoph. I., Physiological Pharmaceutics and Pharmaceutical dosage forms</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>1/2/3/4</td>
<td>depending on the number of the weeks</td>
<td>practical mark elective subject</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
</tbody>
</table>

Total: 13 18 27+1/2/3/4

Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacognosy (practice) II. GYKFMG130G2A</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Pharmacognosy I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II. GYKFMG130E2A</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (practice) GYKGYK087G1A</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Ph. Chem. and Analysis II., Pharm. Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (theory) GYKGYK087E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) II. GYKGYH086G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmacol. and Tox. I., Basic Med. Pathoph. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II. GYKGYH086E2A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III. GYKGYI126G3A</td>
<td>–</td>
<td>8</td>
<td>5</td>
<td>Pharm. Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III. GYKGYI126E3A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>semi–final</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I. GYGIIIGTE1A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology II., Ph. Chem. and Analysis I.</td>
<td>semi–final</td>
</tr>
<tr>
<td>Biological Drugs (theory) GYKGYI088E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Ph. Chem. and Analysis II., Pharm. and Tox. I.,</td>
<td>semi–final</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Biotechnology</td>
<td></td>
</tr>
<tr>
<td>Pharmacoeconomics (practice) GYKETE131G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox. I., Basics of Economics,</td>
<td>practical mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Statistics for Pharmacists</td>
<td></td>
</tr>
<tr>
<td>Physical Education VII. GYKTSI116G7A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>21</td>
<td>26+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) III.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmacology and Toxicology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYH086G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td>Pharmacological Toxicology II.</td>
<td>final*</td>
</tr>
<tr>
<td>GYKGYH086E3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV.</td>
<td>–</td>
<td>8</td>
<td>4</td>
<td>Pharmaceutical Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI126G4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV.</td>
<td>2</td>
<td>–</td>
<td>5</td>
<td>Pharmaceutical Technology III.</td>
<td>final*</td>
</tr>
<tr>
<td>GYKGYI126E4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy Administration (theory+practice) I.</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Pharm. and Tox. II., Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGY090G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health (practice)</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Pathophys. II., Dietetics</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKNEI091G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Health (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Pathophys. II., Dietetics</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKNEI091E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytotherapy (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacognosy II.</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKFMG092E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical management (practice)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGY093G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical management (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmacoeconomics</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKGY093E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II.</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology III., Industrial Pharm. Techn. I.</td>
<td>semi–final</td>
</tr>
<tr>
<td>GGYGII1GTE2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma Work I.</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Passing all final and semi–final of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>GYKSZD132G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education VIII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G8A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td>18</td>
<td>27+2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKANG133G1A</td>
<td></td>
<td></td>
<td></td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.,</td>
<td>semi–final</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.,</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKGYH095E1A</td>
<td></td>
<td></td>
<td></td>
<td>Phytotherapy</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKEGY096E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>(theory+practice)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYKGYI097E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>Pharmac. and Tox. III., Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Consulting (theory+practice)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYKMAG098G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharmacy Administration I., Public Health,</td>
<td>final*</td>
</tr>
<tr>
<td>GYKEGY090E2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharmac. Techn. IV.</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. Techn. IV., Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKDEI099G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKEGY100E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>semi–final</td>
</tr>
<tr>
<td>GYKMAG101E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYKSZD132G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education IX.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G9A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>semi–final or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>practical mark</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical industrial and regulatory</td>
<td>28</td>
<td>28</td>
<td>4</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>affairs knowledge (teaching block)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>Pharmacy Administration I., Pharmac. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI102G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. and Tox. III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>(theory+practice)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYKGYI103G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>Pharmac. Techn. IV., Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI104G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug innovation and clinicalstudies</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>Pharmac. and Tox. III., Pharmac. Techn. IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>(theory+practice)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYKGYI105G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>12 /week 28/sem.</td>
<td>20/week 40/week 28/sem.</td>
<td>24+8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma
10. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice Before the Board Exam II. GYKANG133G2A</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice, Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II. GYKANG071E2A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>1/sem.</td>
<td>40/week</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts to the qualification of the diploma

Obligatory elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) IV. GYKLEK155G4A</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>final*</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology I. GYGIIIGTE1A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology II., Pharm. Chem. and Analysis I.</td>
<td>examination</td>
</tr>
<tr>
<td>Industrial Pharmaceutical Technology II. GYGIIIGTE2A</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Industrial Pharm. Tech. I., Pharm. Technology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam I. GYKANG133G1A</td>
<td>–</td>
<td>40</td>
<td>8</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Compulsory Practice Before the Board Exam II. GYKANG133G2A</td>
<td>–</td>
<td>40</td>
<td>16</td>
<td>Compulsory Practice Before the Board Exam I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense</td>
<td>1/sem.</td>
<td>–</td>
<td>10</td>
<td>Diploma Work II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects in the recommended curriculum

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Practice I. GYSSZG234G1A (1 week)</td>
<td>--</td>
<td>40</td>
<td>1/2/3/4</td>
<td>Organic Chemistry II., Analytical Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSSZG234G2A (2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYSSZG234G3A (3 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYSSZG234G4A (4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Practice II. GYSSZG239G1A (1 week)</td>
<td>--</td>
<td>40</td>
<td>1/2/3/4</td>
<td>Ph. Chem. and Analysis I., Pharm. Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSSZG239G2A (2 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYSSZG239G3A (3 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYSSZG239G4A (4 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>2-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for first year students in the 2022/2023 academic year
1. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry (practice) I. GYKASK106G1A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>General and Inorganic Chemistry (theory) I. GYKASK106E1A</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Informatics (practice) GYKDEI1107G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (practice) I. GYKFIZ108G1A</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biophysics (theory) I. GYKFIZ108E1A</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Biology (practice) I. GYKGEN109G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Biology (theory) I. GYKGEN109E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>First Aid (practice) GYKTRA110G1A</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Terminology (practice) GYKLEK154G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics for Pharmacists (practice) GYKEGY112G1A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>practical mark</td>
</tr>
<tr>
<td>Mathematics for Pharmacists (theory) GYKEGY112E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Introduction to Pharmaceutical Studies (methodology, law) (theory) GYKKEGY113E1A</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>History of Pharmaceutics and Propedeutics (theory) GYKFMG153E1A</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>semi-final</td>
</tr>
<tr>
<td>Principles of Professional Ethics I. GYKGTO071E1A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education I. GYKTSI1116G1A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) I. GYKLEK155G1A</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>semi-final or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>11.5</td>
<td>18.5</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General and Inorganic Chemistry (theory) I., General and Inorganic Chemistry (practice) I.

For details on this subject please contact the department or visit their website.

Informatics (practice)

Complete name of the course: Informatika (gyakorlat)
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Informatics
English name of the course: Informatics (practice)

Neptun-Code: GYKDEI107G1A
Type of registration: obligatory
Institute: Institute of Digital Health Sciences of the Faculty of Health and Public Services of Semmelweis University

Name of the tutor/lecturer: Dr. Szócska Miklós PhD, PhD, professor
E-Mail: titkarsag.dei@semmelweis-univ.hu

Further tutors:
Sándor Zoltán PhD, senior lecturer
Tamus Ádám PhD, PhD, associate professor
Tóth Tamás assistant lecturer

Number of classes /week:
Practice: 2

Credit points: 2

Course principles:
The goal of the course is to introduce the students to the applications of health information technology, especially the sources, organization, analysis and presentation of health information and knowledge. To improve the basic computer skills of students, including the use of office software tools, digital data storage and analysis methods. Acquisition and practical application of IT tools and methods required for later studies (e.g. preparation of a dissertation)

Brief course summary:
Knowledge of basic MS Office tools
Sources of health information and knowledge, online scientific databases and the basics of evidence–based medicine

<table>
<thead>
<tr>
<th>Course data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
<td></td>
</tr>
<tr>
<td>Lecture (contact hrs/week)</td>
<td>Practice (contact hrs/week)</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

Practice topics/week:
1. MS Excel – basics of data storage
2. MS Excel – processing of data 1
3. MS Excel – processing of data 2
4. MS Excel – data representation, diagrams
5. MS Excel – advanced level exercises
6. Collection and processing of medical data
7. Practice, preparation for the test
8. 1. test (Excel exercises, computer test)
9. Theoretical basics of databases
10. Creation of a simple database with Ms Access
11. Data extraction from databases, performing queries
12. Online health information sources
13. Presentation tools
14. Visualisation of medical data: Infographics, word clouds
15. 2. test (Access exercises and information searching, computer-based test)

Order of consultations: by agreement

Prerequisites: –

Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
Attendance of at least 75% of the practices, at least 50% result of both tests

Knowledge testing during the semester:
Mid-term test on week 7 (topic: Excel)
Mid-term test on week 14 (topics: Access, online information sources)
Replacement test: 2 times in the first week of the exam period

Requirements of the signature at the end of the semester:
Attendance of at least 75% of the practices, at least 50% result of both tests
Individual activity of the student during the semester (protocol, etc.): none
Performance control in the examination period (final, semi-final): Practical grade
Performance control in the examination period (written, oral, written and oral): written (computer test)
Prescribed external practice: none

Recommended literature:
Microsoft Office Help and Training Center: https://support.office.com/

The educational materials are available in the Moodle system.
Biophysics (theory) I., Biophysics (practice) I.

Complete name of the course: Biofizika I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biophysics I.
English name of the course: Biophysics (theory) I., Biophysics (practice) I.

Neptun-Code: GYKFIZ108E1A, GYKFIZ108G1A
Type of registration: obligatory
Institute: Department of Biophysics and Radiation Biology

Name of the tutor/lecturer: Dr. Levente Herényi
Phone: +36 1 4591–500/60222
E-Mail: herenyi.levente@med.semmelweis-univ.hu

Further tutors: Dr. Gergely Agócs senior lecturer, PhD
Dr. Tamás Bozó senior lecturer, PhD
Dr. Rita Galántai teacher, PhD
Dr. Nikoletta Kósa assistant lecturer
Dr. Ádám Orosz senior lecturer PhD
Dr. Gusztáv Schay senior lecturer, PhD
Dr. László Smeller professor DSc
Dr. István Voszka associate professor, PhD
Dr. Ádám Zolcsák PhD student

Number of classes /week: 1.5 hours lecture
2.5 hours practice

Credit points: 2 + 2

Course principles:
Biophysics plays a basic role in the education of pharmaceutical students. There are dual role of the subject: on one side it gives general knowledge of natural sciences, on the other side it gives theoretical and practical basis of application of physical principles and methods in pharmaceutical sciences.

Brief course summary:
In connection to the previous it helps the development of structured way of thinking. Through this one can find connection to the basic subjects and to the applied pharmaceutical subjects.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Semester program

1. Lecture topics/week
 1. week: Introduction.
 2. week: Geometrical optics.
 3. week: Fermat principle; Applications of geometrical optics.
 4. week: Wave optics; Applications of wave optics;
 5. week: Particle properties of electromagnetic radiations. Photon concept.
 6. week: Radiations; Law of attenuation of intensity of radiation.
 7. week: Structure of matter; atom, electron.
 8. week: Atomic and molecular interactions.
 9. week: Many atom systems; Boltzmann distribution; Gases; Solids.
 10. week: Light emission, scattering, absorption; Thermal radiation.
 11. week: Luminescence; Light sources; Lasers.
 12. week: Liquid crystals; biological and artificial membranes.
 13. week: Structural organization of living systems: water, nucleid acids, proteins.

II. Practice topics/week
 1. week: Introduction. Laboratory safety rules. Graphical representation of data.
 2. week: Optical lenses, light microscope:
 3. week: Concentration determination with refractometer.
 4. week: Optics of the eye: image formation in the eye.
 5. week: Special light microscopes.
 6. week: Hooke’s law, resonance, AFM principle.
 7. week: Light emission. Medical and laboratory applications.
 8. week: Identification of matter and concentration measurement with polarimeter.
 9. week: Light absorption. Medical and laboratory applications.
 11. week: Dosimetry, dose measuring devices
 12. week: Amplifier, signal processing.
 14. week: Repetition.

Order of consultations: Weekly in the exam period.

Prerequisites: –

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.)
Participation on at least 75% of the practices. Lab. report must be done about the measurements. The missed measurements can be made up within the 4 weeks cycle. Passing two tests from the three during the semester.

Knowledge testing during the semester: Midterm tests on the 6th and 11th weeks. Retake is possible on the 13th week.
Requirements of the signature at the end of the semester:
1. At least 50 points in the test in Physical bases of biophysics.
2. Participation on at least 75% of the practices, (in case of more than 3 absences the signature for the semester is denied.)
3. Acceptance of lab. reports.
4. The practice grade should be at least 2.
5. Individual activity of the student during the semester (protocol, etc.): Lab. report should be made about all the measurements.
6. Performance control in the examination period (final, semi-final): Semifinal exam
7. Performance control in the examination period (written, oral, written and oral): Written and oral
8. Prescribed external practice: –

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.):
Medical biophysics practices (Semmelweis Publisher, 2015)
Biology (theory) I., Biology (practice) I.

Complete name of the course: Biológia I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biol I.
English name of the course: Biology (theory) I., Biology (practice) I.

Neptun-Code:
GYKGEN109E1A and GYKGEN109G1A

Institute:
Department of Genetics, Cell- and Immunobiology Semmelweis University, Faculty of Medicine

Name of the tutor/lecturer: *Prof. Dr. Edit Buzás* DSc
coordinator:
Dr. Orsolya Láng PhD
Phone: 2102940/56251
E-Mail: lang.orsolya@med.semmelweis-univ.hu

Further tutors:
Dr. András Kristóf Fülöp Associate Professor, CSc
Dr. Hargita Hegyesi Associate Professor, PhD
Dr. László Köhidai Associate Professor, CSc
Dr. Eszter Lajkó Research Fellow, PhD
Dr. Marianna Csilla Holub Associate Professor, PhD
Dr. Zoltán Wiener Associate Professor, PhD
Dr. Tamás Visnovitz Assistant Professor, PhD
Dr. Pálma Porrogi Assistant Professor, PhD
András Försönits Research Assistant

Number of lectures /week: 2 (lecture) + 2 (practice)
Credit points: 2+2

Course principles:
Basics of classical and molecular cell biology and techniques applied in the field of modern cell biology are discussed. The subject provides theoretical background for Biochemistry, Physiology and Anatomy.

Brief course summary:
The subject Biology I. discusses the close relation of the function and structure of the eukaryotic cells. It discusses the most significant phenomena of cell compartmentalization, function, aging and cell death. In practices the following topics are studied: light- and electron-microscopy and histotechniques, relevant techniques of cell biology applied to detect basic cell physiological activities.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>spring</td>
<td>6 (during exam period)</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>spring</td>
<td>6 (during exam period)</td>
</tr>
</tbody>
</table>
Semester program

Lecture topics/week
1. week: The cell membrane: structure and function
2. week: Structure and function of nucleus I.
3. week: Structure and function of nucleus II.
4. week: Endoplasmic reticulum and the ribosome
5. week: Golgi complex, secretion and protein transport
6. week: Lysosomes, endocytosis, vesicular transport
7. week: Structure and function of mitochondria and peroxisomes
8. week: The cytoskeleton and cellular movement
9. week: Cell adhesion, cell junction
10. week: Extracellular regulation of the cells, signal transduction I.
11. week: Extracellular regulation of the cells, signal transduction II.
12. week: Cell cycle and its regulation I.
13. week: Cell cycle and its regulation II.
14. week: Cellular aging and programmed cell death

(The order of lectures may vary.)

Practice topics/week
1. week: The light microscope in use
2. week: General view of the cell; Light microscopic microtechnique
3. week: Plasma membrane; Electronmicroscopic microtechnique
4. week: Cell nucleus; Cyto(histo)chemistry
5. week: Midterm I.
6. week: Endoplasmic reticulum
7. week: Golgi complex
8. week: Immunohistochemistry
9. week: Endocytosis; Cellular digestion;
10. week: Cell and tissue culture
11. week: Store and supply of energy; Mitochondria; Peroxisome
12. week: Cell surface differentiation, ultrastructure of cellular junctions. Enzyme-histochemistry.
13. week: Midterm II.
14. week: Cell death (apoptosis and necrosis)
(The order of lectures may vary.)

COURSE REQUIREMENTS

Semester acceptation conditions (successful course attendance, mid-term tests, absence, etc.):
Student must visit 75% of the practice classes. More than three absences from the practice invalidate the semester, no signature is given.
There are no extra practices. There are two midterms during the semester. To get practice grade and signature the average of the midterms has to be 2.0. Missed or failed midterms might be repeated two times. No improvement of midterm grade.

Knowledge testing during the semester:
The two midterm tests are written and contain questions from theoretical and practical part.

Requirements of the signature at the end of the semester:

Practice grade and not more than three absences from the practice.
Individual activity of the student during the semester (protocol, etc.) –

Performance control in the examination period (final, examination): final

Performance control in the examination period (written, oral, written and oral): written

Prescribed external practice: –

List of teaching materials (List of textbooks, hand–outs, scripts, etc.):
PowerPoint presentations on our web site (http://gsi.semmelweis.hu)

List of course materials:
Scientific, course related researches, publications/essays:

The activity of the Department of Genetics, Cell- and Immunobiology (DGCI) includes teaching, research and diagnostics. Our scientific work focuses on a broad scale in the fields of immunology, cell biology and genomics. The main research groups of the Department: National Heart Program, Extracellular Vesicle; Medical Genomics; Chemotaxis; Experimental Translational Immunomics and Molecular Cancer Biology. The applied methodologies include: cell- and molecular biological, immunological, genomic and bioinformatic techniques and procedures.
First Aid (practice)
For details on this subject please contact the department or visit their website.

Pharmaceutical Terminology (practice)

Complete name of the course: Gyógyszerészi terminológia (gyakorlat)
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Pharmaceutical Terminology
English name of the course: Pharmaceutical Terminology (practice)

Neptun-Code: GYKLEK154G1A
Type of registration: obligatory
Institute: Department of Languages for Specific Purposes

Name of the tutor/lecturer: Alexandra Bakó assistant lecturer
Phone: (1) 48–64962
E-Mail: bako.alexandra@semmelweis-univ.hu

Further tutors: Lili Szőllősi language teacher
Tamara Schüszler language teacher

Number of classes /week: 2
Credit points: 2

Course principles:
The course is to prepare students for understanding Latin and Greek medical and pharmaceutical terminology, including the language of anatomy, diagnostics, pathophysiology, and prescriptions.

Brief course summary:
Students get familiarised with the basics of Latin grammar, such as forming plural forms of Latin nouns, adjective agreement, the use of numbers, and prepositional phrases (accusative and ablative cases). Furthermore, they develop an extensive Latin and Greek vocabulary that enables them to understand and formulate medical terms in the fields of medicine and pharmaceutics.
Mathematics for Pharmacists

Complete name of the course: Matematika gyógyszerészeknek
Name of the Program: Pharmacy Basic Education
Abbreviated name of the course: Math
English name of the course: Mathematics for Pharmacists

Neptun-Code: GYKEGY112E1A, GYKEGY112G1A
Type of registration: obligatory
Institute: Semmelweis University Pharmacy Department Of Pharmacy Administration

Name of the tutor/lecturer: László Tóthfalusi Ph.D.
Phone: (+36–1) 476–3600
E-Mail: totlasz@net.sote.hu

Number of classes /week: 2 (Lecture), 2 (Practice)
Credit points: 2+2

Course principles:
Acquisition of basic pharmacological numeracy skills, review of mathematical apparatus used in other subjects, introduction of computer bases of modeling techniques useful in scientific research

Brief course summary:
The course aims to provide a comprehensive overview of the mathematical tools used in the pharmaceutical sciences. From a mathematical point of view, it covers the following subjects: Elementary and linear algebra, mathematical analysis and numerical methods. The aim of the exercises is to develop the numerical skills used in basic pharmaceutical practice, to get acquainted with the computer possibilities used for mathematical calculations.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Autumn</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Autumn</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
Topics of theoretical lessons (broken down by week):
- Week 1: Mathematics in pharmacy: calculation, measurement, modeling
- Week 2: Sequences
- Week 3: Functions 1
- Week 4: Functions 2
- Week 5: Differentiation
- Week 6: Applications of differentiation
- Week 7: Integration
- Week 8: Differential equations
- Week 9: Numerical algorithms
- Week 10: Matrices, linear systems of equations
- Week 11: Bivariate functions, concept of partial derivation
- Week 12: Determinant, eigenvalue, linear mappings
- Week 13: Differential systems of equations
- Week 14: Computer modelling in pharmaceutical research

II. Practice topics/week
Topics of practical classes (broken down by week):
- Week 1: Pharmacological calculations I. Algebraic problems
- Week 2: Pharmacist calculations 2. Log and Exp Functions, Summary of Measurement Data
- Week 3: Pharmacological calculations 3. Representation and transformation of functions
- Week 4: Computer lab
- Week 5: Differentiation examples
- Week 6: Quiz 1
- Week 7: Integration examples 1
- Week 8: Integration examples 2
- Week 9: Differential equations 1
- Week 10: Differential equations 2
- Week 11: Solving linear equations
- Week 12: Quiz 2
- Week 13: Solving linear equations 2
- Week 14: Quiz (retake)

COURSE REQUIREMENTS

Order of consultations: Consultation is possible during the seminars
Prerequisites: –

Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
Participation in at least 75% of the practice sessions is mandatory. The retake quiz on the last week of the semester is needed if one of the quiz opportunities are missed or if the quiz result is below the acceptable minimum.

Knowledge testing during the semester: Two quizzes

Requirements of the signature at the end of the semester: Two accepted quiz results

Individual activity of the student during the semester (protocol, etc.): Solving practice exercises

Performance control in the examination period (final, examination): Examination

Performance control in the examination period (written, oral, written and oral): Written

Prescribed external practice: None

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.):
Joel Kilty, Alex McAllister. Mathematical Modeling and Applied Calculus, Oxford University Press, 2018

List of course materials:
Handouts on the course website (Moodle)
Scientific, course related researches, publications/essays: –
Introduction to Pharmaceutical Studies

For details on this subject please contact the department or visit their website.

History of Pharmaceutics and Propedeutics

Complete name of the course: Gyógyszerészettörténet és propedeutika
Name of the Programme: undivided program (pharmaceutical)
Abbreviated name of the course: History and Propedeutics
English name of the course: History of Pharmaceutics and Propedeutics

Neoportun-Code: GYKFMG153E1A
Type of registration: obligatory
Institute: Department of Pharmacognosy

Name of the tutor/lecturer: Dr. Eszter Riethmüller assistant professor, Ph.D.
Phone: +361-459-1500/55404
E-Mail: riethmuller.eszter@pharma.semmelweis-univ.hu

Number of classes /week: 2
Credit points: 2

Course principles:
Understanding how the history of pharmaceutics is bond up with the development of many different sciences. General knowledge of drugs, international organizations, pharmacy practice and education.

Brief course summary:
The course aims to show how the history of pharmaceutics is bond up with the development of many different sciences. It gives and understanding of the way in which the notion of pharmaceutical science changes as its methods evolve and scientific knowledge progresses. Therefore, the subject can give students a new relation to the scientific knowledge they possess and that they will gain in the following years of their studies.

The purpose of Propedeutics is to impart general knowledge of drugs including classification, naming, doses, utilization, pharmacopoeias, preparation of drugs, organization of drug supply. It also puts special emphasis on current global health issues and the role of the pharmacist and the international organizations in overcoming them.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>autumn</td>
<td>as demanded</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week: Introduction. The place of the subject in the curriculum. The multidisciplinary nature of pharmacy.
2. week: The role and importance of history of science in understanding the notion and development of science. The structure of scientific revolutions. Distinction between science and pseudoscience.
3. week: The endless evolution of medical science and medical technology: from prehistoric times to present day and beyond I.
4. week: The endless evolution of medical science and medical technology: from prehistoric times to present day and beyond II.
5. week: The impact of the development of natural sciences on drug therapy: what has changed over time and what has not.
6. week: Drugs on the market today: classification based on the origin, pharmaceutical action, way of application, and formulation.
7. week: Drugs and doses. Introduction to pharmacokinetics.
10. week: Pharmacies in Hungary: premises, personnel, ordering of drug preparations, pharmaceutical literature.
11. week: Pharmacy practice around the world.
12. week: Global health issues I.: The role of international organizations of healthcare: historical and current issues, future challenges.
14. week: The changing role of the pharmacist in healthcare and its effect on pharmaceutical education

II. Practice topics/week –

COURSE REQUIREMENTS

Order of consultations: as demanded
Prerequisites: –

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.): –

Knowledge testing during the semester: –

Requirements of the signature at the end of the semester: –

Individual activity of the student during the semester (protocol, etc.):
Not obligatory assay and/or presentation.

Performance control in the examination period (final, examination): examination

Performance control in the examination period (written, oral, written and oral): Written and oral examination

Prescribed external practice: –

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.):
Hand-outs of lectures
List of course materials: Lecture hall projection
Scientific, course related researches, publications/essays: –
Principles of Professional Ethics I.

Complete name of the course: Hivatásetikai alapok I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Principles of Prof. Ethics
English name of the course: Principles of Professional Ethics I.

Neptun-Code: GYKGO071E1A
Type of registration: obligatory

Number of classes/week: –
Credit points: –

Newly enrolled students have to take an oath at the Opening Ceremony.
Physical Education I.

Complete name of the course: Physical Education I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: P. E. I.
English name of the course: Physical Education I.

Neptun Code: GYKTSI116G1A
Type of registration: obligatory
Institute: Semmelweis University’s Centre for Physical Education and Sports

Name of the tutor/lecturer: Várszegi, Kornélia director
Phone: –36–1/264–1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Further tutors: Doharné Buczkó, Anikó P.E. teacher
Kalmus, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótonyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher
Dominika Farkas P.E. teacher

Number of classes /week: 1 class (practice)/week
Credit points: 0 credit

Course principles:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Brief course summary:
The short–term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long–term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health–promoting behavior.

| Course data |
|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Recommended semester of completing the course | Lecture (contact hrs/week) | Practice (contact hrs/week) | Seminar (contact hrs/week) | Individual lecture | Total number of contact hours/semester | Semester | Consultation |
| 1 | – | 1 | – | – | 14 | autumn | – |
Semester program

I. Lecture topics/week: –

II. Practice topics/week:
1st Week: General information

Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra-curricular activities. Heart rate measurements, Ruffier test and evaluation of the results.

2nd Week: Athletic Exercises to improve stamina. Preferably outdoors, on grass ground running, with the aim of developing good running and breathing techniques.

3rd Week: Flying disc
 Introduction the basic of frisbee rules and practicing the basic technical elements in pairs and game situation.

4th Week: Tennis
 Introducing the basic technical elements of tennis (forehand and backhand shot), improving hand–eye coordination.

5th Week: Agility ladder
 Introducing different running, skipping techniques using agility ladder.

6th Week: Football
 Introducing the basic technical elements of football. Single exercises and exercises in pairs to improve the ball skill development.

7th Week: Badminton
 Introducing the basic technical and tactical elements of badminton. Introducing the basic rules and game.

8th Week: Circuit training
 Bodyweight exercises and exercises with basic equipment to learn the correct functional movement pattern.

9th Week: Ruffier test and ball skill developing exercises
 Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention.

10th Week: Meta
 Introducing the game and the basic rules. Aim to improve the ball skill development, improve reaction time, speed and explosiveness.

11th Week: Obstacle course
 To complete a built up obstacle course using different creeping-climbing, hovering, pulling, skipping, throwing techniques for general skill development.

12th Week: Core training
 Postural correction exercises using the own bodyweight especially to strengthen the core muscles to prevent the health of the vertebrae.

13th Week: Skipping rope
 Endurance and coordination developing exercises at different levels using skipping rope.

14th Week: Dumbbell exercises
 Strengthening exercises with dumbbells.
COURSE REQUIREMENTS

Order of consultations: –

Prerequisites: –

Semester acceptation conditions: (successful course attendance, mid-term tests, absence, etc.):
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Knowledge testing during the semester:
There is no mandatory control during the term.

Requirements of the signature at the end of the semester:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise,
2. does sports regularly and submits a certificate of association and federation

Individual activity of the student during the semester (protocol, etc.): –
Performance control in the examination period (final, examination): –
Performance control in the examination period (written, oral, written and oral): –
Prescribed external practice: –

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.): –

List of course materials: –
Scientific, course related researches, publications/essays: –
Hungarian Pharmaceutical Terminology I.

Complete name of the course: Magyar gyógyszerészeti szaknyelv (gyakorlat) I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Hungarian Pharmaceutical Terminology I.
English name of the course: Hungarian Pharmaceutical Terminology (practice) I.

Neptun-Code: GYKLEK155G1A
Type of registration: obligatory
Institute: Department of Languages for Specific Purposes

Name of the tutor/lecturer: Alexandra Bakó assistant lecturer
Phone: +36 30 016 4236
E-Mail: bako.alexandra@semmelweis-univ.hu

Further tutors: Borda Szandra language teacher
Nagyné Górász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher

Number of classes /week: 2
Credit points: 0

Course principles:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /'survival language/ and in their academic studies.

Brief course summary:
The first semester is dedicated to learning basic general vocabulary and grammar. Students acquire basic structures and the vocabulary for everyday topics /e.g. shopping, food, housing etc./. The course places special emphasis on phrases essential for everyday communication, e.g. introductions, greetings, getting/giving information etc. and on phrases needed in basic communication at a pharmacy.
Semester program

I. Lecture topics/week: –

II. Practice topics/week:
Week 1 The Hungarian alphabet
Week 2 Greetings
Week 3 Basic pharmacy vocabulary
Week 4 Numbers
Week 5 Descriptions (nouns and adjectives)
Week 6 Ordering foods and drinks (accusative case)
Week 7 Asking for medications (accusative case)
Week 8 Test (oral)
Week 9-10 Locatives
Week 11-12 Activities – verbs
Week 13 Explaining what can be found in a pharmacy
Week 14 Final test (oral)

COURSE REQUIREMENTS

Order of consultations: Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.

Prerequisites: –

Semester and credit requirements: (successful course attendance, mid-term tests, absence, etc.):

An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the two oral tests in class to pass the subject.

Knowledge testing during the semester:
Beside the oral tests the teacher may evaluate the students’ performance with the help of short tests.

Requirements of the signature at the end of the semester:
An attendance of 75% minimum and taking the two oral tests.

Individual activity of the student during the semester (protocol, etc.):
Homework in the forms of language practice tasks.

Performance control in the examination period (final, semi-final): –

Performance control in the examination period (written, oral, written and oral): –

Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Hungarian Pharmaceutical Terminology I.. - (Manuscript- Department of Languages for Specific Purposes)

List of course materials: –
Scientific, course related research material, publications/essays: –
2. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>General and Inorganic Chemistry (theory) II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>Gen. and Inorg. Chemistry I.</td>
<td>final*</td>
</tr>
<tr>
<td>GYKASK106E2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GYKASK117G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy (practice)</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Biology I., Pharm. Terminology,</td>
<td>signature</td>
</tr>
<tr>
<td>GYKANT118G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I., Pharm. Terminology,</td>
<td>examination</td>
</tr>
<tr>
<td>GYKANT118E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics (practice) II.</td>
<td>–</td>
<td>2.5</td>
<td>2</td>
<td>Biophysics I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKFIZ108G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysics (theory) II.</td>
<td>1.5</td>
<td>–</td>
<td>2</td>
<td>Biophysics I.</td>
<td>final*</td>
</tr>
<tr>
<td>GYKFIZ108E2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology (practice) II.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Biology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGEN109G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology I.</td>
<td>final*</td>
</tr>
<tr>
<td>GYKGEN109E2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication and Information Networks</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Introd. to Pharm. Studies</td>
<td>practical mark</td>
</tr>
<tr>
<td>(theory+practice) GYKMAG120G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Economics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Mathematics for Pharm., Introd. to Pharm. Studies</td>
<td>examination</td>
</tr>
<tr>
<td>GYKEMK121E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry for Pharmacists</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Gen. and Inorg. Chemistry I., Biophysics I., Mathematics for Pharm.</td>
<td>practical mark</td>
</tr>
<tr>
<td>(theory+practice) GYKGYI122G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) II.</td>
<td>–</td>
<td>2</td>
<td>0</td>
<td>Hungarian Pharmaceutical Terminology (practice) I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYKLEK155G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education II.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTII116G2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>14.5</td>
<td>16.5</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
General and Inorganic Chemistry (theory) II.
For details on this subject please contact the department or visit their website.

Analytical Chemistry (theory+practice) I.

Complete name of the course: Analitikai kémia (elmélet + gyakorlat) I.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Anal. Chem. I.
English name of the course: Analytical Chemistry (theory+practice) I.

Neptun-Code: GYKASK117G1A
Institute: Eötvös University, Institute of Chemistry, Department of Analytical Chemistry
Name of the tutor/lecturer: Dr. Krisztina Kurin–Csörgei head of department, associate professor, PhD, Dr. Habil
Phone: (+36)1-372-2500/1241
E-Mail: krisztina.kurin@ttk.elte.hu
Dr. Béni Szabolcs head of institute, associate professor, PhD, Dr. Habil
Phone: 476-3600 / 55304
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Further tutors: Krisztina Kurin-Csörgei (lecture) assistant professor head of department, associate professor, PhD, Dr. Habil.
Norbert Szoboszlai (lecture and practice)
Anikó Vasanits–Zsigrai assistant professor
István Molnár assistant professor
Edina Kiss assistant professor PhD students
PhD students (practice)

Number of lectures /week: 2 hrs lecture + 4 hrs practice
Credit points: 6 (2+4)
Course principles: –

Brief course summary:
The aim of analytical chemistry is to obtain qualitative and quantitative information about the chemical composition and structure of materials. Quantitative Analytical Chemistry is based on the determination of quantity of the components using different chemical and instrumental methods.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>Lecture (contact hrs/week)</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week

2. week: Theoretical basis of qualitative analytical ionic reactions. Qualitative analytical chemistry: definition, classification of the reactions (analytical parameters, group reagents, group reactions, Fresenius-system)
3. week: Group reagents for qualitative analysis of cations. Identifications reactions for cations.
4. week: Group reagents for qualitative analysis of anions. Identifications reactions for anions.
5. week: Qualitative analysis of complex solution and solid sample. Instrumental analytical methods in inorganic qualitative analysis.
6. week: Types of interactions in analytical chemistry. Quantitative analysis and its important methods. Steps of chemical analysis.
7. week: Preparation of sample for analysis (sampling, storage and dissolving of the sample, fusion).
10. week: Possibilities for end point detection (chemical and instrumental). Acid–base indicators.
11. week: Change of pH during the acid-base titration (calculation of titration curves for the reaction of strong acid/base with strong base/acid, weak acid/base with strong base/acid, polyprotic acid with strong base). Indicator error.
12. week: The main possibilities of determination in acidimetry and alkalimetry. (measurement of strong/weak acids, strong/weak bases, salts, “specific” determinations, with examples).
14. week: Nonaqueous titrations: standard solutions, end point detection, applications.

II. Practice topics/week

1. week: Laboratory inventory (bench and equipments); Safety and order in the laboratory; The schedule of the semester; Practical and theoretical requirements in the semester. Reactions of Group I of cations. Reactions of As(III). Analysis of simple unknown.
4. week: Reactions of the most important anions. Analysis of complex unknown.
5. week: Analysis of a solid sample (salt mixture).
6. week: Test I. Practicing of use the laboratory tools; Neutralization analysis: Determination of sulfuric acid.
7. week: Neutralization analysis: Determination of sulfuric acid.
8. week: Neutralization analysis: Standardization of ≈0.1N hydrochloric acid.
9. week: Neutralization analysis: Continuation of previous week’s measurements; Determination of lactic acid.
10. week: Acidy–Alkalimetry: Determination of sodium tetraborate and boric acid in the presence of each other.
11. week: Neutralization analysis: Determination of NaOH and Na2CO3 in the presence of each other.
12. week: Acidy–Alkalimetry: Indirect determination of sodium thiosulfate; Determination of “Lidocaine” in nonaqueous solution.
13. week: Test II. Nonaqueous titration of a pharmaceutic.
14. week: Retake II. Supplements; Closing
COURSE REQUIREMENTS

Order of consultations: at the request of students (in the period prior to the tests; etc.)

Prerequisites: General and Inorganic Chemistry I., Introduction to Pharm. Studies, Mathematics for Pharmacists

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.): The student should be present – at least – in 75% of the total number of laboratory practices scheduled during the semester. All exercises or measurements must be performed according to the time table. In case of absences the measurements must be completed in an “extra lab”; or in justified cases – at the end of the semester.

Knowledge testing during the semester:
The students should write 2 major test-papers from two different parts of the subject during the semester in a time announced in advance and scheduled during the laboratory practices. The major tests cover all measurements performed in the laboratory practices and/or discussed during the lecture, the theoretical background and numerical problem solving. After each test we provide the opportunity for correction of the mark in the form of “retake test” and the marks of the supplementary tests are taken into account when determining the final grade. Shorter oral or written questioning related to the laboratory training can occur during the entire semester. All written tests and oral answers will be evaluated according to a five-scale grading system. Minimum 50% of performance is required for passing the tests. The students are allowed to use their own non-programmable calculator. The use of mobile phone, smart watch, tablet, etc. is forbidden. If the students use any kind of illegal helps when he/she takes oral or written tests, his/her practical mark is automatically “unsatisfactory”.

Requirements of the signature at the end of the semester:
The final grade of the laboratory training on analytical chemistry will be established from considering the accomplishments of both theoretical and practical requirements. The theoretical requirement for passing the semester is that the average of two marks obtained by the two major tests (or retake tests) should reach a minimum value of 2.0 and the very last mark is not “unsatisfactory” (i.e. higher than 1.). The practical requirements are fulfilled if the final mark for the measurements is minimum 2. The final practical grade is determined by considering the grades obtained for the tests and the final mark of the measurements. A written report should be prepared about the completion of each laboratory exercise. The results of the measurements should be presented to the supervising teacher for evaluation within a week after completion of the exercises. In default of doing so the measurements are marked as “unsatisfactory” and it should be repeated during the time of “extra lab”.

Individual activity of the student during the semester (protocol, etc.): –

Performance control in the examination period (final, examination): signature/practical grade

Performance control in the examination period (written, oral, written and oral): –

Prescribed external practice: –

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.):
Lásztity–Gyimesi: Qualitative Inorganic Analysis. Bp. (SE)
Materials of the lectures and practices can be downloaded from Moodle E-learning system

List of course materials: –
Scientific, course related researches, publications/essays: –
Anatomy (theory), Anatomy (practice)

Complete name of the course: Anatomy
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Anatomy (theory), Anatomy (practice)
English name of the course: Anatomy (theory), Anatomy (practice)

Neptun-Code: GYKANT118E1A, GYKANT118G1A
Type of registration: obligatory
Institute: Department of Anatomy, Histology and Embryology

Name of the tutor/lecturer: Dr. Csáki Ágnes associated professor, Ph.D.
E-Mail: csaki.agnes@med.semmelweis-univ.hu

Further tutors: Dr. Halász Vanda assistant lecturer
Dr. Herberth–Minkó Krisztina assistant professor, Ph.D.
Szászné Dr. Kocis Katalin assistant professor, Ph.D.
Dr. Kozsurek Márk assistant professor, Ph.D.
Pecsenye–Fejszák Nóra assistant lecturer
Dr. Fuskár Zita senior research fellow, Ph.D.
Dr. Tóth Zsuzsanna Emese senior research fellow, Ph.D.

Number of classes /week: 2 lecture / week + 2 practice / week
Credit points: 2 (GYKANT118E1A) + 0 (GYKANT118G1A)

Course principles:
- to teach the terminology of the human anatomy to the future pharmacists
- to discuss those special anatomical and physiological conditions, which may influence the therapeutical considerations;
- to discuss those anatomical conditions, which are necessary for the understanding of the further medical subjects of the pharmacists’ studies;
- to teach the terminology (Latin and English) of human body parts (at a gross and microscopical anatomical level) necessary for the understanding of the medical language during the communication between the pharmacists and the doctors.

Special attention is required concerning the anatomy of the central nervous system and the digestive tract, the absorption of medicines and their mechanism of action.

Brief course summary:
The lectures include all topics of anatomy, histology and embryology. Locomotor system, internal organs, nervous system, general and detailed histology, general embryology and development of organs are the topics of the lectures.
During the dissection room practices the tutors discuss and demonstrate some chapters of anatomy of the locomotor system, internal organs and nervous system. During the histology lab practices, after a short introduction, the students can examine the most important sections with an electronic histology system.

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2/week</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>28/semester</td>
<td>spring</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2/week</td>
<td>–</td>
<td>–</td>
<td>28/semester</td>
<td>spring</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week

1. week: 1. Introduction, Locomotor System
 2. Skull, vertebral column, head, neck muscles
2. week: 3. Basic tissues I
 4. Basic tissues II, Skin
3. week: 5. The Immune System, the Lymphoid Organs
 6. Blood, hematopoiesis
4. week: 7. Heart, the Vascular System
 8. The Respiratory System, the Mechanics of Breathing
5. week: 9. The Digestive System I, abdominal cavity
 10. The Digestive System II
6. week: 11. The Liver, the Pancreas
 12. The Kidneys and the Urinary tract
7. week: 13. The Female Reproductive Organs, cycle
 14. The Male Reproductive Organs, Pelvis
8. week: 15.–16. Midterm
 18. Central Nervous System, meninges, blood supply, CSF, Encephalon, Spinal cord, Spinal nerves
10. week: 19. Motor system, Sensory system, Limbic system
 20. Cranial nerves, The Autonomic Nervous System
11. week: 21. The Eyeball and Visual system
 22. The Organ of Hearing and Equilibrium.
12. week: 23. Hypothalamus, the Endocrine Organs I
 24. The Endocrine Organs II
13. week: 25. Germ cells, Fertilization, Development of the fetus, Placenta,
 26. Teratology
14. week: 27. Development of the Digestive System and Reproductive organs
 28. Malformations

II. Practice topics/week

1. week: Introduction, upper and lower limbs
2. week: basic tissues, skin
3. week: skull, vertebral column, head, neck muscles
4. week: histology of the blood, vessels and the lymphoid organs
5. week: respiratory tract, thoracic cavity
6. week: respiratory tract histology, gastrointestinal tract histology I.
7. week: heart, large vessels
8. week: gastrointestinal tract histology II.; kidney and urinary tract histology
9. week: gastrointestinal tract, abdominal cavity
10. week: genital organs histology, spermatogenesis, oogenesis
11. week: urogenital system, pelvis
12. week: nervous system and sensory organs histology
13. week: nervous system: brain, spinal cord, cranial nerves, spinal nerves, main vessels and nerves on limbs, sensory organs
14. week: Midterm

COURSE REQUIREMENTS

Order of consultations: –

Prerequisites: Biology I., Pharmaceutical Terminology, First Aid

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Attendance of a minimum of 75% of practices is necessary for the end–term signatures.

Knowledge testing during the semester: written (electronic) midterm test, non-compulsory, successful midterm result is taken into consideration when forming the grade of the semifinal exam

Requirements of the signature at the end of the semester:
Attendance of a minimum of 75% lectures and practices is necessary for the end–term signatures.

Individual activity of the student during the semester (protocol, etc.): –

Performance control in the examination period (final, examination): semifinal exam

Performance control in the examination period (written, oral, written and oral): written (electronic) semifinal exam, successful midterm result (non-compulsory assessment) is taken into consideration when forming the grade of the semifinal exam

Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):

List of course materials:
Lecture hall for the lectures. For the practices dissection practical room and histology practical laboratory, with the appropriate devices.
Scientific, course related researches, publications/essays: –
Biophysics (theory) II., Biophysics (practice) II.

Complete name of the course: Biofizika II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biophysics II.
English name of the course: Biophysics II.

Neptun-Code: GYKFIZ108E2A, GYKFIZ108G2A
Type of registration: compulsory
Institute: Department of Biophysics and Radiation Biology

Name of the tutor/lecturer: Dr. Levente Herényi associate professor, PhD
Phone: +36 1 4591-500/60222
E-Mail: herenyi.levente@med.semmelweis-univ.hu

Further tutors: Dr. Gergely Agócs senior lecturer, PhD
 Dr. Tamás Bozó senior lecturer, PhD
 Dr. Rita Galántai teacher, PhD
 Dr. Nikoletta Kósa assistant lecturer
 Dr. Ádám Orosz senior lecturer PhD
 Dr. Gusztáv Schay senior lecturer, PhD
 Dr. László Smeller professor DSc
 Dr. István Voszka associate professor, PhD
 Dr. Ádám Zolcsák PhD student

Number of classes /week: 1.5 hours lecture, 2.5 hours practice
Credit points: 2 + 2

Course principles:
Biophysics plays a basic role in the education of pharmaceutical students. There are dual role of the subject: on one side it gives general knowledge of natural sciences, on the other side it gives theoretical and practical basis of application of physical principles and methods in pharmaceutical sciences.

Brief course summary:
In connection to the previous it helps the development of structured way of thinking. Through this one can find connection to the basic subjects and to the applied pharmaceutical subjects.

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>21</td>
<td>spring</td>
<td>in the exam period</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>spring</td>
<td>in the exam period</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week X–radiation and its interaction with matter.
2. week Basic electronic units and circuits. Amplifier.
3. week Signal transduction, signal selection.
4. week Sound, Ultrasound.
5. week Bases of radioisotope diagnostic methods.
6. week Transport phenomena, flow of fluids and gases.
7. week Diffusion, osmosis.
8. week Thermodynamic aspects of transport processes.
9. week Membrane potential, Action potential.
10. week Sensory phenomena, Laws of sensation.
11. week Optical spectroscopic techniques.
12. week Mass spectroscopy methods.
13. week Radio spectroscopy methods.
14. week Sedimentation and electrophoretic methods.

II. Practice topics/week
1. week Measurement of skin impedance. Applications of it.
2. week Coulter–counter. Electric counting of blood cells.
4. week Fields of application of ultrasound
5. week Gamma energy determination. Dual isotope labeling.
6. week Physical basis of electrocardiography.
7. week Audiometry. Determination of auditory threshold.
8. week Pulse generator (pacemaker).
9. week Imaging with gamma radiation.
10. week Diffusion and its significance in human body.
12. week Sensory function.
14. week Repetition.

COURSE REQUIREMENTS

Order of consultations: Weekly in the exam period.

Prerequisites: Biophysics I.

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.):
Participation on at least 75 % of the practices. Lab. report must be done about the measurements. The missed measurements can be made up within the 4 weeks cycle. Passing two tests from the three during the semester.

Knowledge testing during the semester:
Midterm tests on the 6th and 11th weeks. Retake is possible on the 13th week.

Requirements of the signature at the end of the semester:
1. Participation on at least 75 % of the practices, (in case of more than 3 absences the signature for the semester is denied.)
2. Acceptance of lab. reports.
3. The practice grade should be at least 2.

Individual activity of the student during the semester (protocol, etc.): Lab. report should be made about all the measurements.

Performance control in the examination period (final, examination): Final exam

Performance control in the examination period (written, oral, written and oral): Written and oral

Prescribed external practice: –

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):
Medical biophysics practices (Semmelweis Publisher, 2015)

List of course materials: –
Scientific, course related researches, publications/essays: –
Biology (theory) II., Biology (practice) II.

Complete name of the course: Biológia II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Biol II.
English name of the course: Biology (theory) II., Biology (practice) II.

Neptun-Code: GYKGEN109E2A, GYKGEN109G2A
Institute: Department of Genetics, Cell- and Immunobiology Semmelweis University, Faculty of Medicine

Name of the tutor/lecturer: Prof. Dr. Edit Buzás DSc
coordinator: Dr. Orsolya Láng PhD Phone: 2102940/56251
E-Mail: lang.orsolya@med.semmelweis-univ.hu

Further tutors:
Dr. András Kristóf Fülöp Associate Professor
Dr. Hargita Hegyesi Associate Professor
Dr. László Köhidaí Associate Professor
Dr. Eszter Lajkó Research Fellow
Dr. Marianna Csilla Holub Associate Professor
Dr. Zoltán Wiener Associate Professor
Dr. Tamás Visnovitz Assistant professor
Dr. Pálma Porrogi Assistant Professor, PhD
András Försönits Research Assistant

Number of lectures /week: 2 (lecture) + 2 (practice)
Credit points: 2 + 2

Course principles:
Beside the basics of Mendelian genetics and cytogenetics, pharmacogenetics and genomics are discussed as well as the main molecular genetic techniques are presented. The subject provides theoretical background for Microbiology and Immunology.

Brief course summary:
The subject Biology II. discusses Mendelian genetics, molecular genetics and genomics. The most significant characteristic of inheritance in human and the techniques applied in medical field are studied.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transmission of the genetic information. Meiosis</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to human genetics. The human genome.</td>
</tr>
<tr>
<td>3</td>
<td>Citogenetics</td>
</tr>
<tr>
<td>4</td>
<td>Genetic variation I.</td>
</tr>
<tr>
<td>5</td>
<td>Genetic variation II.</td>
</tr>
<tr>
<td>6</td>
<td>Epigenetics</td>
</tr>
<tr>
<td>7</td>
<td>Autosomal inheritance I.</td>
</tr>
<tr>
<td>8</td>
<td>Autosomal inheritance II.</td>
</tr>
<tr>
<td>9</td>
<td>Role of sex in inheritance; Genetics of sex</td>
</tr>
<tr>
<td>10</td>
<td>Introduction to genomics; Methods in genomics</td>
</tr>
<tr>
<td>11</td>
<td>Genetics and genomics of complex trait and disorder</td>
</tr>
<tr>
<td>12</td>
<td>Pharmacogenetics and nutrigenomics</td>
</tr>
<tr>
<td>13</td>
<td>Genetics of biological processes (Genetics of stem cell and tumor biology)</td>
</tr>
<tr>
<td>14</td>
<td>Gene and genome manipulation</td>
</tr>
</tbody>
</table>

(The order of lectures may vary.)

II. Practice topics/week

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitosis</td>
</tr>
<tr>
<td>2</td>
<td>Meiosis and gametogenesis</td>
</tr>
<tr>
<td>3</td>
<td>Cytogenetics I.</td>
</tr>
<tr>
<td>4</td>
<td>Cytogenetics II.</td>
</tr>
<tr>
<td>5</td>
<td>Midterm I. Mutagenic tests</td>
</tr>
<tr>
<td>6</td>
<td>Study of monogenic inheritance; Pedigree analy</td>
</tr>
<tr>
<td>7</td>
<td>Molecular genetics I.</td>
</tr>
<tr>
<td>8</td>
<td>Molecular genetics II.</td>
</tr>
<tr>
<td>9</td>
<td>Molecular genetics III.</td>
</tr>
<tr>
<td>10</td>
<td>Medical applications of genetic methods I. (Autosomal Dominant)</td>
</tr>
<tr>
<td>11</td>
<td>Medical applications of genetic methods II (Autosomal recessive)</td>
</tr>
<tr>
<td>12</td>
<td>Monogenic inheritance III. (Sex linked)</td>
</tr>
<tr>
<td>13</td>
<td>Midterm II. Prenatal genetic testing</td>
</tr>
<tr>
<td>14</td>
<td>Complex inheritance</td>
</tr>
</tbody>
</table>

(The order of lectures may vary.)

COURSE REQUIREMENTS

Order of consultations: during exam period 1/week

Prerequisites: Biology I.

Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):

Student must visit 75% of the lessons. More than three absences from the practice or more than four absences from the lecture invalidate the semester, no signature is given. There are no extra practices.

Knowledge testing during the semester:

The two midterm tests are written and contain questions from theoretical and practical part. The two midterm tests are written and contain questions from theoretical and practical part. To get practice grade and signature the average of the midterms has to be 2.0. Missed or failed midterms might be repeated two times. No improvement of midterm grade.

Requirements of the signature at the end of the semester:

Practice grade and not more than four absences from the lectures.

Individual activity of the student during the semester (protocol, etc.) –

Performance control in the examination period (final, examination): signature/practical grade/final

Performance control in the examination period (written, oral, written and oral): written

Prescribed external practice: –

List of teaching materials (List of textbooks, hand–outs, scripts, etc.):

List of course materials:

Scientific, course related researches, publications/essays:

The activity of the Department of Genetics, Cell- and Immunobiology (DGCI) includes teaching, research and diagnostics. Our scientific work focuses on a broad scale in the fields of immunology, cell biology and genomics. The main research groups of the Department: National Heart Program, Extracellular Vesicle; Medical Genomics; Chemotaxis; Experimental Translational Immunomics and Molecular Cancer Biology. The applied methodologies include: cell- and molecular biological, immunological, genomic and bioinformatic techniques and procedures.
Communication and Information Networks

Complete name of the course: Kommunikáció és információs hálózatok
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Communication and Information Networks
English name of the course: Communication and Information Networks

Neptun-Code: GYKMAG120G1A
Type of registration: compulsory
Institute: Institute of Behavioural Sciences

Name of the tutor/lecturer: **Dr. Pilling János** PhD, Associate professor
Phone: +36 (1) 2102930/56457
E-Mail: pilling.janos@med.semmelweis-univ.hu
Dr. Hankó Balázs

Further tutors: **Kinga Babonits-Farkas** Psychologist, assigned lecturer
Zsuzsanna Papp Psychologist, assigned lecturer

Number of classes /week: 1 lecture, 1 seminar
Credit points: 2

Course principles:
Proper communication has an essential role in pharmaceutical practice. The main objectives of the course are the following:
- to teach basic skills to improve pharmacists’ communicational techniques of information gathering, active listening and patient education
- introduction of pharmaceutical communication with the usage of digital and social media

Brief course summary:
The education will be interactive and practical. In the first part of the semester, students will get familiar with the basic concepts of pharmaceutical communication with a special focus on information delivery, patient education, active listening, and empathy. Shared-decision making will be also covered, such as improving compliance and promoting lifestyle changes. In the second block of the course, students will get familiar with online information sources, and the use of social media and infocommunication in pharmacy practice. In the third block, students will work on a project in small groups connected to health promotion via social media using modern information communication technologies and based on the learned skills. Projects will be presented at the seminars.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>spring</td>
<td>–</td>
</tr>
</tbody>
</table>

671
Semester program

I. Lecture and Practice topics/week

1. week Role of communication in pharmaceutical practice.
2. week Information gathering and patient information
3. week Improving patient’s adherence, promoting lifestyle change
4. week Social media as the new pathway to infocommunication.
5. week Internet use, excessive or problematic internet use
6. week Telemedicine and health literacy
7. week The pharmacist’s online presence
8. week Role of non-verbal communication. Empat
9. week Infocommunication, health literacy, difficulties in the consultation
10. week Promoting lifestyle change.
11. week Social media, new ways and perspectives of infocommunication
12. week Social media, internet addiction
13. week Presentations of the project works
14. week Written exam

COURSE REQUIREMENTS

Order of consultations: Seminars will ensure the possibility of ongoing consultation with the seminar leader.

Prerequisites: Introduction to Pharmaceutical Studies

Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
The participation at a minimum of 75% of the practice seminars, project work and its presentation are the prerequisite of the signature. Makeup is possible in other seminar group the same week.

Knowledge testing during the semester: Written examination at the end of the semester, on the last practice.

Requirements of the signature at the end of the semester:
The participation at a minimum of 75% of the practice seminars, a project work, and its presentation are the prerequisite of the signature.

Individual activity of the student during the semester (protocol, etc.):
One project work in small group and its presentation at the last practice before the exam.

Performance control in the examination period (final, examination): examination

Performance control in the examination period (written, oral, written and oral): written examination

Below 50%: 1
50%–65%: 2
66%–75%: 3
76%–85%: 4
85%–100%: 5

Prescribed external practice: Students take part on field practice in a pharmacy. They will observe communicational aspects of pharmacist–patient interaction.

List of teaching materials: (List of textbooks, hand-outs, scripts, etc.)

List of course materials: –
Scientific, course related researches, publications/essays: –
Basics of Economics (theory)

Complete name of the course: Közgazdaságtani alapismeretek (elmélet)
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Közg. Alapism.
English name of the course: Basics of Economics (theory)

Neptun-Code: GYKEGY247E1A
Type of registration: obligatory
Institute: Health Services Management Training Centre of Semmelweis University
Name of the tutor/lecturer: Vilmos IVADY Doctoral degree
Phone: +36204808366
Number of classes /week: 1
Credit points: 1

Course principles:
The general objective of the course is to present and describe the importance of the economic thoughts and principles in the everyday life. The focal point is to give support to the students to make good decisions and to be efficient at work.

Short description of the course:
Despite the lay opinion on the role of Economics, it is not mainly about money. Economics is about to assist decision making in situations, where resources are scarce compared to the needs. The aim of studying economics is to understand the decision-making process behind allocating the currently available resources, the unlimited needs confronts the limited resources. In simple words, seeking for the best decisions always comes with an unavoidable inevitable choice between alternative uses of the resources available. Using examples from the field of pharmacy brings students closer to the understanding of using economic principles during their future career. The consequences of economic actions can be evaluated from different perspectives. Students must learn how to use them when they are about to make decisions or just about to evaluate the possible alternatives.

The course includes for major parts as follows:
Part 1: Intends to present the goals and the content of the economic thoughts, including definitions of economic terms.
Part 2: Focuses on the use of Economics at macro level, the level of the national economy. The three major problems people face when organizing the economy are what, how and for whom to produce. Answering the three questions raises several concerns like economic growth, economic equilibrium, employment, inflation, state finance etc.
Part 3: This part is about microeconomics, which includes terms like demand, supply, corporate profit, calculating break-even point etc.
Part 4: Gives an introduction to applied economics at both macro and micro level. Using the fundamental principles of economics students get an insight into the basics of business decisions. Some methods will be presented as break even analysis and cash flow analysis. The relevance and the principle of using cost–benefit analysis in health care will also be discussed.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Semester program

Lecture topics/week:
2. week: The justification of economics: Scarcity. Forms of scarcity and the ways of addressing them.
4. week: Evaluation of decisions. Did we make a good decision? What are the criterias for good decisions? Defining and evaluating benefits and costs.
5. week: Summary of economic principles. Video presentation. Comprehensive approach to costs and benefits in economics and beyond economics. Case study on the average speed of driving a car.
7. week: The role of market in economic organization. Will the invisible hand give a solution?
8. week: The role of the government in regulating the economy. What is the role of the government in the drug market?
10. week: Economics of operating private and public companies. Insight into the world of microeconomics. Determinants of the operational results.
11. week: Viewing and understanding management performance. The economic nature of revenues and costs. Types of costs.
13. week: Continuing the previous lecture, presentation and discussion of cases week
14. week: Summary, takeaways

COURSE REQUIREMENTS

Order of consultations: two occasions upon request prior to final tests

Prerequisites: Introduction to pharmaceutical studies; Mathematics for pharmacists

Semester acceptance conditions: (successful course attendance, mid-term tests, absence, etc.): -

Knowledge testing during the semester: mid term assignment, absence

Requirements of the signature at the end of the semester: final test

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.):

Scientific, course related researches, publications, essays:
Economics / Paul A. Samuelson, William D. Nordhaus. — 19th ed. p. cm.—(The McGraw-Hill series economics); Hand-outs including the ppt slides of the lectures
Physical Chemistry for Pharmacists (theory+practice)
For details on this subject please contact the department or visit their website.

Hungarian Pharmaceutical Terminology (practice) II.

Complete name of the course: Magyar gyógyszerészeti szaknyelv (gyakorlat) II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Hungarian Pharmaceutical Terminology II.
English name of the course: Hungarian Pharmaceutical Terminology (practice) II.

Neptun-Code: GYKLEK155G2A
Type of registration: obligatory
Institute: Department of Languages for Specific Purposes
Name of the tutor/lecturer: Alexandra Bakó language teacher
Phone: (1) 48-64962
E-Mail: bako.alexandra@se-etk.hu

Further tutors: Borda Szandra language teacher
Nagyné Görász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher

Number of classes /week: 2
Credit points: 0

Course principles:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /'survival language/' and in their academic studies.

Brief course summary:
The second semester is dedicated to learning basic general vocabulary and grammar. Students acquire basic structures and the vocabulary for everyday topics / e.g. shopping, food, housing etc./. The course places special emphasis on phrases essential for everyday communication, e.g. introductions, greetings, getting/giving information etc. and on phrases needed in basic communication at a pharmacy.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>28</td>
<td>spring</td>
<td>0</td>
</tr>
</tbody>
</table>
Semester program

Practice topics/week:
- Week 1: Giving directions
- Week 2: Locatives
- Week 3: Asking about time
- Week 4: When to take the medicine
- Week 5: Body parts
- Week 6: Basic verbs – talking about diseases
- Week 7: Basic verbs – asking about symptoms
- Week 8: Test (oral)
- Week 9: How to take the medicine
- Week 10: Warning about side effects
- Week 11: Plural forms of nouns
- Week 12–13: Serving clients at the pharmacy
- Week 14: Final test (written and oral)

COURSE REQUIREMENTS

Order of consultations: Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.

Prerequisites: Hungarian Pharmaceutical Terminology I.

Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.): An attendance of 75% minimum is required to get the signature. The student must have a minimum average of 2.00 based on the tests in class to pass the subject.

Knowledge testing during the semester:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests. Requirements of the signature at the end of the semester: An attendance of 75% minimum and taking the final test. Individual activity of the student during the semester (protocol, etc.): homework in the forms of language practice tasks.

List of teaching materials: (List of textbooks, hand–outs, scripts, etc.)
Physical Education II.

Complete name of the course: Testnevelés II.
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: P. E. II.
English name of the course: Physical Education II.

Neptun-Code: GYKTSI116G2A
Type of registration: compulsory
Institute: Semmelweis University’s Centre for Physical Education and Sports

Name of the tutor/lecturer: Várszegi, Kornélia director
Phone: 06-1/264-14-08
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Further tutors: Doharné Buczkó, Anikó P.E. teacher
Dominika Farkas P.E. teacher
Dániel Kalmus
Zsolt Lehel Nóra
Sótonyiné Hrehuss
Kornélia Várszegi
Miklós Weisz

Number of classes /week: 1 class (practice)/week
Credit points: 0 credit

Course principles:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Brief course summary:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended semester of completing the course</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>spring</td>
<td>-</td>
</tr>
</tbody>
</table>
Semester program

Practice topics/week

1st week: General information: Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.

2nd week: Basketball: Dribbling, passing and shooting drills in order to improve fine motor skills.

3rd week: Bench exercises: Using the dimensions of the sport bench by running, skipping, jumping, lifting etc. exercises.

4th week: Rubber band exercises: Strength and coordination training by taking advantage of the elastic features of the object.

5th week: Floorball: Introducing the sport to the Students by exposing the major rules, proper technique of stick handling. Passing and shooting drills.

7th week: Volleyball: Introducing the fundamental elements of the game (serves, hits, digs etc.) Exposing the major rules and techniques.

8th week: Frisbee: Taking the next step into the game by applying tactical elements in match situations. Passing and catching drills in different moving forms.

9th week: Ruffier test and ball skill developing exercises

Compare the results with the previous test to bring the importance of the health of the cardiovascular system to the attention. Sport games on the side (Dodge-ball, King of the court etc.)

10th week: Circuit training: General strengthening drills at each stations. Applying different intensity level, regarding the various conditions of the Students.

11th week: Tennis: Involving the new strokes into the learning process: form of serves, the volleys, the smash etc.

12th week: Badminton: Introducing the new technical and tactical elements of the game (drop shots, lobs, smash etc.) Exposing the rules of doubles.

13th week: Core exercises: Relative (own body) weight exercises applying different equipment (hand weights, rubber band etc.) with the aim of postural correction, by strengthening the core muscles in order to avoid spinal deformations.

14th week: Box exercises: Applying the sport box by jumping, lifting, slaloming, carrying (etc) it. By this enhance the level of strength and stamina.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2×90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball)

COURSE REQUIREMENTS

Order of consultations: –

Prerequisites: –

Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Knowledge testing during the semester:

Requirements of the signature at the end of the semester:

Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who

1. whose diagnosis and the opinion of the sports doctor do not allow to exercise or
2. does sports regularly and submits a certificate of association and federation
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for second year students in the 2022/2023 academic year
3. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II., Analytical</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKASK117G2A</td>
<td></td>
<td></td>
<td></td>
<td>Chemistry I.</td>
<td></td>
</tr>
<tr>
<td>Analytical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II.</td>
<td>final*</td>
</tr>
<tr>
<td>GYKASK117E2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloid Chemistry (theory and practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Physic. Chem. for Pharm.,</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYI072G1A</td>
<td></td>
<td></td>
<td></td>
<td>Biophysics II.</td>
<td></td>
</tr>
<tr>
<td>GYKSZK123G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II.</td>
<td>examination</td>
</tr>
<tr>
<td>GYKSZK123E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Anatomy,</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKTLM124G1A</td>
<td></td>
<td></td>
<td></td>
<td>Biology II.</td>
<td></td>
</tr>
<tr>
<td>Physiology (theory) I.</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>Gen. and Inorg. Chem. II., Biology II.</td>
<td>examination</td>
</tr>
<tr>
<td>GYKTLM124E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (theory+practice) I.</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>Gen. and Inorg. Chem. II., Biology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKBMT069G1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Immunology (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biology II.</td>
<td>examination</td>
</tr>
<tr>
<td>GYKGEN070E1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology</td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>Hungarian Pharmaceutical</td>
<td>practical mark</td>
</tr>
<tr>
<td>(practice) III.</td>
<td></td>
<td></td>
<td></td>
<td>Terminology (practice) II.</td>
<td></td>
</tr>
<tr>
<td>GYKLEK155G3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education III.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18.5</td>
<td>16.5</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
Analytical Chemistry (theory) II. Analytical chemistry (practice) II.

Full name of the subject: Analitikai kémia (elmélet) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Analytical Chemistry (theory) II., Analytical chemistry (practice) II.
German name of the subject: Analytische Chemie (Vorlesung) II, Analytische Chemie (Praktikum) II
Neptun code of the subject: GYKASK117E2A, GYKASK117G2A
Type of registration: obligatory
Responsible department: Department of Analytical Chemistry, Eötvös Loránd University

Responsible tutor:
Dr. Krisztina Kurin-Csörgei
head of department, associate professor, PhD, Dr. Habil
Phone: (+36)1-372-2500/1241
E-Mail: krisztina.kurin@ttk.elte.hu

Dr. Béni Szabolcs
head of institute, associate professor, PhD, Dr. Habil
Phone: 476-3600 / 55304
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
István Molnár (practice) associate professor
Edina Kiss (practice) associate professor
Pálla Tamás (practice) associate professor
Krisztina Kurin-Csörgei (lecture) head of department, associate professor, PhD, Dr. Habil
Viktor Mihucz (lecture) associate professor
PhD students (practice)

Classes per week:
4 lectures, 4 practices
Credit point:
4+4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Analytical Chemistry is a scientific discipline and the teaching material, that develops and applies methods, instruments and strategies to obtain information on the composition and the nature (structure) of matter in space and time. Analytical Chemistry is concerned with two main aspects: (1) determination of the composition of a sample of matter or of a system – this means the identification of the components (qualitative analysis) and (2) the determination of the quantity of the components (quantitative analysis).

Short description of the subject:
The aim of analytical chemistry is to obtain qualitative and quantitative information about the chemical composition and structure of materials. Quantitative Analytical Chemistry is based on the determination of quantity of the components using different chemical and instrumental methods.
Program of semester

Topics of theoretical classes (pro week):
8. week: Possibilities of instrumental end point detections (summary). Conductometry (principle and applications for the titration of strong and weak acids with different titrants).

Topics of practical classes (pro week):
1. week: Taking over laboratory bench and equipments; Safety and order in the laboratory; The schedule of the semester; Practical and theoretical requirements in the semester; Chelatometry (introduction); Determination of bismuth ions.
2. week: Chelatometric determination of calcium and magnesium ions in the presence of each other (in mineral water).
3. week: Chelatometry: Determination of aluminum ions in “Aluminium aceticum tartaricum solutum”; Determination of copper and zinc ions in the presence of each other.
4. week: Argentometry: Determination of bromide ions by Volhard’s and Fayans’ methods.
5. week: Redox titrations; Permanganometry: Standardization of $\approx 0.1N$ potassium permanganate solution; Determination of hydrogen peroxide content in tablet “Hyperol”; Determination of the total iron content by Zimmermann-Reinhardt method (1/2 group); Determination of bromide ions (Winkler’ method).
6. week: Chromatometry: Determination of Mohr salt; Cerimetry: Determination of amidazophene.
7. week: Test I. Bromatometry: Determination of ascorbic acid (Vitamin C) in tablets (e.g. VitC, Rutascorbin, Béres C); Determination of azophene.
8. week: Bromatometry/Iodometry: Determination of phenol in water / acetyl salicylic acid content in tablets (e.g. As-
pirin, Kalmopyrin, Istopyrin) by Koppeschaar’s method. Iodometric determination of copper (II)-ions. Retake I.

9. week: Iodometry/Iodometry: Determination of iodide by Winkler’s method; Determination of mannitol by Malaprade’s reaction with periodate.

10. week: Potentiometric titration of acetic acid; Potentiometric titration of bromide content of “Elixirium thymi composta”; Direct potentiometric determination of fluoride content in tooth paste.

11. week: Computer aided learning of modern instrumental analytical methods (HPLC); HPLC measurement (separation of medicine sample); Ion chromatographic measurement (theory and determination of anions in “Evian” water).

12. week: Spectrofluorency: Determination of quinine in “Tonic”; Spectrophotometric determination of phosphate content in egg shell.

13. week: Test II. Conductometric determination of Betaine hydrochloride; Conductometric determination of acid contents in red wine; Water determination by Karl Fischer’ titration. (Extra lab: Supplements).

14. week: Retake II. Supplements; Closing

Schedule of consultations: at the request of students (in the period prior to the tests; etc.)

COURSE REQUIREMENTS

Prerequisites: Analytical chemistry I., General and Inorganic Chemistry II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The student should be present at least in 75% of the total number of laboratory practices scheduled during the semester. All exercises or measurements must be performed according to the time table. In case of absences the measurements must be completed in an “extra lab”; or-in justified cases – at the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
The students should write 2 major test-papers from two different parts of the subject during the semester in a time announced in advance and scheduled during the laboratory practices. The major tests cover all measurements performed in the laboratory practices and/or discussed during the lecture, the theoretical background and numerical problem solving. After each test we provide the opportunity for correction of the mark in the form of “retake test” and the marks of the supplementary tests are taken into account when determining the final grade. Shorter oral or written questionings related to the laboratory training can occur during the entire semester. All written tests and oral answers will be evaluated according to a five scale grading system. Minimum 50% of performance is required for passing the tests. The students are allowed to use their own non-programmable calculator. The use of mobile phone, smart watch, tablet, etc. is forbidden. If the students use any kind of illegal helps when he/she takes oral or written tests, his/her practical mark is automatically “unsatisfactory”.

Requirements of signature: (practice)
The final grade of the laboratory training on analytical chemistry will be established from considering the accomplishments of both theoretical and practical requirements. The theoretical requirement for passing the semester is that the average of two marks obtained by the two major tests (or retake tests) should reach a minimum value of 2.0 and the very last mark is not “unsatisfactory” (i.e. higher than 1.). The practical requirements are fulfilled if the final mark for the measurements is minimum 2.
The final practical grade is determined by considering the grades obtained for the tests and the final mark of the measurements. Requirement for allowing to take final oral exam is to have a valid (min. 2) mark on the subject of laboratory practice.

Number and type of projects students have to perform independently during the semester and their deadlines:
A written report should be prepared about the completion of each laboratory exercises. The results of the measurements should be presented to the supervising teacher for evaluation within a week after completion of the exercises. In default of doing so the measurements are marked as “unsatisfactory” and it should be repeated during the time of “extra lab”.

Type of the semester-end examination: signature, practical grade, final
Form of the semester-end examination: final oral exam

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
Materials of the lectures and practices can be downloaded from Moodle E-learning
Organic Chemistry (theory) I., Organic Chemistry (practice) I.

Full name of the subject: Szerves kémia (elmélet) I., Szerves kémia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Org Chem
English name of the subject: Organic Chemistry (theory) I., Organic Chemistry (practice) I.
German name of the subject: Organische Chemie (Vorlesung+Praktikum) I

Neptun code of the subject: GYKSZK123E1A; GYKSZK123G1A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Organic Chemistry

Responsible tutor: Dr. Petra Dunkel assistant professor, PhD
Phone: +36-1-476-3600/53006
E-mail: dunkel.petra@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Andrea Czompa assistant professor, PhD
Dr. Balázs Balogh assistant professor, PhD
Dr. Ruth Deme assistant lecturer, PhD
Dr. Dóra Bogdán assistant lecturer, PhD
Dr. Róbert Ludmerczki assistant lecturer, PhD
Dr. Márton Ivánczi PhD student
Nikolett Varró PhD student
Patrik Pollák PhD student
László Piros PhD student
Bence Kontra PhD student

Classes per week: 4 lectures, 4 practices
Credit point(s): 4+4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course includes and discusses the state-of-the-art knowledge of synthetic and structural organic chemistry subjects to develop problem-solving skills for organic chemistry and biomolecular sciences.

Short description of the subject:
To satisfy the requirements of the Faculty of Pharmacy, the course in Organic Chemistry has two main purposes:
a) The presentation of modern concepts and subject-matter concerning the structures, syntheses, physical and chemical properties, structure-property relationships, and practical applications of organic compounds, with special emphasis on bioactive molecules. The presentation and practical applications of the most important methods and tools of organic chemistry.
b) To provide a solid molecular, organic chemical basis for subsequent subjects in the curriculum of students at the Faculty of Pharmacy.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn semester</td>
<td>56+36+20</td>
<td>Autumn semester</td>
<td>upon demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):

3. week: Classification of reactions. Kinetic and thermodynamic control. Nomenclature of organic compounds I.

6. week: Benzene and aromaticity. Extension of the aromatic system. Antiaromatic and non-aromatic structures. SEAr reactions of aromatic compounds. Activating and deactivating groups, direction rules. SNAr reactions of aromatic compounds. Linear free energy relationships. Structure of halogenated hydrocarbons, physical, biological properties, preparations.

9. week: Amines: preparations, physical, chemical and biological properties. Aromatic diazonium and nitro compounds, organophosphorus compounds: preparations, physical, chemical and biological properties.

10. week: Nomenclature of organic compounds II. Oxo compounds: aldehydes and ketones - preparations, physical, chemical and biological properties. Addition to the carbonyl group. (Enolate chemistry I.)

11. week: Carboxylic acids and their derivatives: preparation, reactivity, nucleophilic reactions at the acyl carbon atom, physical, chemical and biological properties. (Enolate chemistry II.)

12. week: Substituted carboxylic acids, dicarboxylic acids and their derivatives. Synthetic applications of ethyl acetoacetate and diethyl malonate.

14. week: Summary of organic chemical reactions, reaction mechanisms, synthesis planning.

Topics of practical classes (pro week):

1. week: –

3. week: Recrystallization of 4-bromoacetanilide. Melting point determination (presentation).

5. week: Preparation and recrystallization of 4-bromoacetanilide.

6. week: Stereochemistry of SN2 and SE2 reactions and interpretation of the transition state. Aliphatic and aromatic hydroxyl and halogen compounds: basic properties of substitution and elimination reactions and their mechanism.

7. week: Preparation of 4-nitrobenzoic acid

9. week: Preparation of methyl 4-nitrobenzoate
10. week: Aldehydes and ketones. Addition to the carbonyl group. Reactions of α-hydrogen of aldehydes and ketones.
11. week: (E,E)-1,5-diphenylpenta-1,4-diene-3-one
12. week: Reactivity of carboxylic acids and their derivatives (acylation), reactions involving α-hydrogen.
13. week: Introduction into cheminformatics.
14. week: Supplement. Inventory. Carbonic acid derivatives

Schedule of consultations: as many times as students ask for consultation, at least 1 week before the date of consultation

COURSE REQUIREMENTS

Prerequisites: GYASKASKE2A General and inorganic chemistry II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
At the mid-term tests (two/semester) students have to answer in a written form questions on the subject-matter of the main lectures, the practicals and the seminars, the dates of which are fixed at the beginning of the semesters. The grade of the midterm test can be either ranging 2-5 or failed. If the test is failed or the student did not attend it, the student must attend the following makeup test. If the makeup test is failed, a second makeup test should be written. If any of the makeup tests reach the passmark, then the midterm test is accepted. If also the second make-up test is failed, the student does not get signature for the semester, they are not allowed to sit in the semi-final examination. Grades for the main and makeup mid-term tests of the same topic are not averaged.

If necessary, students may make up for missed or unsuccessful experiments after preliminary agreement with the leading instructor at the end of the semester. Without permission, the repetition of unsuccessful experiments is not allowed. Course material for the seminars (problem sets) are provided in advance to the students via Moodle. Students are expected to consult these materials before the respective seminars. Attendance is mandatory at the seminars. Missed seminars could be attended at the same week (with another group) upon prior permission from the leading instructor. If anyone has 2 or more absences from the seminars, they must pass a report from the topics of missing seminars, and this report must be accepted. Attendance on at least 75% of the practical course is necessary for the signature by the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Theory: two written mid-terms tests typically at the 8th and 12th week of the semester, each followed by two makeup opportunities

Practice: at the beginning of each laboratory practical, students must write a short test on the theoretical and practical subject-matter of the experiment. These tests are immediately corrected by the leading instructor, and the practical work can be started only if the short test is accepted. If the test is not successful, the experiment in question can be performed only at the end of the semester.

Requirements of signature:
Theory: at least grade 2 at each of the mid-term tests, passmark for the practical course

Practice: based on the attendance and the expected results described in the protocol, the performance of the practical tasks is validated by the signature of the leading instructor. At least 75% of the compounds or experiments must be graded as acceptable. Evaluation of the compounds is based on their yield and purity, and the average of the grades for each preparation gives the preparation mark. The appropriate parts of the laboratory notebook should be prepared in advance and after the completion of each practical, the notebook should be submitted to the leading instructor, together with the product of the experiment.

Number and type of projects students have to perform independently during the semester and their deadlines: -
Type of the semester-end examination: theory – examination, practice – practical grade
Form of the semester-end examination: written examination

Scientific, course related researches, publications, assays:
Materials of the lectures and practices can be downloaded from Moodle

Necessary equipment: personal protective equipment for the laboratory practicals
Physiology (theory) I., Physiology (practice) I.

Full name of the subject: Élettan (elmélet) I., Élettan (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Physiology (theory) I., Physiology (practice) I.
German name of the subject: Physiologie (Vorlesung) I., Physiologie (Praktikum) I.
Neptun code of the subject: GYKTLM124E1A, GYKTLM124G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Translational Medicine
Responsible tutor: Dr. Zoltán Benyó Director, professor, PhD, DSc
E-Mail: benyo.zoltan@med.semmelweis-univ.hu
Name of the persons responsible for the teaching of the subject:
Dr. Zoltán Benyó Professor, PhD, DSc
Dr. Tamás Ivanics Associate professor, PhD
Dr. Zsuzsanna Miklós Associate professor, PhD
Dr. Margittai Éva Assistant professor, PhD
Dr. Éva Ruisanchez Assistant professor, PhD
Dr. Monori-Kiss Anna Assistant professor, PhD
Dr. Éva Pál Assistant lecturer, PhD
Dr. László Hricisák Assistant lecturer, PhD
Dr. Ákos Zsembery Associate professor, PhD
Classes per week: 5 lectures, 2 practices
Credit point(s): 4 (theory) + 2 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The goal is to teach physiological processes from subcellular, cellular and tissue-level processes all the way to complex regulation on the organism level, including studies in humans. Special emphasis is laid on the presentation of complex adaptation processes playing an important role in health preservation, and on studying how physiological regulatory processes respond to changes in the external or internal environment.

Short description of the subject:
Theoretical lectures and practices are held every week. Seminars/Practices are for discussion of ongoing new lecture material and performing relevant physiological measurements in small groups. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester, and a lab exam at the end of the semester. Based on the results of the tests and the lab exam students get a lab work grade at the end of the semester. Students take a written theoretical examination in the exam period.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Program of semester

I. Lecture topics/week

2. week: Ionic equilibria and resting membrane potentials, ion channels and gates. Action potentials. Synaptic transmission.

4. week: Functional organization of the cardiovascular system. Dynamics of blood flow. Physiological functions of the blood vessels, their significance in the healthy functioning of the organism.

6. week: Biomechanical basis of cardiac functions. Cardiac pump. Signal transduction in the cardiomyocyte. Cardiac cycle. Electrical activity of the heart.

7. week: Conduction in cardiac fibers, cardiac excitability, cardiac rhythmicity, electrocardiography.

8. week: Cardiovascular control mechanisms. Local control mechanisms. Systemic control mechanisms.

11. week: Gas transport between the lungs and the tissues. Types of hypoxia. Regulation of respiration. Neural and chemical control of respiration. Adaptation of cardiorespiratory system and skeletal muscle to physical exercise.

14. week: Role of the kidneys in the control of blood pressure. Micturition. Physiological aspects of different forms of circulatory shock.

Topics of practical classes (pro week):

II. Practice topics/week

Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars.

Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups.

1. week: Introduction. Study of the electrical properties of the neurons in a simulatory setting (Sim Neuron)

2. week: Written test and consultation of the previous week’s theoretical material

3. week: Electroneurography, measurement of the impulse conduction velocity of a motor nerve.

4. week: Written test and consultation of the previous weeks’ theoretical material

5. week: Electromyography, study of the electrical properties of the skeletal muscle

6. week: Written test and consultation of the previous weeks’ theoretical material

7. week: Blood pressure measurement

8. week: Written test and consultation of the previous weeks’ theoretical material

9. week: ECG

10. week: Written test and consultation of the previous weeks’ theoretical material

11. week: Spirometry

12. week: Written test and consultation of the previous weeks’ theoretical material

13. week: Retake lab, exam consultation

14. week: Practical exam.

Schedule of consultations:

Consultations take place on every even week
COURSE REQUIREMENTS

Prerequisites: Anatomy GYKANT118E1A; Biology II. GYKGEN109E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Seminars are held every even week (1×45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Lab Work Grade. Students are required to write at least 4 seminar tests, and achieve at least 2,0 average on these tests to become eligible for the examination or final exam.
Practices are held every uneven week (3×45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups. Practices are obligatory. Missing 25% of the practice time (7 hours practice time) results in denial of admission to the examination or final exam. A retake opportunity is provided for the students to make up for missed practices at the end of the semester. Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the results of the seminar tests and the lab exam students get a Lab Work Grade at the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
The theoretical knowledge of the students is tested systematically in a written form on the seminars. The form of the test can be quiz or multiple-choice type questions. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade.

Requirements of signature:
The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade. The results of the remaining 5 tests are averaged to yield the Consultation Grade, which must be at least 2,0 to get the signature for the semester and become eligible for the examination or final exam.
Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the Consultation Grade and the result of the lab exam students get a Lab Work Grade at the end of the semester. The Lab Work Grade is calculated by averaging the Consultation Grade and the result of the lab exam (50-50%).

Further requirements of the signature at the end of the semester is to participate on at least 75% of the practices.

Type of the semester-end examination: practical grade, examination

Form of the semester-end examination: written exam

Scientific, course related researches, publications, assays:
Biochemistry (theory+practice) I.

Full name of the subject: Biokémia I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Biochemistry (theory+practice) I.
German name of the subject: Biochemie (Vorlesung+Praktikum)

Neptun code of the subject: GYKBMT069G1A
Type of registration: obligatory
Responsible department: Department of Biochemistry of Semmelweis University

Responsible tutor: Dr. Attila Ambrus Ph.D.
Phone: 459-1500/60050
E-mail: ambrus.attila@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
András Szöllősi Ph. D.
Zsófia Komáry Ph. D.
Olivér Ozohanics Ph. D.
Bálint Nagy Pharm. D.
Erzsébet Maróthy Tóth Pharm. D.

Classes per week: 1,5 lectures, 1,5 practices
Credit point(s): 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The main goal of this course is to introduce students to the mechanisms of human biochemical processes at the molecular level. The program is designed to also provide a broader insight into physiological processes that enables students to connect all their previous studies to metabolic processes, and also provides them with the basic knowledge to understand mechanisms of drug action discussed later in Pharmacology. The skills and knowledge acquired in this program is inevitable for modern rational drug design.

Short description of the subject:

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
Week 1: Protein composition and structure
Week 2: Protein purification, analysis
Week 3: Myoglobin and hemoglobin
Week 4: Basic concepts and kinetics of enzymes
Week 5: Enzyme kinetics
Week 6: Enzyme catalytic strategies
Week 7: Enzyme regulatory strategies,
Week 8: High group transfer potential compounds
Week 9: Glycolysis, gluconeogenesis: reactions, isoenzymes, enzyme deficiencies
Week 10: Glycolysis, gluconeogenesis regulation, Pasteur-effect, catabolic and anabolic significance
Week 11: PDHC, citric acid cycle: reactions, enzyme defects
Week 12: Citric acid cycle: regulation, catabolic and anabolic significance, anaplerotic reaction
Week 13: Respiratory chain: components, operation; ATP synthase
Week 14: Oxidative phosphorylation, shuttles, transporters

Topics of practical classes (pro week):
Week 1: ASAT and ALAT activity
Week 3: Purification of trypsin by affinity chromatography
Week 5: Lactate dehydrogenase polyacrylamide gel electrophoresis
Week 7: Determination of blood sugar level
Week 9: Hemostasis: prothrombin time, partial thromboplastin time, fibrin stability
Week 11: Determination of serum TAG and cholesterol
Week 13: Succinate dehydrogenase activity

Schedule of consultations: upon mutual agreement

COURSE REQUIREMENTS

Prerequisites: General and inorganic chemistry II. GYKASK106E2A, Biology II. GYKGEN109E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Less than two absences from the practice. Justification of absence is not required.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
two obligatory written midterm examinations with retakes
Requirements of signature: both midterms to be successful
Type of the semester-end examination: signature/examination/final

Scientific, course related researches, publications, assays:
Berg-Tymoczko-Stryer: Biochemistry 9th edition
lecture slides with personal lecture notes
Hungarian Pharmaceutical Terminology (practice) III.

Full name of the subject: Magyar gyógyszerészeti szaknyelv (gyakorlat) III.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Hung. Pharm. Term. III.
English name of the subject: Hungarian Pharmaceutical Terminology (practice) III.
German name of the subject: Pharmazeutische Fachsprache Ungarisch (Praktikum) III.

Neptun code of the subject: GYKLEK155G3A
Type of registration: obligatory
Institute: Department of Languages for Specific Purposes

Name of the tutor/lecturer: Alexandra Bakó assistant lecturer
Phone: +36 30 016 4236
E-Mail: bako.alexandra@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Borda Szandra language teacher
- Nagyné Górász Judit language teacher
- Kovács Ildikó language teacher
- Nagy Borbála language teacher
- Tick Vera language teacher

Classes per week: 2 practices
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /'survival language'/ and in their academic studies.

Short description of the subject:
The third semester is dedicated to learning how to communicate with clients and colleagues at the pharmacy. Students acquire basic structures and the vocabulary for describing the characteristics of medicines. The course places special emphasis on functional language needed for obtaining and providing information, giving recommendations and instructions and on phrases needed in basic communication at a pharmacy. The semester also focuses on preparing students for the final exam (both written and oral) at the end of the 4th semester.

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>28</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):

Week 1 Types of medicines
Week 2 Effect of medicines
Week 3 General instructions
Week 4 Instructions about specific forms of medicines
Week 5 Possible side effects
Week 6 Symptoms and treatment of common UTIs
Week 7 Symptoms and treatment of common children’s diseases
Week 8 Test (oral)
Week 9-10 Symptoms and treatment of respiratory conditions
Week 11-12 Symptoms and treatment of cardiovascular conditions
Week 13 Revision
Week 14 Final test (oral)

Schedule of consultations:
Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.

COURSE REQUIREMENTS

Prerequisites: GYKLEK155G2A Hungarian Pharmaceutical Terminology II.

Conditions of attending the classes, amount of acceptable absences, way of presentation of leave, opportunity for makeup: An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the tests in class to pass the subject.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests.
Requirements of signature: An attendance of 75% minimum and taking the final test.

Number and type of projects students have to perform independently during the semester and their deadlines:
homework in the forms of language practice tasks

Type of the semester-end examination: signature

Form of the semester-end examination: oral

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
Physical Education III.

Full name of the subject: Testnevelés III.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: P. E. III.
English name of the subject: Physical Education III.
German name of the subject: Sport III

Neptun code of the subject: GYKTSI116G3A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Doharné Buczkó, Anikó P.E. teacher
Farkas, Dominika P.E. teacher
Kalmus, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótonyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher

Classes per week: 1 practice
Credit point: 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>3. semester</td>
</tr>
</tbody>
</table>
Program of semester
Topics of practical classes (pro week):

1st week: **General information**
Health and Safety, Fire and Environmental protection. The mid-year adoption requirements, the construction of the classes and the presentation of the university recreational and sports opportunities for extra-curricular activities. Heart rate measurement exercises. Ruffier test and evaluation of the results.

2nd week: **Athletic**
Differed athletic exercises like throwing, shot put. Preferably outdoors with the aim of learn how to execute the exercise with a proper form and breathing technique.

3rd week: **Tennis**
Introducing and learning advanced technical elements (serve, volley) and game.

4th week: **Agility ladder**
To perform different exercises to improve speed, balance and concentration. Preferably outdoors, on grass ground.

5th week: **Relay race and competitive games**
To improve explosiveness, skills and experience good team spirit.

6th week: **Football**
Practicing the technical elements of football in pairs and game situation.

7th week: **Circuit training**
Functional exercises with bodyweight and exercises with basic equipment to improve general coordination skills.

8th week: **Badminton**
Introducing the technical and tactical elements of doubles game. Game applying all the previously known rules.

9th week: **Ruffier test**
Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.

10th week: **Meta**
Reminders of the basic need to know about META. Learn tactical elements of the game and using them. Aim to improve ball skill development, reaction time, explosiveness and collective gaming experience.

11th week: **Obstacle course**
To complete a built up obstacle course using different creeping, climbing, hovering, pulling, skipping, throwing techniques for general skill development.

12th week: **Mobilisation**
Dynamic stretching exercises with and without equipment to prevent the health of the joints by maintaining and developing the mobility of it.

13th week: **Skipping rope**
Skill developing exercises with skipping rope individually and in pairs, in place and in motion at different levels.

14th week: **Kettlebell**
Different kind of strengthening exercises with kettlebell.
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball, volleyball)

COURSE REQUIREMENTS
Prerequisites: –
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.
May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise or
2. does sports regularly and submits a certificate of association and federation

Type of the semester-end examination: signature

Basic Immunology (Theory)
For details on this subject please contact the department or visit their website.
4. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry (practice) II. GYKSZK123G2A</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Organic Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Organic Chemistry (theory) II. GYKSZK123E2A</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice) GYKGYI073G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Physiology I., Physic. Chem. for Pharm., History of Pharm. and Prop.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (practice) II. GYKTLM124G2A</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Physiology I.,Biochemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physiology (theory) II. GYKTLM124E2A</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice) GYKGYI078G1A</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Practice I. GYKANG238G1A</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Physic. Chem. for Pharm. Pharmaceutical Terminology</td>
<td>signature</td>
</tr>
<tr>
<td>Hungarian Pharmaceutical Terminology (practice) IV. GYKLEK155G4A</td>
<td>–</td>
<td>2</td>
<td>3</td>
<td>Hungarian Pharmaceutical Terminology (practice) III.</td>
<td>final</td>
</tr>
<tr>
<td>Physical Education IV. GYKTSI116G4A</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Summer Practice I. GYSSZG234G4A (4 weeks)</td>
<td>--</td>
<td>40/week (4 weeks)</td>
<td>4</td>
<td>Colloid Chemistry, Physiology I.</td>
<td>practical mark elective subject</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>13</td>
<td>28</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Biochemistry (theory) II.

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Biokémia II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>Biochemistry II.</td>
</tr>
<tr>
<td>English name of the subject:</td>
<td>Biochemistry (theory) II.</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td>Biochemie (Vorlesung) II</td>
</tr>
<tr>
<td>Neptun code of the subject:</td>
<td>GYKBMT069E2A</td>
</tr>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Responsible department:</td>
<td>Department of Biochemistry of Semmelweis University</td>
</tr>
<tr>
<td>Responsible tutor:</td>
<td>Dr. Attila Ambrus Ph.D.</td>
</tr>
<tr>
<td>E-mail:</td>
<td>ambrus.attila@med.semmelweis-univ.hu</td>
</tr>
</tbody>
</table>

Name of the persons responsible for the teaching of the subject:

- Dr. Iordan Iordanov Ph. D.
- Dr. István Léránt Ph. D.
- Dr. László Tretter Ph. D., D. Sc.
- Dr. Krasimir Kolev
- Dr. Erzsébet Maróthy Tóth Ph. D., D. Sc. Pharm. D.

Classes per week:

- 3 lectures

Credit point:

- 3

Professional content, intent of acquirement and its function in order to implement the goals of the program:

The main goal of this course is to introduce students to the mechanisms of human biochemical processes at the molecular level. The program is designed to also provide a broader insight into physiological processes that enables students to connect all their previous studies to metabolic processes, and also provides them with the basic knowledge to understand mechanisms of drug action discussed later in Pharmacology. The skills and knowledge acquired in this program is inevitable for modern rational drug design.

Short description of the subject:

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

698
Program of semester

Topics of theoretical classes (pro week):

Week 1: Digestion and absorption of carbohydrates. Metabolism of fructose and galactose, enzyme defects; Pentose phosphate pathway: reactions, regulation, significance
Week 2: Uronic acid pathway: significance; Metabolism of glycogen, reactions, regulation
Week 3: Degradation of saturated, unsaturated, even- and odd-chained fatty acids; Metabolism of ketone bodies; Synthesis of fatty acids, regulation
Week 4: Elongation and desaturation of fatty acids; Synthesis of eicosanoids; Digestion of lipids; Degradation of triglycerides and phospholipids; Fatty acid transporters; The role of lipids in signal transduction
Week 5: Synthesis of triglycerides and phospholipids; Metabolism of lipoproteins, hyperlipoproteinaemias
Week 6: Synthesis of cholesterol, its regulation; Transport of cholesterol; Pharmacological targets; Synthesis of bile acids, enterohepatic circulation
Week 7: Synthesis of steroid hormones; Digestion of proteins, amino acid transporters
Week 8: Urea cycle: reactions, regulation, enzyme defects; Degradation of amino acids; Glucoplastic and ketoplastic amino acids; Synthesis of amino acids; Molecules derived from amino acids
Week 9: Synthesis, degradation and salvage reactions of nucleotides; Pharmacological targets
Week 10: Metabolic integration: red blood cell, adipocyte, heart, skeletal muscle
Week 11: Metabolic integration: brain, kidney, liver in well-fed and fasting states
Week 12: Synthesis and degradation of neurotransmitters, receptor types
Week 13: Hemostasis: blood coagulation, role of thrombocytes, pharmacological targets
Week 14: Hemostasis: fibrinolysis; role of endothelium and liver. Pharmacological targets

Schedule of consultations: on demand

COURSE REQUIREMENTS

Prerequisites: Biochemistry I. GYKBMT069G1A, Organic chemistry I. GYKSZK123G1A, GYKSZK123E1A

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Two midterm exams will be held in the Moodle system. The first midterm exam will take place on week 7, the material is Carbohydrates and Lipids discussed in the lectures before week 7. The second midterm will take place on week 13, the material is the remaining lipid metabolism, amino acid and nucleotide metabolism, metabolic integration. Retake may be written after each midterm exam for the students who missed the midterm.

Requirements of signature: writing of two midterm exams

Type of the semester-end examination: final

Form of the semester-end examination: written test in the Moodle system (together with oral part in case of distance exam

Scientific, course related researches, publications, assays:
Berg-Tymoczko-Stryer: Biochemistry 9th edition
lecture slides with personal lecture notes
Organic Chemistry (theory) II., Organic Chemistry (practice) II.

Full name of the subject: Szerves kémia (elmélet) II., Szerves kémia (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Org Chem II.
English name of the subject: Organic Chemistry (theory) II., Organic Chemistry (practice) II.
German name of the subject: Organische Chemie (Vorlesung+Praktikum) II
Neptun code of the subject: GYKSK123E2A; GYKSK123G2A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Organic Chemistry

Responsible tutor: Dr. Petra Dunkel assistant professor, PhD
Phone: +36-1-476-3600/53006
E-mail: dunkel.petra@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Andrea Czompa assistant professor, PhD
Dr. Balázs Balogh assistant professor, PhD
Dr. Ruth Deme assistant lecturer, PhD
Dr. Dóra Bogdán assistant lecturer, PhD
Dr. Róbert Ludmerczki assistant lecturer, PhD
Dr. Márton Ivánczi PhD student
Bence Kontra PhD student
László Piros PhD student
Patrik Pollák PhD student
Nikolett Varró PhD student

Classes per week: 4 lectures, 4 practices
Credit point(s): 4+4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course includes and discusses the state-of-the art knowledge of synthetic and structural organic chemistry subjects to develop problem-solving skills for organic chemistry and biomolecular sciences.

Short description of the subject:
To satisfy the requirements of the Faculty of Pharmacy, the course in Organic Chemistry has two main purposes:

a) The presentation of modern concepts and subject-matter concerning the structures, syntheses, physical and chemical properties, structure-property relationships, and practical applications of organic compounds, with special emphasis on bioactive molecules. The presentation and practical applications of the most important methods and tools of organic chemistry.

b) To provide a solid molecular, organic chemical basis for subsequent subjects in the curriculum of students at the Faculty of Pharmacy.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Chemistry literature and databases. Carbon-carbon bond forming reaction with palladium catalysis, organometallic compounds of zinc and magnesium. Inter- and intramolecular reactions.
2. week: Heterocyclic nomenclature. Heterocyclic and heteroaromatic compounds.
3. week: π- Excessive aromatic heterocyclic compounds I.
4. week: π- Excessive aromatic heterocyclic compounds II.
5. week: π- Deficient aromatic heterocyclic compounds I.
6. week: π- Deficient aromatic heterocyclic compounds II.
7. week: π- Amino acids, peptides, proteins
8. week: π- Carbohydrates I
10. week: Nucleosides, nucleotides and nucleic acids. Natural compounds: alkaloids I.
11. week: Natural compounds: alkaloids II.
12. week: Natural compounds. Terpenes, steroids, representatives of the classes, further natural products.
13. week: Biochemical reactions, the citric acid cycle. Vitamins.
14. week: Summary of organic chemical reactions, reaction mechanisms, synthesis planning.

Topics of practical classes (pro week):
1. week: –
2. week: Nomenclature examples from semester I-II, nomenclature of heterocyclic compounds.
3. week: Chemical bibliography and databases.
4. week: Heterocyclic compounds – advanced synthetic routes and reaction pathways. 3-, 4- and 5-membered heterocycles.
5. week: Diethyl-(3,5-dimethylpyrrole-2,4-dicarboxylate).
6. week: Heterocyclic compounds – advanced synthetic routes and reaction pathways. 6-, 7- and 8-membered heterocycles.
7. week: Cyclohexanone oxime and phthalimide.
8. week: Amino acids, peptides, proteins.
9. week: Acetylsalicylic acid.
10. week: Carbohydrates. General properties and applications of polymers.
11. week: Purification of ethyl acetate.
13. week: Chromatography (column chromatography, TLC).

Schedule of consultations:
as many times as students ask for consultation, at least 1 week before the date of consultation

COURSE REQUIREMENTS
Prerequisites: GYKSZK123E1A Organic chemistry (theory) I.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
At the mid-term tests (two/semester) students have to answer in a written form questions on the subject-matter of the main lectures, the practicals and the seminars, the dates of which are fixed at the beginning of the semesters. The value of the mid-term test can be either ranging 2-5 or failed. If the test is failed or the student did not attend it, the student must attend the following makeup test. If the makeup test is failed, a second makeup test should be written. If any of the makeup tests reach the passmark, then the mid-term test is accepted. If also the second makeup test is failed, the student does not get signature for the semester, they are not allowed to sit in the semi-final examination. Grades for the main and makeup mid-term tests of the same topic are not averaged.

If necessary, students may make up for missed or unsuccessful experiments after preliminary agreement with the leading instructor at the end of the semester. Without permission, the repetition of unsuccessful experiments is not allowed. Course material for the seminars (problem sets) are provided in advance to the students via Moodle. Students are expected to consult these materials before the respective seminars. Attendance is mandatory at the seminars. Missed seminars could be attended at the same week (with another group) upon prior permission from the leading instructor. If anyone has 2 or more absences from the seminars, they must pass a report from the topics of missing seminars, and this report must be accepted. Attendance on at least 75% of the practical course is necessary for the signature by the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Theory: two written mid-term tests typically at the 8th and 12th week of the semester, each followed by two makeup opportunities
Practice: at the beginning of each laboratory practical, students must write a short test on the theoretical and practical subject-matter of the experiment. These tests are immediately corrected by the leading instructor, and the practical work can be started only if the short test is accepted. If the test is not successful, the experiment in question can be performed only at the end of the semester.
Requirements of signature:
Theory: at least grade 2 at each of the mid-term tests, passmark for the practical course
Practice: based on the attendance and the results described in the protocol, the performance of the practical tasks is validated by the signature of the leading instructor. At least 75% of the compounds or experiments must be graded as acceptable. Evaluation of the compounds is based on their yield and purity, and the average of the marks for each preparation gives the preparation mark. The appropriate parts of the laboratory note-book should be prepared in advance and after the completion of each practical, the note-book should be submitted to the leading instructor, together with the product of the experiment.

Number and type of projects students have to perform independently during the semester and their deadlines:

Type of the semester-end examination: theory - final, practice - practical grade

Scientific, course related researches, publications, assays:
1. Materials of the lectures and practices can be downloaded from Moodle
5. Necessary equipment: personal protective equipment for the laboratory practicals
Physiology (theory) II., Physiology (practice) II.

Full name of the subject: Élettan (elmélet) II., Élettan (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Physiology (theory) II., Physiology (practice) II.
German name of the subject: Physiologie (Vorlesung) II., Physiologie (Praktikum) II.
Neptun code of the subject: GYKTL124E2A, GYKTL124G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Translational Medicine
Responsible tutor: Dr. Zoltán Benyó Director, professor, PhD, DSc
E-Mail: benyo.zoltan@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Dr. Zoltán Benyó Professor, PhD, DSc
- Dr. Tamás Ivanics Associate professor, PhD
- Dr. Zsuzsanna Miklós Associate professor, PhD
- Dr. Margittai Éva Assistant professor, PhD
- Dr. Éva Ruisanchez Assistant professor, PhD
- Dr. Monori-Kiss Anna Assistant professor, PhD
- Dr. Éva Pál Assistant lecturer, PhD
- Dr. László Hricisák Assistant lecturer, PhD
- Dr. Ákos Zsembery Assistant professor, PhD

Classes per week:
- 5 lectures, 2 practices
Credit point(s):
- 4 (theory), 2 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The goal is to teach physiological processes from subcellular, cellular and tissue-level processes all the way to complex regulation on the organism level, including studies in humans. Special emphasis is laid on the presentation of complex adaptation processes playing an important role in health preservation, and on studying how physiological regulatory processes respond to changes in the external or internal environment.

Short description of the subject:
Theoretical lectures and practices are held every week. Seminars/Practices are for discussion of ongoing new lecture material and performing relevant physiological measurements in small groups. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester, and a lab exam at the end of the semester. Based on the results of the tests and the lab exam students get a lab work grade at the end of the semester. Students take a written theoretical examination in the exam period.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>Contact hours</td>
</tr>
<tr>
<td>(lecture)</td>
</tr>
<tr>
<td>Contact hours</td>
</tr>
<tr>
<td>(practice)</td>
</tr>
<tr>
<td>Contact hours</td>
</tr>
<tr>
<td>(seminar)</td>
</tr>
<tr>
<td>Individual</td>
</tr>
<tr>
<td>lectures</td>
</tr>
<tr>
<td>Total number of</td>
</tr>
<tr>
<td>contact hours/</td>
</tr>
<tr>
<td>semester</td>
</tr>
<tr>
<td>Normal course offer</td>
</tr>
<tr>
<td>Consultations</td>
</tr>
</tbody>
</table>

| 4 | 5 | 2 | – | – | 98 | Spring semester | – |
Program of semester

Topics of theoretical classes (pro week):

I. Lecture topics/week

3. week: Gastrointestinal motility and secretions. Innervation of the GI tract. GI hormones. Regulation of GI motility. Regulation of GI secretion: Salivary secretion; Gastric secretion; Exocrine pancreas. Liver and biliary system.

10. week: Somatosensory functions. Cutaneous, deep and visceral sensation; sensory pathways. Inflammation and pain sensation.

Topics of practical classes (pro week):

II. Practice topics/week

Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars.

Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups.

1. week: Studying the circulatory and respiratory adaptation responses during physical exercise

2. week: Written test and consultation of the previous week’s theoretical material

3. week: Acid-base disorders in the clinical practice

4. week: Written test and consultation of the previous weeks’ theoretical material

5. week: Measurement of pulse wave velocity

6. week: Written test and consultation of the previous weeks’ theoretical material

7. week: Clinical case studies

8. week: Written test and consultation of the previous weeks’ theoretical material

9. week: Blood glucose measurement and oral glucose tolerance test

10. week: Written test and consultation of the previous weeks’ theoretical material

11. week: Examination of motor reflexes and vestibular function, EOG.

12. week: Written test and consultation of the previous weeks’ theoretical material

13. week: Retake lab, exam consultation

14. week: Practical exam.

Schedule of consultations: Consultations take place on every even week
COURSE REQUIREMENTS

Prerequisites: Physiology I. GYKTLM124E1A; Biochemistry I. GYKBMT069G1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Seminars are held every even week (1x45 min) and are for discussion of ongoing new lecture material. Also, the theoretical knowledge of the students is tested systematically in a written form on the seminars. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Lab Work Grade. Students are required to write at least 4 seminar tests, and achieve at least 2.0 average on these tests to become eligible for the examination or final exam.

Practices are held every uneven week (3x45 min), and students are required to carry out relevant physiological measurements in small (2-3 persons) groups. Practices are obligatory. Missing 25% of the practice time (7 hours practice time) results in denial of admission to the examination or final exam. A retake opportunity is provided for the students to make up for missed practices at the end of the semester. Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the results of the seminar tests and the lab exam students get a Lab Work Grade at the end of the semester.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
The theoretical knowledge of the students is tested systematically in a written form on the seminars. The form of the test can be quiz or multiple-choice type questions. Students are required to take 6 written exams in each semester. Passing level is 50% of the maximum points. Absence from a seminar yields grade 1 (fail) for that week. The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade.

Requirements of signature:
The worst grade of the 6 seminar tests is omitted from the calculation of the Consultation Grade. The results of the remaining 5 tests are averaged to yield the Consultation Grade, which must be at least 2.0 to get the signature for the semester and become eligible for the examination or final exam.
Students are required to take a lab exam at the end of the semester. Only those students can be admitted to the lab exam who completed at least 5 lab practices.
Based on the Consultation Grade and the result of the lab exam students get a Lab Work Grade at the end of the semester. The Lab Work Grade is calculated by averaging the Consultation Grade and the result of the lab exam (50-50%).

Further requirements of the signature at the end of the semester is to participate on at least 75% of the practices.

Type of the semester-end examination: signature, practical grade, final
Form of the semester-end examination: written exam

Scientific, course related researches, publications, assays:
Hungarian Pharmaceutical Terminology (practice) IV.

Full name of the subject: Magyar gyógyszerészeti szaknyelv (gyakorlat) IV.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Hung. Pharm. Term. IV.
English name of the subject: Hungarian Pharmaceutical Terminology (practice) IV.
German name of the subject: Pharmazeutische Fachsprache Ungarisch (Praktikum) IV

Neptun code of the subject: GYKLEK155G4A
Type of registration: obligatory elective
Responsible department: Semmelweis University, Department of Languages for Specific Purposes

Responsible tutor: Alexandra Bakó language teacher
bako.alexandra@se-etk.hu

Name of the persons responsible for the teaching of the subject:
Borda Szandra language teacher
Nagyné Görász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher
Tóth Zsuzsanna language teacher

Classes per week: 2 practices
Credit point: 3

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective communication in the language they use during their field practice both in their everyday life /'survival language'/ and in their academic studies.

Short description of the subject:
The fourth semester is dedicated to learning how to communicate with clients and colleagues at the pharmacy. Students acquire basic structures and the vocabulary for describing the characteristics of medicines. The course places special emphasis on functional language needed for obtaining and providing information, giving recommendations and instructions and on phrases needed in basic communication at a pharmacy. The semester also focuses on preparing students for the final exam (both written and oral) at the end of the semester.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>28</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Spring semester</td>
<td>-</td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Week 1-2 Revision, communication practice
Week 3-4 Symptoms and treatment of urinary tract conditions
Week 5-6 Symptoms and treatment of gastrointestinal conditions
Week 7 Symptoms and treatment of endocrine problems (diabetes, thyroid dysfunctions)
Week 8 Test (oral)
Week 9-13 Targeted practice for the final exam (sample written and oral tests, picture descriptions)
Week 14 Final test (oral)

COURSE REQUIREMENTS

Prerequisites: GYKLEK155G2A Hungarian Pharmaceutical Terminology II.
Conditions of attending the classes, amount of acceptable absences, way of presentation of leave, opportunity for makeup: An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the tests in class to pass the subject.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests.
Requirements of signature: An attendance of 75% minimum and taking the final test.

Number and type of projects students have to perform independently during the semester and their deadlines:
homework in the forms of language practice tasks

Type of the semester-end examination: signature

Form of the semester-end examination: oral

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
Hungarian Pharmaceutical Terminology IV.- (Manuscript- Department of Languages for Specific Purposes)
Physical Education IV.

Full name of the subject: Testnevelés IV.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: PE IV.
English name of the subject: Physical Education IV.
German name of the subject: Sport IV

Neptun code of the subject: GYKTSI116G4A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director

Name of the persons responsible for the teaching of the subject:
Doharné Buczkó, Anikó P.E. teacher
Farkas, Domninika P.E. teacher
Kalmus, Dániel P.E. teacher
Lehel, Zsolt P.E. teacher
Sótonyiné Hrehuss, Nóra P.E. teacher
Várszegi, Kornélia P.E. teacher
Weisz, Miklós P.E. teacher

Classes per week: 1 practice(s)
Credit point(s): 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
One aim of the course is to improve the health status of medical students, maintaining and increasing physical performance, creating the conditions for better physical quality of life.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):

1st. week: General information
Accident, fire and environmental knowledge. Requirement for acceptance of the semester system, the structure of the classes and the presentation of the university recreational sports opportunities for extra-curricular activities.

2nd. week: Basketball
Dribbling and shooting skill improving drills. Games: 1 on 1; 2 on 2; shooting contests, king of the court. Scrimmage.

3rd. week: Wall-bar exercises
Enhance strength and balance by climbing, declining, hanging, skipping, pulling, pushing etc. exercises.

4th. week: Circuit training
A chain of compete drills in a certain time period with and without equipment. The aim is to improve the general level of strength and stamina.

5th. week: Floorball
Passing and receiving skill improving drills. Exposing shots on goal (wrist- slap- and snapshots). Scrimmage.

6th. week: Drills in pairs
Strength, agility, coordination and battling skill improving exercises with a partner incorporated.

7th. week: Volleyball
Introducing the defensive elements of the game (receiving serves, blocks). Exposing unknown rules. Games.

8th. week: Game-day
Introducing and practicing different kind of cohesion enhancing games (Tick-Tac-Toe, etc.)

9th. week: Ruffier test
Comparing the results with the previously recorded one to bring the importance of the health of the cardiovascular system to the attention.

10th. week: Circuit training
Specialized chain of drills for strengthen the shoulder, back, chest, arm and leg muscles, considering the fitness level of the Students.

11th. week: Tennis
Introducing variations of ground strokes and grip types (slice, topspin, lobs etc.) Exposing the rules of doubles. Games (all around the world, etc.)

12th. week: Badminton
Exposing the rules and the basic tactical elements of the doubles game. Scrimmage.

13th. week: Core exercises
Body-weight exercises targeting to strengthen the muscles of the trunk thus develop a strong fascia to protect it from the harmful effects of overdose sitting (studying)

14th week: Medicine-ball exercises
Strength and coordination (complex) skill developing exercises by throwing, rolling, passing, lob, shot-put, etc. with a partner incorporated.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! (2x90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball, volleyball)
COURSE REQUIREMENTS

Prerequisites:

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10 (for trainings 15 times!), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise or
2. does sports regularly and submits a certificate of association and federation.

Nanotechnology (theory+practice)
For details on this subject please contact the department or visit their website.

Physiological Pharmaceutics and Pharmaceutical dosage forms (theory+practice)
For details on this subject please contact the department or visit their website.
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for third year students in the 2022/2023 academic year
5. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Chemistry and Analysis (practice) I.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Analytical Chemistry II. Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>-</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I.</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Physiological Pharm. and Pharmaceutical dosage forms, Colloid Chem., Medical Terminology, Nanotechnology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice)</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Biotechnology (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Biochemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Dietetics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II. Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice)</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory)</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td>-</td>
<td>examination</td>
</tr>
<tr>
<td>Products of Veterinary Medicine (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharmaceutical Technology I. Pharmaceutical Microbiology</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II. Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Physiology II. Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>-</td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>-</td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>18</td>
<td>13</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmaceutical Chemistry and Analysis (theory) I., Pharmaceutical Chemistry and Analysis (practice) I.

Full name of the subject: Gyógyszerészi kémia és analízis (elmélet) I., Gyógyszerészi kémia és analízis (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full–time
Short name of the subject: Pharm. Chem. and Analysis I.
English name of the subject: Pharmaceutical Chemistry and Analysis (theory) I., Pharmaceutical Chemistry and Analysis (practice) I.
German name of the subject: Pharmazeutische Chemie und Analysis (Vorlesung) I., Pharmazeutische Chemie und Analysis (Praktikum) I.

Neptun code of the subject: GYKGYK127E1A, GYKGYK127G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor: Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
Phone: 06-1-217-0891
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Address: Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
Dr. Péter Horváth associate professor, head of the department, Ph.D.
Dr. László Örfi full professor, Ph.D.
Dr. Gergely Völgyi associate professor, Ph.D.
Dr. Károly Mazák associate professor, Ph.D.
Dr. Márta Mazák-Kraszni associate professor, Ph.D.
Dr. Gergő Tóth assistant professor, Ph.D.
Dr. Arash Mirzahosseini assistant professor, Ph.D.
Dr. Tamás Pálfi assistant lecturer, Ph.D.
Dr. István Köteles assistant lecturer
Dr. Dóra Csicsák assistant lecturer
Dr. Marcell Krekó assistant lecturer

Classes per week: 4 lectures, 4 practices
Credit point: 4 (theory), 4 (practice)

Professional content, intent of acquisition and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
theory: Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-bindings and biochemical background of biological effects of drug substances.
Practice: Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td></td>
<td>112</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):

1. week: Introduction. (Pharmaceutical Chemistry, Pharmacopoeias)
 Preliminary testing of inorganic and organic compounds, classification
 Methods for identification of inorganic compounds
 Identification of organic functional groups

2. week: General purity tests in Pharmacopoeia
 Structural and physical chemistry of drug action I.

3. week: Structural and physical chemistry of drug action II. Protonspeciation of drugs
 Determination of protonation constants, optimization of pH-dependent processes

4. week: Characterization of lipophilicity, determination of partition coefficient
 Application of UV-VIS spectrophotometry in the analysis of drugs

5. week: Separation techniques I. Thin-layer chromatography
 Separation techniques II. HPLC

6. week: Determination of organic acids and bases
 Major analgetics I.

7. week: Major analgetics II.
 Minor analgetics

8. week: Nonsteroidal antiinflammatory drugs
 Local anaesthetics

9. week: Narcotics
 Sedato-hypnotics and anxiolytics

10. week: Psychopharmacons I.
 Psychopharmacons II.

11. week: Cholinergic and adrenergic agents I.
 Cholinergic and adrenergic agents II.

12. week: Cholinergic and adrenergic agents III.
 Identification of drug mixtures

13. week: Quantitative determination of drug mixtures
 Drugs acting on the digestive system

14. week: Antiepileptics
 Consultation

Topics of practical classes (pro week):

1. week: Equipping, revision of basic analytical tasks

2. week: Preliminary testing and classification of inorganic and organic drugs. Identification of inorganic drugs

3. week: General purity tests for inorganic ions

4. week: Determination of protonation macroconstants

5. week: Determination of protonation microconstants

6. week: Determination of logP

7. week: Major analgetics

8. week: Minor analgetics

9. week: Non-steroidal antiinflammatory drugs

10. week: Local anaesthetics

11. week: Sedato-hypnotics, anxiolytics

12. week: Psychopharmacons

13. week: Drugs effecting the vegetative nervous system

14. week: Identification and quantitative determination of drug mixtures

COURSE REQUIREMENTS

Prerequisites:
Analytical Chemistry II. GYKASK116E1A
Organic Chemistry II. GYKSKZK123E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Based on the Study and Exam Regulations

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Project reports on weeks 6, 10 and 13.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.

Type of the semester-end examination:
theory: examination
practice: practical grade

Form of the semester-end examination: written
Necessary equipment: practice: drug substances, reagents, laboratory equipments, instruments
Pharmaceutical Botany (theory), Pharmaceutical Botany (practice)

Full name of the subject: Gyógyszerészi növénytan (elmélet), Gyógyszerészi növénytan (gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Botany
English name of the subject: Pharmaceutical Botany (theory), Pharmaceutical Botany (practice)
German name of the subject: Pharmazeutische Botanik (Vorlesung), Pharmazeutische Botanik (Praktikum)

Neptun code of the subject: GYKFMG125E2A; GYKFMG125G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacognosy

Responsible tutor: Imre Boldizsár associate professor, Ph.D.
E-mail: bolditsarimi@gmail.com

Name of the persons responsible for the teaching of the subject:
Imre Boldizsár associate professor, Ph.D.
Attila Ványolós assistant professor, Ph.D.
Anna Bucsy-Sólyomváry professor’s assistant, Ph.D.
Andrea Bőszörényi assistant professor, Ph.D.
Bernadett Szögi-Tatár Ph.D. student

Classes per week: 2 lecture, 2 practice
Credit point: 2+1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The main aims of the subject are as follows:
1) To get familiar with the botanical features of plants at the cytological, histological and organizational levels in order to gain basic knowledge essential for pharmacopoeial drug analysis.
2) To obtain a comprehensive picture of general and specific metabolic processes and physiological phenomena of plants to understand the production and accumulation of biologically active substances (and their mode of storage).
3) To study the chemotaxonomy of plants in order to be able to recognize medicinal herbs (and poisonous plants) and to understand their kinship and chemism.

Short description of the subject:
The subject summarizes current knowledge on the structure and function of plant cells and their participation in biochemical processes. It presents the anatomical (histological) and macroscopic morphological characteristics of the plant organs, that also represent drugs, and their physiological processes, highlighting their role in the production and accumulation of biologically active substances. It describes the systematization of the flora most important from the pharmaceutical point of view: chemotaxonomy with special emphasis on chemism. In this context, it presents important medicinal herbs (and poisonous plants) and their morphological characteristics necessary for their recognition.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Introduction. The division of wildlife. The concepts of plant, herb and drug. The structure of the flower among gymnosperms and angiosperms: the diversity of the appearance of the flower parts as an opportunity to identify plant species and their kinship.
2. week: Presentation of inflorescences: characteristics of the cyme and clustering types in major plant families.
3. week: The pollination and fertilization process in gymnosperms and angiosperms, floral biological phenomena. The process of seed and fruit formation in the context of fertilization. Morphological examination of seeds and fruits.
5. week: Formation and structure of the cell wall. Vacuoles and their contents. The role of the cell walls and crystal forms in the microscopic examination of drugs.
6. week: The concepts of tissue-tissue system-organ. The meristems. Characteristics of the dermal tissue system (primary, secondary and tertiary dermal tissues) and the exogenous excretory systems: their appearance and role in drug identification. Demonstrating the diversity of ground tissues by highlighting the endogenous secretory systems Occurrence of endogenous secretory systems in herbs.
7. week: Characteristics of the conductive tissue system: organ- and system-specific manifestations.
8. week: Histological structure of root systems and various roots (demonstrated by examples of root drugs). Morphology and histology of the shoot axis (stem): young and old (thickened) forms and parts as drug forms.
9. week: Appearance and histological structure of leaves in the macroscopic and microscopic identification of plants. Water management and mineral nutrition of plants: water uptake, transport, and release in relation to the morphological and functional characteristics of the root, stem and leaf (also a summary of the microscopic morphological characteristics of the three organs).
11. week: Presentation and classification of gymnosperms with introduction to the species with medicinal importance. Chemotaxonomy of angiosperms I. Magnoliidae subclass of dicotyledons and the class of monocotyledons. Comparison of monocotyledons and dicotyledons and their evolutionary relationship.
12. week: Chemotaxonomy of angiosperms II. Description of the subclasses Caryophyllidae and Hamamelidae. Chemotaxonomy of angiosperms III. Rosidae subclass as the five-membered, free-petal among the dicotyledons.
13. week: Chemotaxonomy of angiosperms IV. Introduction of the Dilleniidae subclass by studying the heterogeneous groups belonging to it.
14. week: Chemotaxonomy of angiosperms V. Characterization of subclasses Cornidae and Lamiae. Chemotaxonomy of angiosperms VI. Asteridae subclass as the top of progression

Topics of practical classes (pro week):
1. week: Morphological knowledge: in ELTE Botanical Garden on plant examples or Characteristics of typical plants of Brassicaceae, Fabaceae families. Structure of flowers I.
2. week: Characteristics of typical plants of the families Apiaceae, Malvaceae, Lamiaceae. Structure of flowers II. Inflorescences I.
3. week: Study of typical plants of families Solanaceae, Asteraceae (Cichoraceae). Inflorescences II.
4. week: Macroscopic characteristics of seeds and fruits.
5. week: Structure of a young root.
6. week: Old root structure, types of root thickening.
7. week: Structure of young stems and rhizomes.
8. week: Structure of old stems, types of stem thickening.
9. week: 1st Midterm (herbal knowledge 1.) Examination of the xylem and the rhytidome I.
10. week: Examination of the xylem and the rhytidome II.
11. week: Foliage tissue structure.
12. week: Structure of flower parts.
13. week: Histological structure of seeds and crops.
14. week: 2nd Midterm (plant recognition from herbarium specimens and the material of the practices). Retake of missed practices.

Schedule of consultations: as demanded
COURSE REQUIREMENTS

Prerequisites:
GYKBMT069E2A Biochemistry II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Absence from 25% of the practices is allowed.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Written tests according to the given schedule (on the 9th and 14th weeks), possibility of grade improvement at the practice following the test, and on the last week.

Requirements of signature:
Practice: successful completion of the midterm tests (each separately with at least sufficient result)

Number and type of projects students have to perform independently during the semester and their deadlines:
Practice: preparation (and presentation) of a plant collection of at least 20 species composed of herbs included in the material of the semester, evaluated by one grade equivalent to the grade of one midterm (however, it does not replace any of the midterms)

Type of the semester-end examination: Lecture: examination, Practice: signature

Form of the semester-end examination: oral examination

Necessary equipment: Lecture hall, projection, wi-fi
Practice: A light microscope for each student; a stereomicroscope for each two students. A collection of microscopic preparations for each two students. Slides, coverslips. Manual microtome (e.g., MT.5503 Euromex). Projector, demonstration light microscope equipped with a digital camera that can be connected to a projector. A3 size laminator for “perpetuation” of herbarium sheets
Pharmaceutical Microbiology (theory), Pharmaceutical Microbiology (practice)

Full name of the subject: Gyógyszerészi mikrobiológia (elmélet), Gyógyszerészi mikrobiológia (gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Pharmaceutical Microbiology (theory), Pharmaceutical Microbiology (practice)
German name of the subject: Mikrobiologie für Pharmazeuten (Vorlesung), Mikrobiologie für Pharmazeuten (Praktikum)

Neptun code of the subject: GYKMIK081E1A; GYKMIK081G1A
Type of registration: obligatory
Responsible department: Institute of Medical Microbiology of Semmelweis University

Responsible tutor: Dr. Agoston Ghidan assistant professor, PhD
Phone: +3620 825 9715; 56212 ext.
E-Mail: ghidan.agoston@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Szabó Dóra full professor, DSc
Dr. Dobay Orsolya associate professor, PhD
Dr. Ghidán Ágoston assistant professor (lecturer), PhD
Dr. Andrea Horváth professor’s assistant, PhD

Classes per week: 3 lectures, 2 practices
Credit point(s): 4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The importance of microbiology in the medical curriculum, including the education of students of Faculty of Pharmacy is permanently growing. The knowledge about new types of microbial agents - beside the well-known old ones -, new diseases caused by microbes, the more and more frequent nosocomial infections and the epidemics believed overcome, but recently emerging is necessary for the pharmacist, too. They have to be familiar with the continuously growing possibilities of methods used in diagnostic work, prevention and therapy of infectious diseases caused by microbes.
The goal of the training course is that the students of Faculty of Pharmacy learn about the nature of the most important human pathogenic agents, their appearance, the ways of their transmission, the possibilities of killing them inside as well as outside the human body. In addition to the basic knowledge of microbiology an increasing emphasis is placed on the topics connected with the utilization of microbes in pharmacy, in pharmacological research and industry.

Short description of the subject:
The students learn about the physiological and pathological effects of microbes in the organism, i.e. in the human body. Beside the general characterization of the most important pathogens (bacteria, viruses, fungi, and parasites), the students learn about the possibilities of sterilization and disfections, mode of actions of antimicrobial agents, control of infectious diseases as well as the basic methods of laboratory diagnosis of infectious diseases. Because microorganisms have special importance in pharmaceutical industry, the most important new results, methods (i.e. recombinant technologies) are also summarized.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>42</td>
<td>28</td>
<td></td>
<td></td>
<td>70</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
Week 5. Cocci causing purulent diseases (Staphylococcus, Streptococcus, Neisseria)
Week 6. Normal flora of the intestinal tract and the importance of it. Bacteria causing enteral diseases.
Week 7. Causative agents of respiratory tract infections.
Week 9. Causative agents of human mycosis and their therapy.
Week 10. General virology. Antiviral chemotherapy. DNA viruses.
Week 11. Enteric viruses and diseases caused by them. Hepatitis viruses.
Week 13. Retroviruses. AIDS. Tumor viruses. The role of viruses in carcinogenesis.

Topics of practical classes (pro week):
Week 1. Introduction to basic microbiology, laboratory rules. Microscopic examination of microbes.
Week 2. Cultivation of bacteria.
Week 4. Determination of antibiotic susceptibility of bacteria.
Week 6. Gram-positive and Gram-negative cocci (Cultures, smears, biochemical reactions, serological tests, antibiotic susceptibility, vaccines).
Week 7. Enteric Gram-negative rods (Enterobacterales). Cultures, smears, biochemical reactions, serological tests, antibiotic susceptibility, vaccines); Vibrio, Helicobacter, Campylobacter.
Week 10. Endospore-forming Gram-positive aerobic and anaerobic bacteria (Cultures, smears, enzyme reactions, serological tests, antibiotic susceptibility, vaccines).
Week 11. Spirochetes. Rickettsiae, Chlamydiae, Mycoplasmas (Cultures, smears, enzyme reactions, serological tests, antibiotic susceptibility, vaccines).
Week 12. Medically important fungi (Cultures, smears).
Week 13. Medical parasitology (macroscopic and microscopic preparations).
Week 14. General virology (cultivation and morphology of viruses, cell-virus interactions, serological tests).

Schedule of consultations:
in the exam period, personal appointments with the tutor.

COURSE REQUIREMENTS

Prerequisites:
GYGENIMME1A Basic immunology

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:

Lectures: presence on at least 75% of the total number of lectures.

Laboratory practice: maximum 3 absences. acceptable practice in microbiological laboratory methods

Requirements of signature: Active presence and no more than 3 absences on the practical classes.

Number and type of projects students have to perform independently during the semester and their deadlines:

Practice: two times in the semester, 10 questions (essay).

The accepted result: et least 6 points/midterm.

Type of the semester-end examination: examination

Form of the semester-end examination: oral exam, with proceeding written minimum questions

Scientific, course related researches, publications, assays:
Studies on the antibiotic resistance of bacteria (cause of resistance, mechanisms of the development of resistance) Asymptomatic carriage of pneumococci, staphylococci, etc. Microbiom analysis. Studies on adenoviruses, herpes viruses, papillomaviruses, HIV (structure, pathomechanism, etc.).

Necessary equipment:
All materials required for the laboratory work is provided by the Institute.
Clinical Chemistry and Laboratory Diagnostics (theory)

Full name of the subject: Klinikai kémia és laboratóriumi diagnosztika
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Laboratory Diagnostics
English name of the subject: Clinical Chemistry and Laboratory Diagnostics (theory)
German name of the subject: Klinische Chemie und Labordiagnostik (Vorlesung)

Neptun code of the subject: GYKLM082E1A
Type of registration: obligatory
Responsible department: Department of Laboratory Medicine of Semmelweis University

Responsible tutor: Prof. Dr. Barna Vásárhelyi M.D., Ph.D., D. Sc.
Phone: 06-1-361-459/62098
E-mail: vasarhelyi.barna@med.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:

Dr. Adrienne Fehér M.D., Clinical laboratory specialist, hematology specialist, transfusion medicine specialist
Dr. Gellért Karvály Pharm. D., Ph.D.
Dr. Ibolya Kocsis Pharm. D., Ph.D., clinical laboratory specialist
Dr. Győrgyi Molnár-Világos Pharm. D., clinical laboratory specialist
Dr. Zsófia Szabó Pharm. D., clinical laboratory specialist
Dr. Zoltán Vajda M.D., hematology specialist

Classes per week: 2 lectures
Credit point(s): 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to provide valuable knowledge on the principles and practice of laboratory diagnostics, as well as on the specialties of clinical chemistry, hematology and immunology in the field of interest of pharmacy students. by giving a systematic overview on the basics of these disciplines. In addition, the measures of the quality assurance of clinical laboratory assays are presented.

Short description of the subject:
Pharmacists are approached by patients with questions related to laboratory diagnostics on a daily basis. In pharmacies expertise in performing simple fingerprick tests (e.g. blood glucose and lipid measurement), as well as assistance with the interpretation of laboratory reports is often required. Concerning the latter, it is especially important that this assistance is adequate yet restrained. In the clinical setting, the proper interpretation of laboratory tests which shed light on the efficacy and the biochemical adverse effects of medications is highly valuable. Pharmaceutical expertise has an important added value in this respect. Therapeutic drug monitoring is emerging as a special field of laboratory medicine where pharmacists play a unique role.
The clinical laboratory relies heavily on the knowledge of pharmacists, gained during the training of laboratory specialists. During the course, the main aspects of ordering clinical laboratory tests, the major analytical procedures, and the art of interpreting laboratory reports are presented.

There is a special emphasis on:
- laboratory tests performed by the bedside and in pharmacies,
- tests for diagnosing the lesions of the various organ systems,
- the evaluation of the pharmacodynamic effects of drugs using biochemical tests,
- therapeutic drug monitoring, and
- quality assurance in the clinical laboratory.
During the lectures theory is combined with case reports. The course includes visits to the diagnostic laboratory (2x70 min), and a hands-on introduction to laboratory tests performed at the bedside, in pharmacies and by patients themselves. Further, laboratory reports are going to be discussed in the framework of 4 lectures to allow a better understanding and application of the theoretical knowledge gained.

There is a special emphasis on:
- laboratory tests performed by the bedside and in pharmacies,
- tests for diagnosing the lesions of the various organ systems,
- the evaluation of the pharmacodynamic effects of drugs using biochemical tests,
- therapeutic drug monitoring, and
- quality assurance in the clinical laboratory.

During the lectures theory is combined with case reports. 2 sessions are dedicated to visiting some of the clinical laboratories of Semmelweis University to provide a real-life experience.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Program of semester

Topics of theoretical classes (pro week):

1. Introduction: disciplines, position and role of laboratory diagnostics in healthcare facilities
2. Blood collection, types of blood collection tubes and application examples, preanalytical factors influencing laboratory results
3. Major analytical approaches and systems employed in clinical diagnostic laboratories. Quality assurance
4. Bedside and pharmacy tests, products available in pharmacies for self-testing
5. Interpretation of the laboratory findings, basics of biostatistical evaluation. Data-driven clinical laboratory: the importance of bioinformatics.
6. Laboratory diagnosis of inflammation. Acute phase reaction
7. Examination of liver function
8. Examination of renal function. Urinalysis
9. Diagnosis of tissue injury
10. Laboratory diagnosis of tumors. Molecular biological tests in the laboratory
11. Endocrinological tests: diagnosis of metabolic disorders (diabetes, hyperlipidaemias)
12. Endocrinological tests: thyroid hormone and adrenal and sex hormones
13. Therapeutic drug monitoring: basic concepts, basics of pharmacokinetics, aims of TDM, factors changing the fate of the drug in the body
14. Therapeutic drug monitoring: the role of laboratory tests in the implementation of individualized drug therapy. Precision pharmacotherapy software
15. Important groups of drugs influencing the results of laboratory tests. Clinical trials
16. Fundamentals and laboratory aspects of clinical toxicology
17. Immunology tests: autoimmunity
18. Immunology tests: hypersensitivity reactions, allergy tests, immunodeficiencies
20. Basics of blood typing
21. Coagulation tests. TDM of anticoagulants
22. Discussion of laboratory reports
23. Discussion of laboratory reports
24. Discussion of laboratory reports
25. Discussion of laboratory reports
26-28. Laboratory visit, hands-on introduction to point-of-care testing

Schedule of consultations: Online, by individual arrangement
COURSE REQUIREMENTS

Prerequisites:
Biochemistry II. GYKBMT069E2A
Physiology II. GYKTLM068E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
As required by the effective regulations of the Faculty of Pharmacy.

Requirements of signature: Attendance of lectures as required by the Faculty of Pharmacy.

Type of the semester-end examination: examination
Form of the semester-end examination: Written test

Necessary equipment:
1. McPherson RA, Pincus MR: Henry’s Clinical Diagnosis and Management by Laboratory Methods 22nd Edition
2. Learning guide on the website (https://semmelweis.hu/laboratorium/english/), and in the Moodle-system under Laboratory Medicine course (itc.semmelweis.hu)
Products of Veterinary Medicine (theory)

Full name of the subject: Állatgyógyászati készítmények (elmélet)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: –
English name of the subject: Products of Veterinary Medicine (theory)
German name of the subject: Tiermedizinische Produkte (Vorlesung)

Neptun code of the subject: GYKGYI085E1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutics

Classes per week: 1 lecture
Credit point(s): 1

<table>
<thead>
<tr>
<th>Course data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
<td>Contact hours (lecture)</td>
<td>Contact hours (practice)</td>
<td>Contact hours (seminar)</td>
<td>Individual lectures</td>
<td>Total number of contact hours/semester</td>
<td>Normal course offer</td>
<td></td>
</tr>
<tr>
<td>5. semester</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>

For further information contact directly with the Department.
Physical Education V.

Full name of the subject: Testnevelés V.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: –
English name of the subject: Physical Education V.
German name of the subject: Sport V

Neptun code of the subject: GYKTSI116G5A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Kovács, Imre tennis trainer
- Balogh, Orsolya aerobics trainer
- Kalmus, Dániel circuit training trainer
- Katona, László hiking, badminton, boulder trainer
- Lehel, Zsolt tennis, golf, icehockey trainer
- Nagy-Kismarci, Bence cheerleading trainer
- Rimay, István football trainer
- Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point(s): 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the „beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and life-style advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. semester</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1×60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, male football, salsa, step aerobics, badminton, beginner ultimate Frisbee, advanced ultimate Frisbee, Zumba
1x 90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,
4x3 hrs. and 1x2 hrs. session packages: Hiking 1, Hiking 2.
2x90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

COURSE REQUIREMENTS

Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams.
As teams take part in championships during the school year, we only accept applications from professional athletes!

Type of the semester-end examination: signature

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmaceutical Botany II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (practice) II.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry and Analysis (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharmaceutical Technology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharmaceutical Chemistry I.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology II.</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>Basic Med. Path. I.</td>
<td>final*</td>
</tr>
<tr>
<td>(theory+practice)</td>
<td></td>
<td></td>
<td></td>
<td>Dietetics</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYH128E2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Microbiology</td>
<td></td>
</tr>
<tr>
<td>Statistics for Pharmacists (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Mathematics for Pharm.,</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGY129G1A</td>
<td></td>
<td></td>
<td></td>
<td>Physiological Pharmaceutics and</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Pharmaceutical dosage forms,</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYKGYH086G1A</td>
<td></td>
<td></td>
<td></td>
<td>Informatics</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Path. I.</td>
<td>examination</td>
</tr>
<tr>
<td>GYKGYH086E1A</td>
<td></td>
<td></td>
<td></td>
<td>Physiological Pharm. and</td>
<td></td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>signature</td>
</tr>
<tr>
<td>GYKTSI116G6A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy Practice II.</td>
<td>–</td>
<td>20 hours/semester</td>
<td>–</td>
<td>Pharm. Tech. I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYKANG238G2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Chem. I.</td>
<td></td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>4 weeks</td>
<td>4</td>
<td>Pharmaceutical Technology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>GYSSZG239G4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>14</td>
<td>20</td>
<td>28+4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacognosy I.

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Gyógynövény- és drogismeret I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>Pharmacognosy I.</td>
</tr>
<tr>
<td>English name of the subject:</td>
<td>Pharmacognosy I.</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td>Pharmakognosie I.</td>
</tr>
</tbody>
</table>

Neptun code of the subject:	GYKFMG130G1A
Type of registration:	obligatory
Responsible Department:	Semmelweis University, Department of Pharmacognosy
Responsible tutor:	Szabolcs Béni head of department, associate professor, Ph.D.
E-mail:	beni.szabolcs@pharma.semmelweis-univ.hu

<table>
<thead>
<tr>
<th>Name of the persons responsible for the teaching of the subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szabolcs Béni associate professor, Ph.D.</td>
</tr>
<tr>
<td>Ágnes Alberti associate professor, Ph.D.</td>
</tr>
<tr>
<td>Andrea Bőszörményi assistant professor, Ph.D.</td>
</tr>
<tr>
<td>Orsolya Csernák assistant professor, Ph.D.</td>
</tr>
<tr>
<td>Ida Fejős assistant professor, Ph.D.</td>
</tr>
<tr>
<td>Eszter Riethmüller assistant professor, Ph.D.</td>
</tr>
<tr>
<td>Attila Ványolós assistant professor, Ph.D.</td>
</tr>
<tr>
<td>Nóra Gampe assistant lecturer, Ph.D.</td>
</tr>
<tr>
<td>Csenge Anna Felegyi-Tóth, trainee</td>
</tr>
</tbody>
</table>

| Classes per week: | 2 lectures, 4 practices |
| Credit point: | 5 |

Professional content, intent of acquirement and it’s function in order to implement the goals of the program:

The aim of the course is to acquaint pharmacy students with medicinal plants, herbal drugs and the analytical methods applied in their quality assurance. By doing so, it contributes to the education of pharmacy students to become key experts in herbal medicines. It contributes to the training of students with modern knowledge of pharmacognosy at a time when the knowledge about natural substances and herbs has come to the fore and has expanded with new aspects due to European harmonization.

Short description of the subject:

The topics of the classes follow the biogenetic system of plant materials. It represents a shift in proportion and, in part, selection in the curriculum that sufficiently emphasizes the importance of knowledge of herbal drugs and their active ingredients that are important in therapeutic practice. At the same time, it provides knowledge in the context of structure-activity relationships for the sufficient processing of newly emerging herbal drugs, possibly of foreign origin, based on their chemical groups. It also introduces the requirements of the European Pharmacopoeia (Ph. Eur.) regarding herbal drugs and preparations. Thus, it provides knowledge of all herbal drugs and active substances that serve as raw materials for phytopharmaceuticals (including those that will soon become traditional OTC medicines) and preventive products (dietary supplements).

Knowledge of plant material: drug recognition; macroscopic and microscopic examination.

Detection of active ingredients and constituents of herbal drugs (preparation, extraction and purification techniques, general and specific chemical reactions, chromatographic methods), quantitative evaluations (pharmacopoeial and standard methods) and isolation of individual components or selective determination by complex chromatographic and spectroscopic methods. Application of herbal drugs based on their positive effects in prevention, phytotherapy and improving quality of life.
Program of semester

Topics of theoretical classes (pro week):

1. **week:** Introduction to Pharmacognosy
2. **week:** History of Pharmacognosy. Cultivation and processing of medicinal plants.
3. **week:** Biogenetic system of plant materials. Saccharides, carbohydrates.
4. **week:** Plant acids. Polyketides.
5. **week:** Classification of phenolic compounds. Hydroxycinnamic acid derivatives
6. **week:** Coumarins.
8. **week:** Flavonoids.
10. **week:** Tannins.
11. **week:** Naphthoquinones. Anthraglycosides.
12. **week:** Naphthodianthrones. Terpenophenolics.
13. **week:** Obligatory test -exam
14. **week:** Fungi

Topics of practical classes (pro week):

1. **week:** Introduction, safety rules. Macroscopic and microscopic knowledge. European Pharmacopoeia.
2. **week:** General methods in Pharmacognosy.
3. **week:** Vegetable drugs containing carbohydrates (starches, mucilages, etc.).
4. **week:** Plant acids and their drugs.
5. **week:** Plant acids and their drugs.
6. **week:** Phenolic glycosides, lignans, coumarins and diarylheptanoids.
7. **week:** Flavonoids and chief drugs I.
8. **week:** Flavonoids and chief drugs II.
9. **week:** Tannins and chief tannin drugs.
10. **week:** Anthraglycoside containing crude drugs I. Chemical tests, quantitative determinations.
11. **week:** Anthraglycoside containing crude drugs II. Quantitative determination of sennosides.
12. **week:** Terpenophenolics and phloroglucine derivatives.
13. **week:** Individual task I.: Natural product development,
14. **week:** Individual task II.: Identification of crude drugs based on the methods prescribed in the Ph. Eur.

Schedule of consultations: as demanded

COURSE REQUIREMENTS

Prerequisites: GYKFMG079E1A – Pharmaceutical botany

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: The number of acceptable absences is regulated by the current Study and Exam regulations

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
During the term-time: three written or oral examinations based on the material of the practices and the lectures. Test of the knowledge of herbal drugs: examination of unknown drug mixtures, identification of unknown drug powders, recognition of microscopic preparations. The grade of the obligatory midterm test is given double weight, the marks obtained during the further examinations are taken into account with single weight when determining the practical mark.

Midterm examinations can be retaken twice. In the case of the improvement of the grade, the average of the correction mark (s) and the original grade (s) will be taken into account.

Requirements of signature:
Participation at the practices. Submission and acceptance of reports. The average of the grades of the midterm examinations is at least 2.0. Successful completion of the obligatory midterm test.

Number and type of projects students have to perform independently during the semester and their deadlines: Presentation of a chosen topic.

Type of the semester-end examination: practical grade

Necessary equipment: Lecture hall, projection, wi-fi. Laboratory equipped with microscopes, labwares, extractors, distillation equipment, instruments (UV-VIS, HPLC, GC), chemicals.
Pharmaceutical Chemistry and Analysis (theory) II., Pharmaceutical Chemistry and Analysis (practice) II.

Full name of the subject: Gyógyszerkémia és analízis (elmélet) II., Gyógyszerkémia és analízis (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharm. Chem. and Analysis II.
English name of the subject: Pharmaceutical Chemistry and Analysis (theory) II., Pharmaceutical Chemistry and Analysis (practice) II.
German name of the subject: Pharmazeutische Chemie und Analysis (Vorlesung) II., Pharmazeutische Chemie und Analysis (Praktikum) II.

Neptun code of the subject: GYKGYK127E2A, GYKGYK127G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor:
Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Phone: 06-1-217-0891
Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
Dr. Péter Horváth associate professor, head of the department, Ph.D.
Dr. László Örfi full professor, Ph.D.
Dr. Gergely Völgyi associate professor, Ph.D.
Dr. Károly Mazák associate professor, Ph.D.
Dr. Márta Mazák-Krasznai associate professor, Ph.D.
Dr. Gergő Tóth assistant professor, Ph.D.
Dr. Arash Mirzahosseini assistant professor, Ph.D.
Dr. Tamás Pálpa assistant lecturer, Ph.D.
Dr. István Köteles assistant lecturer
Dr. Dóra Csicsák assistant lecturer
Dr. Marcell Krekó assistant lecturer

Classes per week:
4 lectures, 4 practices
Credit point(s):
4 (theory), 3 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
theory: Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-bindings and biochemical background of biological effects of drug substances.
practice: Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>56</td>
<td>56</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>112</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Cardiac glycosides. Chemistry, analytics of cardiac glycosides, sugars
 Cardiovascular drugs: antiarrhythmic agents
2. week: Cardiovascular drugs: antianginal agents
 Cardiovascular drugs: antihypertensive agents
3. week: Cardiovascular drugs: antihyperlipidemic agents
 Cardiovascular drugs: anticoagulants
4. week: Diuretics
 Antidiabetics
5. week: Antihistamines
 Corticosteroids
6. week: Sexual hormones
 Vitamins I.
7. week: Vitamins II.
 Disinfectants
8. week: Chemotherapeutics: sulfonamides
 Chemotherapeutics: antimalarial drugs, fluoroquinolones
9. week: Chemotherapeutics: antituberculotics, antifungal agents
 Antibiotics: β-lactams, macrolides
10. week: Antibiotics: tetracyclines, aminoglycosides
 Quality assurance, GLP, validation
11. week: Antiviral agents
 Anticancer drugs
12. week: Biological and biosimilar drugs
 Drug research I.
13. week: Drug research II.
 Drugs acting on the thyroid gland
14. week: Nootropics
 Consultation

Topics of practical classes (pro week):
1. week: Equipping, identification.
2. week: Cardiovascular drugs I. (digitalis glycosides and sugars)
3. week: Cardiovascular drugs II. (β-receptor blockers and antianginal agents)
4. week: Cardiovascular drugs III. (antihypertensive agents and anticoagulants)
5. week: Diuretics
6. week: Antihistamines
7. week: Steroid hormones
8. week: Vitamins
9. week: Disinfectants and chemotherapeutics I. (China alkaloids)
10. week: Chemotherapeutics II. (sulfonamides, fluoroquinolones)
11. week: Antibiotics
12. week: Validation
13. week: Practical final exam
14. week: Substitutional practice, desequeipping

COURSE REQUIREMENTS

Prerequisites: Pharmaceutical Chemistry I. GYKGYK127E1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Based on the Study and Exam Regulation

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results: Project reports on weeks 6, 10 and 13.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.
Fulfilment of the practical final exam.

Type of the semester-end examination:
theory: final*
practice: practical grade
Form of the semester-end examination: written and oral
Necessary equipment: practice: drug substances, reagents, laboratory equipments, instruments
Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.

Full name of the subject: Gyógyszerhatástan és toxikológia (elmélet) I., Gyógyszerhatástan és toxikológia (gyakorlat) I.

Program: undivided program (pharmaceutical)

Schedule: full-time

English name of the subject: Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.

German name of the subject: Pharmakologie und Toxikologie (Vorlesung) I., Pharmakologie und Toxikologie (Praktikum) I.

Neptun code of the subject: GYKGYH086E1A, GYKGYH086G1A

Type of registration: obligatory

Responsible department: Semmelweis University, Department of Pharmacodynamics

Responsible tutor: Dr. Tamás Tábi Associate Professor, PhD

Phone: +36 1 210-44-11

E-mail: tabi.tamas@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:

- Dr. Éva Szökő Full Professor, DSc
- Dr. György Bagdy Full Professor, DSc
- Dr. László Tóthfalusi Associate Professor, DSc
- Dr. Tamás Tábi Associate Professor, PhD
- Dr. Rudolf Laufer Assistant lecturer

For further information contact directly with the Department.
Statistics for pharmacists (theory+practice)

Full name of the subject: Statistics for pharmacists (theory+practice)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: -
English name of the subject: Statistics for pharmacists (theory+practice)
German name of the subject: Statistik für Pharmazeuten (Vorlesung+Praktikum)

Neptun code of the subject: GYKEGY129G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: László Tóthfalusi D.Sc.
E-Mail: totlasz@net.sote.hu

Name of the persons responsible for the teaching of the subject: László Tóthfalusi D.Sc.

Classes per week: 2 lectures, 2 practices
Credit point(s): 3

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to give an overview of statistical methods from a pharmaceutical viewpoint.

Short description of the subject:
In the lectures we review the theoretical basis of the methods. The purpose of the exercises is twofold: On the one hand, to provide examples of the use of statistical tools in different fields of pharmacy (quality control, analytical chemistry, technology development, clinical trial design, pharmacovigilance, economic activity). On the other hand, an introduction to the free and widely used statistical program, the R programming environment.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. semester</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>56</td>
<td>Spring semester*</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Week 1: Descriptive statistics
Week 2: Probability theory
Week 3: Sample distributions, estimation
Week 4: Parametric and nonparametric statistical tests
Week 5: Linear regression
Week 6: Multivariate linear regression model
Week 7: Extension of the linear regression model
Week 8: Multivariate ANOVA, study design
Week 9: Categorical data analysis
Week 10: Survival analysis
Week 11: Longitudinal data, nonlinear regression
Week 12: Statistical evaluation of clinical trial data
Week 13: Statistical foundation of epidemiology
Week 14: Time series, economic applications

Topics of practical classes (pro week):
Week 1: Using R and RStudio, Data Types
Week 2: Elements of the R programming language
Week 3: Data import, Data cleansing, Descriptive statistics in R
Week 4: Statistical graphics, making a presentation in R.
Week 5: Simulation in R
Week 6: Group comparison in R
Week 7: Linear regression problems
Week 8: Quiz 1
Week 9: Multivariate linear regression problems
Week 10: Experimental design task
Week 11: Statistical processing of experimental data
Week 12: Quiz 2
Week 13: Project presentation 1
Week 14: Project presentation 2

COURSE REQUIREMENTS

Prerequisites:
- GYKEGY112E1A Mathematics for pharmacists
- GYKGY1248G1A Physiological pharmaceutics and pharmaceutical dosage forms
- GYKDEI107G1A Informatics

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Participation in at least 75% of the practice sessions is mandatory. The retake quiz on the last week of the semester is needed if one of the quiz opportunities are missed or if a quiz result is below the acceptable minimum. Accepted project presentation.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Two quizzes scheduled at weeks 8 and 12. Retake is possible at the last week.

Requirements of signature:
Both quizzes must be above the passing level.

Type of the semester-end examination: practical grade

Scientific, course related researches, publications, assays:
Recommended textbooks:

Necessary equipment:
Internet access
Physical Education VI.

Full name of the subject: Testnevelés VI.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: P. E. VI.
English name of the subject: Physical Education VI.
German name of the subject: Sport VI

Neptun code of the subject: GYKTSI116G6A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Kovács, Imre tennis trainer
- Balogh, Orsolya aerobics trainer
- Kalmus, Dániel circuit training trainer
- Katona, László hiking, badminton, boulder trainer
- Lehel, Zsolt tennis, golf, icehockey trainer
- Nagy-Kismarci, Bence cheerleading trainer
- Rimay, István football trainer
- Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point(s): 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behaviour

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. semester</td>
<td>0</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>Spring semester*</td>
<td>–</td>
</tr>
</tbody>
</table>
COURSE REQUIREMENTS

Prerequisites: –

Topics of practical classes (pro week):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-fi-
nanced student as well. The former is available during classes and courses organized by the Semmelweis University's Centre for Physical
Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1×60 min./week sessions:
Aerobics, Bless You Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, bad-
minton, beginner ultimate Frisbee, advanced ultimate Frisbee, Zumba

1×90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,

4×3 hrs. and 1× 2 hrs. session packages: Hiking 1, Hiking 2.

2×90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball,
volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these
locations may vary per school year.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10 (once a week), regardless of the number of school breaks, which is
to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate
days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic
attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually
tracked on semmelweis.hu/sportkozpont homepage.
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take
part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate OR
2. does sports regularly and submits a certificate of association and federation

Type of the semester-end examination: signature
5. SEMESTER

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Chemistry (practice) I.</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>Analytical Chem. (quant.) Organic Chemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) I.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory+practice) I.</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Physiological Pharm. and Pharmaceutical dosage forms, Colloid Chem., Medical Terminology</td>
<td>practical mark</td>
</tr>
<tr>
<td>Nanotechnology (theory+practice)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Colloid Chemistry</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Botany (practice) II.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>Biology II. Biotechnology Pharmaceutical Botany I.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Botany (theory) II.</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Dietetics (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Physiology II. Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (practice)</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>Basic Immunology</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmaceutical Microbiology (theory)</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Chemistry and Laboratory Diagnostics (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Physiology II. Biochemistry II.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology I. (theory+practice)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Physiology II. Biochemistry II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Hungarian Medical Terminology (practice) V.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Hungarian Medical Terminology (practice) IV.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Physical Education V.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
<td>18</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmaceutical Chemistry (theory) I., Pharmaceutical Chemistry (practice) I.

Full name of the subject: Gyógyszerészi kémia (elmélet) I., Gyógyszerészi kémia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full–time
Short name of the subject: Pharm. Chem. I.
English name of the subject: Pharmaceutical Chemistry (theory) I., Pharmaceutical Chemistry (practice) I.
German name of the subject: Pharmazeutische Chemie (Vorlesung) I., Pharmazeutische Chemie (Praktikum) I.

Neptun code of the subject: GYKGYK076E1A, GYKGYK076G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor: Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
Phone: 06-1-217-0891
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Address: Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
Dr. Péter Horváth associate professor, head of the department, Ph.D.
Dr. Krisztina Takács-Novák full professor, D.Sc.
Dr. László Örfi full professor, Ph.D.
Dr. Gergely Völgyi associate professor, Ph.D.
Dr. Károly Mazák associate professor, Ph.D.
Dr. Márti Mazák-Kraszni associate professor, Ph.D.
Dr. Gergő Tóth assistant professor, Ph.D.
Dr. Arash Mirzahosseini assistant lecturer, Ph.D.
Dr. Tamás Pálma assistant lecturer, Ph.D.
Dr. István Köteles assistant lecturer
Dr. Dóra Csicsák assistant lecturer

Classes per week: 4 lectures, 4 practices
Credit point: 4 (theory), 3 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
three: Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-boundings and biochemical background of biological effects of drug substances.
Practice: Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
<td>112</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Introduction. (Pharmaceutical Chemistry, Pharmacopoeias)
 Preliminary testing of inorganic and organic compounds, classification
 Identification of organic functional groups
2. week: General purity tests in Pharmacopoeia
 Structural and physical chemistry of drug action I.
3. week: Structural and physical chemistry of drug action II.
 Protonspeciation of drugs
 Determination of protonation constants, optimization of pH-dependent processes
4. week: Characterization of lipophilicity, determination of partition coefficient
 Application of UV-VIS spectrophotometry in the analysis of drugs
5. week: Separation techniques I. Thin-layer chromatography
 Separation techniques II. HPLC
6. week: Determination of organic acids and bases
 Major analgetics I.
7. week: Major analgetics II.
 Minor analgetics
8. week: Nonsteroidal antiinflammatory drugs
 Local anaesthetics
9. week: Narcotics
 Sedato-hypnotics and anxiolytics
10. week: Psychopharmacons I.
11. week: Cholinergic and adrenergic agents I.
12. week: Cholinergic and adrenergic agents II.
13. week: Quantitative determination of drug mixtures
 Antiepileptics
14. week: Drugs acting on the digestive system
 Consultation

Topics of practical classes (pro week):
1. week: Equipping, revision of basic analytical tasks
2. week: Preliminary testing and classification of inorganic and organic compounds
3. week: General purity tests for inorganic ions
4. week: Determination of protonation macroconstants by potentiometry
5. week: Determination of protonation macro- and microconstants by UV/pH titration
6. week: Determination of logP
7. week: Major analgetics
8. week: Minor analgetics
9. week: Nonsteroidal anti-inflammatory agents
10. week: Local anaesthetics
11. week: Sedato-hypnotics and anxiolytics
12. week: Psychopharmacons
13. week: Cholinergic and adrenergic agents
14. week: Identification and quantitative determination of drug mixtures

COURSE REQUIREMENTS

Prerequisites:
Analytical Chemistry (quant.) GYKASK066E1A
Organic Chemistry II. GYKSZK123E2A
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Based on the Study and Exam Regulations
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Practice: Project reports on weeks 6, 10 and 13.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.

Type of the semester-end examination:
theory: signature/practical grade/examination/final
practice: signature/practical grade/examination/final
Form of the semester-end examination: written and oral
Necessary equipment: practice: drug substances, reagents, laboratory equipments, instruments
Pharmaceutical Botany (theory + practice) II.

Full name of the subject: Gyógyszerészi növénytan (elmélet + gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Botany
English name of the subject: Pharmaceutical Botany (theory + practice) II.
German name of the subject: Pharmazeutische Botanik (Vorlesung + Praktikum) II

Neptun code of the subject: GYKFMG079E2A; GYKFMG079G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacognosy

Responsible tutor: Szabolcs Béni head of department, associate professor, Ph.D.
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Imre Boldizsár assistant professor, Ph.D.
Attila Ványolós assistant professor, Ph.D.
Anna Bucsy-Sályomváry professor’s assistant, Ph.D.
Andrea Bőszörményi assistant professor, Ph.D.

Classes per week: 1 lecture, 1 practice
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The main aims of the subject are as follows:
1) To get familiar with the botanical features of plants at the cytological, histological and organizational levels in order to gain basic knowledge essential for pharmacopoeial drug analyzes.
2) Understanding the general and specific metabolic processes and physiological phenomena of plants to understand the production and accumulation of biologically active substances (and their mode of storage).
3) To study the chemotaxonomy of plants in order to be able to recognize medicinal herbs (and poisonous plants) and to understand their kinship and chemism.

Short description of the subject:
The subject summarizes current knowledge on the structure and function of plant cells and their participation in biochemical processes. It presents the anatomical (histological) and macroscopic morphological characteristics of the plant organs, that also represent drugs, and their physiological processes, highlighting their role in the production and accumulation of biologically active substances. It describes the systematization of the flora most important from the pharmaceutical point of view: chemotaxonomy with special emphasis on chemism. In this context, it presents important medicinal herbs (and poisonous plants) and their morphological characteristics necessary for their recognition.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Introduction. The concepts of plant, herb and drug. The structure of the flower among gymnosperms and angiosperms: the diversity of the appearance of the flower parts as an opportunity to identify plant species and their kinship.
2. week: Presentation of inflorescences: characteristics of the cyme and clustering types in major plant families.
3. week: The pollination and fertilization process in gymnosperms and angiosperms, floral biological phenomena. The process of seed and fruit formation in the context of fertilization. Morphological examination of seeds and fruits.
5. week: Formation and structure of the cell wall. Vacuoles and their contents. The role of the cell walls and crystal forms in the microscopic examination of drugs.
6. week: The concepts of tissue-tissue system-organ. The meristems. Characteristics of the dermal tissue system (primary, secondary and tertiary dermal tissues) and the exogenous excretory systems: their appearance and role in drug identification. Demonstrating the diversity of ground tissues by highlighting the endogenous secretory systems Occurrence of endogenous secretory systems in herbs.
7. week: Characteristics of the conductive tissue system: organ- and system-specific manifestations.
8. week: Histological structure of root systems and various roots (demonstrated by examples of root drugs). Morphology and histology of the shoot axis (stem): young and old (thickened) forms and parts as drug forms.
9. week: Appearance and histological structure of leaves in the macroscopic and microscopic identification of plants. Water management and mineral nutrition of plants: water uptake, transport, and release in relation to the morphological and functional characteristics of the root, stem and leaf (also a summary of the microscopic morphological characteristics of the three organs).
11. week: Presentation and classification of gymnosperms with introduction to the species with medicinal importance. Chemotaxonomy of angiosperms I. Magnoliidae subclass of dicotyledons and the class of monocotyledons. Comparison of monocotyledons and dicotyledons and their evolutionary relationship.
12. week: Chemotaxonomy of angiosperms II. Description of the subclasses Caryophyllidae and Hamamelididae. Chemotaxonomy of angiosperms III. Rosidae subclass as the five-membered, free-petal among the dicotyledons.
13. week: Chemotaxonomy of angiosperms IV. Introduction of the Dilleniidae subclass by studying the heterogeneous groups belonging to it.
14. week: Chemotaxonomy of angiosperms V. Characterization of subclasses Cornidae and Lamiidae. Chemotaxonomy of angiosperms VI. Asteridae subclass as the top of progression

Topics of practical classes (pro week):
1. week: Morphological knowledge: in ELTE Botanical Garden on plant examples or Characteristics of typical plants of Brassicaceae, Fabaceae families. Structure of flowers I.
2. week: Characteristics of typical plants of the families Apiaceae, Malvaceae, Lamiaceae. Structure of flowers II. Inflorescences I.
3. week: Study of typical plants of families Solanaceae, Asteraceae (Cichoriaceae). Inflorescences II.
4. week: Macroscopic characteristics of seeds and fruits.
5. week: Structure of a young root.
6. week: Old root structure, types of root thickening.
7. week: Structure of young stems and rhizomes.
8. week: Structure of old stems, types of stem thickening.
9. week: 1st Midterm (herbal knowledge 1.) Examination of the xylem and the rhytidome I.
10. week: Examination of the xylem and the rhytidome II.
11. week: Foliage tissue structure.
12. week: Structure of flower parts.
13. week: Histological structure of seeds and crops.
14. week: 2nd Midterm (plant recognition from herbarium specimens and the material of the practices). Retake of missed practices.

Schedule of consultations: as demanded
COURSE REQUIREMENTS

Prerequisites:
GYGENBILE2A Biology II.
GYNOVGYNG1A Pharmaceutical botany I.
GYKGY1074E1A Biotechnology

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: Absence from 25% of the practices is allowed.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Practice: written test on the 9th and 14th weeks, possibility of grade improvement at the practice following the test, and on the last week.
Requirements of signature:
Practice: successful completion of the midterm tests (each separately with at least sufficient result)

Number and type of projects students have to perform independently during the semester and their deadlines:
Practice: preparation (and presentation) of a plant collection of at least 20 species composed of herbs included in the material of the semester, evaluated by one grade equivalent to the grade of one midterm (however, it does not replace any of the midterms)

Type of the semester-end examination: Lecture: examination, Practice: signature
Form of the semester-end examination: oral examination

Necessary equipment: Lecture hall, projection, wi-fi
Practice: A light microscope for each student; a stereomicroscope for each two students. A collection of microscopic preparations for each two students. Slides, coverslips. Manual microtome (e.g. MT.5503 Euromex). Projector, demonstration light microscope equipped with a digital camera that can be connected to a projector. A3 size laminator for “perpetuation” of herbarium sheets
Pharmaceutical Microbiology (theory+practice)

Full name of the subject: Gyógyszerészi mikrobiológia (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Pharmaceutical Microbiology (theory+practice)
German name of the subject: Mikrobiologie für Pharmazeuten (Vorlesung+Praktikum)
Neptun code of the subject: GYKM1K081E1A; GYKM1K081G1A
Type of registration: obligatory
Responsible department: Institute of Medical Microbiology of Semmelweis University
Responsible tutor: Dr. Orsolya Dobay associate professor, PhD
Phone: 210-2959; 56287 ext.
E-Mail: dobay.orsolya@med.semmelweis-univ.hu
Name of the persons responsible for the teaching of the subject:
Dr. Szabó Dóra full professor, DSc
Dr. Dobay Orsolya associate professor, PhD
Dr. Ghidán Ágoston assistant professor (lecturer), PhD
Dr. Andrea Horváth professor’s assistant

Classes per week: 3 lectures, 2 practices
Credit point(s): 4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The importance of microbiology in the medical curriculum, including the education of students of Faculty of Pharmacy is permanently growing. The knowledge about new types of microbial agents - beside the well-known old ones -, new diseases caused by microbes, the more and more frequent nosocomial infections and the epidemics believed overcome, but recently emerging is necessary for the pharmacist, too. They have to be familiar with the continuously growing possibilities of methods used in diagnostic work, prevention and therapy of infectious diseases caused by microbes.
The goal of the training course is that the students of Faculty of Pharmacy learn about the nature of the most important human pathogenic agents, their appearance, the ways of their transmission, the possibilities of killing them inside as well as outside the human body. In addition to the basic knowledge of microbiology an increasing emphasis is placed on the topics connected with the utilization of microbes in pharmacy, in pharmacological research and industry.

Short description of the subject:
The students learn about the physiological and pathological effects of microbes in the organism, i.e. in the human body. Beside the general characterization of the most important pathogens (bacteria, viruses, fungi, and parasites), the students learn about the possibilities of sterilization and disinfections, mode of actions of antimicrobial agents, control of infectious diseases as well as the basic methods of laboratory diagnosis of infectious diseases. Because microorganisms have special importance in pharmaceutical industry, the most important new results, methods (i.e. recombinant technologies) are also summarized.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>42</td>
<td>28</td>
<td></td>
<td></td>
<td>70</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
Week 5. Cocci causing purulent diseases (Staphylococcus, Streptococcus, Neisseria)
Week 6. Normal flora of the intestinal tract and the importance of it. Bacteria causing enteral diseases.
Week 7. Causative agents of respiratory tract infections.
Week 9. Causative agents of human mycosis and their therapy.
Week 10. General virology. Antiviral chemotherapy. DNA viruses.
Week 11. Enteral viruses and diseases caused by them. Hepatitis viruses.
Week 13. Retroviruses. AIDS. Tumor viruses. The role of viruses in carcinogenesis.

Topics of practical classes (pro week):
Week 1. Introduction to basic microbiology, laboratory rules. Microscopic examination of microbes.
Week 2. Cultivation of bacteria.
Week 4. Determination of antibiotic susceptibility of bacteria.
Week 6. Gram-positive and Gram-negative cocci (Cultures, smears, biochemical reactions, serological tests, antibiotic susceptibility, vaccines).
Week 7. Enteral Gram-negative rods (Enterobacterales). Cultures, smears, biochemical reactions, serological tests, antibiotic susceptibility, vaccines); Vibrio, Helicobacter, Campylobacter.
Week 10. Endospore-forming Gram-positive aerobic and anaerobic bacteria (Cultures, smears, enzyme reactions, serological tests, antibiotic susceptibility, vaccines).
Week 11. Spirochetes. Rickettsiae, Chlamydiae, Mycoplasmas (Cultures, smears, enzyme reactions, serological tests, antibiotic susceptibility, vaccines).
Week 12. Medically important fungi (Cultures, smears).
Week 13. Medical parasitology (macroscopic and microscopic preparations).
Week 14. General virology (cultivation and morphology of viruses, cell-virus interactions, serological tests).

Schedule of consultations:
in the exam period, personal appointments with the tutor

COURSE REQUIREMENTS

Prerequisites: GYGENIMME1A Basic immunology
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Lectures: presence on at least 75 % of the total number of lectures.
Laboratory practice: maximum 3 absences. acceptable practice in microbiological laboratory methods
Requirements of signature: Active presence and no more than 3 absences on the practical classes.

Number and type of projects students have to perform independently during the semester and their deadlines:
Practice: two times in the semester, 10 questions (essay). The accepted result: et least 6 points/midterm.

Type of the semester-end examination: examination

Form of the semester-end examination: oral exam, with preceeding written minimum questions

Scientific, course related researches, publications, assays:
Studies on the antibiotic resistance of bacteria (cause of resistance, mechanisms of the development of resistance) Asymptomatic carriage of pneumococci, staphylococci, etc. Microbiom analysis. Studies on adenoviruses, herpes viruses, papillomaviruses, HIV (structure, pathomechanism, etc.).

Necessary equipment:
All materials required for the laboratory work is provided by the Institute.
Clinical Chemistry and Laboratory Diagnostics (theory)

Full name of the subject: Klinikai kémia és laboratóriumi diagnostika
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: –
English name of the subject: Clinical Chemistry and Laboratory Diagnostics (theory)
German name of the subject: Klinische Chemie und Labordiagnostik (Vorlesung)

Neptun code of the subject: GYKLMI082E1A
Type of registration: obligatory
Responsible department: Department of Laboratory Medicine of Semmelweis University

Responsible tutor: Prof. Dr. Barna Vásárhelyi M.D., Ph.D., D. Sc.
Phone: 06-1-361-459/62098
E-mail: vasarhelyi.barna@med.semmelweis-univ.hu
Title, academic degree:

Name of the persons responsible for the teaching of the subject:
Dr. Adrienne Fehér M.D., Clinical laboratory specialist, hematology specialist, transfusion medicine specialist
Dr. Gellért Karvaly Pharm. D., Ph.D.
Dr. Ibolya Kocsis Pharm. D., Ph.D., clinical laboratory specialist
Dr. Györgyi Molnár-Világos Pharm. D., clinical laboratory specialist
Dr. Zsófia Szabó Pharm. D., clinical laboratory specialist
Dr. Zoltán Vajda M.D., hematology specialist

Classes per week: 2 lectures
Credit point(s): 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to provide valuable knowledge on the principles and practice of laboratory diagnostics, as well as on the specialties of clinical chemistry, hematology and immunology in the field of interest of pharmacy students. by giving a systematic overview on the basics of these disciplines. In addition, the measures of the quality assurance of clinical laboratory assays are presented.

Short description of the subject:
Pharmacists are approached by patients with questions related to laboratory diagnostics on a daily basis. In pharmacies expertise in performing simple fingerprick tests (eg. blood glucose and lipid measurement), as well as assistance with the interpretation of laboratory reports is often required. Concerning the latter, it is especially important that this assistance is adequate yet restrained.
In the clinical setting, the proper interpretation of laboratory tests which shed light on the efficacy and the biochemical adverse effects of medications is highly valuable. Pharmaceutical expertise has an important added value in this respect. Therapeutic drug monitoring is emerging as a special field of laboratory medicine where pharmacists play a unique role.
The clinical laboratory relies heavily on the knowledge of pharmacists, gained during the training of laboratory specialists.
During the course, the main aspects of ordering clinical laboratory tests, the major analytical procedures, and the art of interpreting laboratory reports are presented.

There is a special emphasis on:
- laboratory tests performed by the bedside and in pharmacies,
- tests for diagnosing the lesions of the various organ systems,
- the evaluation of the pharmacodynamic effects of drugs using biochemical tests,
- therapeutic drug monitoring, and
- quality assurance in the clinical laboratory.
During the lectures theory is combined with case reports. 2 sessions are dedicated to visiting some of the clinical laboratories of Semmelweis University to provide a real-life experience.

Program of semester

Topics of theoretical classes (pro week):
1. Preanalytical factors influencing the results of laboratory assays. (Dr. Barna Vásárhelyi)
2. Major analytical procedures employed in clinical laboratories. Quality assurance. (Dr. Györgyi Molnár-Világos)
3. Interpretation of assay results. (Dr. Barna Vásárhelyi)
4. Bedside laboratory tests (with demonstration). Urine testing. (Dr. Ibolya Kocsis)
5. Laboratory diagnostics of inflammation. Acute phase reactions. Testing for infections. (Dr. Zsófia Szabó)
6. Immunology tests I. Hypersensitivity reactions, allergy tests. (Dr. Zsófia Szabó)
7. Immunology tests II. Autoimmunity, immune system deficiencies. (Dr. Zsófia Szabó)
8. Diagnostics of tissue lesions (Dr. Barna Vásárhelyi)
9. Diagnostics of metabolic disorders (diabetes, hyperlipidemia). (Dr. Barna Vásárhelyi)
10. Therapeutic drug monitoring. (Dr. Gellért Karvaly)
11. Tests for hemostasis. Monitoring of anticoagulants. (Dr. Adrienne Fehér)
13. Laboratory visit I.
14. Laboratory visit II.

Schedule of consultations: Online, by individual arrangement

COURSE REQUIREMENTS

Prerequisites: Biochemistry II. GYKBMT069E2A, Physiology II. GYKTL068E2A GYKTL068G2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
As required by the effective regulations of the Faculty of Pharmacy.

Requirements of signature: Attendance of lectures as required by the Faculty of Pharmacy

Type of the semester-end examination: examination

Form of the semester-end examination: Written test

Necessary equipment:
1. McPherson RA, Pincus MR: Henry’s Clinical Diagnosis and Management by Laboratory Methods 22nd Edition
2. Learning guide on the website (https://semmelweis.hu/laboratorium/english/), and in the Moodle-system under Laboratory Medicine course (itc.semmelweis.hu)
Hungarian Medical Terminology (practice) V.

Full name of the subject: Magyar orvosi szaknyelv (gyakorlat) V.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Hung. Med. Term. V.
English name of the subject: Hungarian Medical Terminology (practice) V.
German name of the subject: Ungarische medizinische Fachsprache (Praktikum) V

Neptun code of the subject: GYLEKMSZG5A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Languages for Specific Purposes

Responsible tutor: Alexandra Bakó language teacher
E-mail: bako.alexandra@se-etk.hu

Name of the persons responsible for the teaching of the subject:
Borda Szandra language teacher
Nagyné Górász Judit language teacher
Kovács Ildikó language teacher
Nagy Borbála language teacher
Tick Vera language teacher
Tóth Zsuzsanna language teacher

Classes per week: 4 practices
Credit point: 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The role of this subject is to help students acquire the basic vocabulary, grammar and language skills they need for the effective professional communication in the language they use during their field practice. With the help of this course they become able to communicate with the patients in the Hungarian hospitals and pharmacies.

Short description of the subject:
Students acquire basic structures and the vocabulary for everyday topics. The course places special emphasis on phrases essential for everyday communications.

Topics: Communication practice (family and social history); Communication practice (internal medicine - medical history); Communication practice (treatments, medication); Common illnesses - symptoms; The respiratory system; The cardiovascular system; The urinary system; The digestive system; The Endocrine system

<table>
<thead>
<tr>
<th>Course data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
<td>Contact hours (lecture)</td>
<td>Contact hours (practice)</td>
<td>Contact hours (seminar)</td>
<td>Individual lectures</td>
<td>Total number of contact hours/semester</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>56</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Normal course offer</td>
<td>Autumn semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consultations
Program of semester

Topics of practical classes (pro week):
Lesson 1-4: Communication practice (family and social history)
Lesson 5-6: Communication practice (internal medicine – medical history)
Lesson 7-8: Communication practice (treatments, medication)
Lesson 9-10: Common illnesses – symptoms
Lesson 11-16: The respiratory system
Lesson 17-22: The cardiovascular system
Lesson 23-24: Consolidation
Lesson 25-26: Test 1 + situation
Lesson 27-32: The urinary system
Lesson 33-38: The digestive system
Lesson 39-44: The Endocrine system
Lesson 45-50: Consolidation
Lesson 51-52: Test – situation, communication practice
Lesson 53-56: Mock final exam (oral part), assessment

Schedule of consultations:
Individual consultations by email or in person on meeting formerly agreed upon with the teacher via email.

COURSE REQUIREMENTS

Prerequisites: GYLEKMSZG4A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
An attendance of 75% minimum is required to get the signature.
The student must have a minimum average of 2.00 based on the final exam to pass the subject.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Beside the final test the teacher may evaluate the students’ performance with the help of short tests.

Requirements of signature:
An attendance of 75% minimum and taking the final test.

Number and type of projects students have to perform independently during the semester and their deadlines:
homework in the forms of language practice tasks

Type of the semester-end examination: final
Form of the semester-end examination: written and oral

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
sample tests provided by the teacher
Physical Education V.

Full name of the subject: Testnevelés V.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: –
English name of the subject: Physical Education V.
German name of the subject: Sport V

Neptun code of the subject: GYKTSI116G5A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Fodor, Ákos tennis trainer
- Kalmár, Jessica aerobics trainer
- Kalmus, Dániel circuit training trainer
- Katona, László hiking, badminton, boulder trainer
- Lehel, Zsolt tennis, golf, icehockey trainer
- Nagy-Kismarci, Bence cheerleading trainer
- Rimay, István football trainer
- Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point(s): 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the „beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. semester</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1x60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba
1x 90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,
4x3 hrs. and 1x2 hrs. session packages: Hiking 1, Hiking 2.
2x90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

COURSE REQUIREMENTS

Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams.
As teams take part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat
until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.
Type of the semester-end examination: signature/practical grade/examination/final
6. SEMESTER 2021/2022/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (theory+practice) I.</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Pharmaceutical Botany II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (practice) II.</td>
<td>–</td>
<td>4</td>
<td>4</td>
<td>Pharmaceutical Chemistry I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Chemistry (theory) II.</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td></td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) II.</td>
<td>–</td>
<td>6</td>
<td>3</td>
<td>Pharm. Techn. I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Techn. I.</td>
<td>examination</td>
</tr>
<tr>
<td>Basic Medical Pathophysiology II. (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Basic Med. Patho.I.</td>
<td>final*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dietetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Microbiology</td>
<td></td>
</tr>
<tr>
<td>Veterinary Pharmaceuticals (theory)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>Pharm. Techn. I.</td>
<td>examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Microbiology</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) I.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>Basic Med. Patho.I.</td>
<td>practical mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physiological Pharm. and Pharm. Microbiology</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td>Pharm. Techn. I.</td>
<td>examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Microbiology</td>
<td></td>
</tr>
<tr>
<td>Physical Education VI.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Pharmacy Practice II.</td>
<td>–</td>
<td>20/semester</td>
<td>–</td>
<td>Pharm. Techn. I.</td>
<td>signature</td>
</tr>
<tr>
<td>GYKANG238G2A</td>
<td></td>
<td></td>
<td></td>
<td>Pharm. Chem. I.</td>
<td></td>
</tr>
<tr>
<td>Summer Practice II.</td>
<td>–</td>
<td>40</td>
<td>4</td>
<td>Pharm. Chem. and Anal.; Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>13</td>
<td>17</td>
<td>20/semester</td>
<td>26+4</td>
<td></td>
</tr>
</tbody>
</table>
Pharmacognosy (theory+practice) I.

Full name of the subject: Gyógynövény- és drogismeret (elmélet+gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmacognosy I.
English name of the subject: Pharmacognosy (theory+practice) I.
German name of the subject: Pharmakognosie (Vorlesung+Praktikum) I

Neptun code of the subject: GYKFMG130G1A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Pharmacognosy
Responsible tutor: Szabolcs Béni head of department, associate professor, Ph.D.
E-mail: beni.szabolcs@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Szabolcs Béni associate professor, Ph.D.
Ágnes Alberti associate professor, Ph.D.
Andrea Bőszörményi assistant professor, Ph.D.
Orsolya Csernák assistant professor, Ph.D.
Ida Fejős assistant professor, Ph.D.
László Kursinszki associate professor, Ph.D.
Eszter Riethmüller assistant professor, Ph.D.
Attila Ványolós assistant professor, Ph.D.
Nóra Gampe professor’s assistant, Ph.D.

Classes per week: 2 lectures, 4 practices
Credit point: 5

Professional content, intent of acquirement and it’s function in order to implement the goals of the program:
The aim of the course is to acquaint pharmacy students with medicinal plants, herbal drugs and the analytical methods applied in their quality assurance. By doing so, it contributes to the education of pharmacy students to become key experts in herbal medicines. It contributes to the training of students with modern knowledge of pharmacognosy at a time when the knowledge about natural substances and herbs has come to the fore and has expanded with new aspects due to European harmonization.

Short description of the subject:
The topics of the classes follow the biogenetic system of plant materials. It represents a shift in proportion and, in part, selection in the curriculum that sufficiently emphasizes the importance of knowledge of herbal drugs and their active ingredients that are important in therapeutic practice. At the same time, it provides sufficient knowledge in the context of structure-activity relationships for the sufficient processing of newly emerging herbal drugs, possibly of foreign origin, based on their chemical groups. It also introduces the requirements of the European Pharmacopoeia (Ph. Eur.) regarding herbal drugs and preparations. It thus provides knowledge of all herbal drugs and active substances that serve as raw materials for phytopharmaceuticals (including those that will soon become traditional OTC medicines) and preventive products (dietary supplements).

Knowledge of plant material: drug recognition; macroscopic and microscopic examination (cross section, powder preparation, quantitative microscopy).
Detection of active ingredients and constituents of herbal drugs (preparation, extraction and purification techniques, general and specific chemical reactions, chromatographic methods), quantitative evaluations (pharmacopoeial and standard methods) and isolation of individual components or selective determination by complex chromatographic and spectroscopic methods. Application of herbal drugs based on their positive effects in prevention, phytotherapy and improving quality of life.
Program of semester

Topics of theoretical classes (pro week):
1. week: Introduction to Pharmacognosy
2. week: History of Pharmacognosy. Cultivation and processing of medicinal plants.
3. week: Biogenetic system of plant materials. Saccharides, carbohydrates.
5. week: Classification of phenolic compounds. Hydroxycinnamic acid derivatives
6. week: Coumarins.
8. week: Flavonoids.
10. week: Tannins.
12. week: Naphthodianthrones. Terpenophenolics.
13. week: Obligatory test - exam
14. week: Fungi

Topics of practical classes (pro week):
2. week: General methods in Pharmacognosy.
3. week: Vegetable drugs containing carbohydrates (starches, mucilages, etc.).
4. week: Plant acids and their drugs.
5. week: Plant lipids and their drugs.
6. week: Phenoglycosides, lignans, coumarins and diarylheptanoids.
7. week: Flavonoids and chief drugs I.
8. week: Flavonoids and chief drugs II.
9. week: Tannins and chief tannin drugs.
10. week: Anthraglycoside containing crude drugs I. Chemical tests, quantitative determinations.
11. week: Anthraglycoside containing crude drugs II. Quantitative determination of sennosides.
12. week: Terpenophenolics and phloroglucine derivatives.
13. week: Individual task I.: Natural product development,

Schedule of consultations: as demanded
COURSE REQUIREMENTS

Prerequisites: GYKFMG079E2A – Pharmaceutical botany II.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Three absences from the practices are allowed.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
During the term-time: three written or oral examinations based on the material of the practices and the lectures. Test of the knowledge of herbal drugs: examination of unknown drug mixtures, identification of unknown drug powders, recognition of microscopic preparations. The grade of the obligatory midterm test is given double weight, the marks obtained during the further examinations are taken into account with single weight when determining the practical mark. Midterm examinations can be retaken twice. In the case of the improvement of the grade, the average of the correction mark(s) and the original grade(s) will be taken into account.

Requirements of signature:
Participation at the practices. Submission and acceptance of reports. The average of the grades of the midterm examinations is at least 2.0. Successful completion of the obligatory midterm test.

Number and type of projects students have to perform independently during the semester and their deadlines:
Presentation of a chosen topic.

Type of the semester-end examination: practical grade

Necessary equipment: Lecture hall, projection, wi-fi.

Laboratory equipped with microscopes, labwares, extractors, distillation equipment, instruments (UV-VIS, IR, HPLC, GC), chemicals.
Pharmaceutical Chemistry (theory) II., Pharmaceutical Chemistry (practice) II.

Full name of the subject: Gyógyszerészi kémia (elmélet) II., Gyógyszerészi kémia (gyakorlat) II.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: Pharm. Chem. II.

English name of the subject: Pharmaceutical Chemistry (theory) II., Pharmaceutical Chemistry (practice) II.

German name of the subject: Pharmazeutische Chemie (Vorlesung) II., Pharmazeutische Chemie (Praktikum) II.

Neptun code of the subject: GYKGYK076E2A, GYKGYK076G2A

Type of registration: obligatory

Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsible tutor: Dr. Péter Horváth, Head of the Department, Associate professor, Ph.D.
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Phone: 06-1-217-0891
Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
- Dr. Péter Horváth, associate professor, head of the department, Ph.D.
- Dr. Krisztina Takács-Novák, full professor, D.Sc.
- Dr. László Örфи, full professor, Ph.D.
- Dr. Gergely Völgyi, associate professor, Ph.D.
- Dr. Károly Mazák, associate professor, Ph.D.
- Dr. Márti Mazák-Kraszni, associate professor, Ph.D.
- Dr. Gergő Tóth, assistant professor, Ph.D.
- Dr. Arash Mirzahasseinii, assistant lecturer, Ph.D.
- Dr. Tamás Pál, assistant lecturer, Ph.D.
- Dr. István Köteles, assistant lecturer
- Dr. Dóra Csicsák, assistant lecturer

Classes per week: 4 lectures, 4 practices

Credit point(s): 4 (theory), 4 (practice)

Professional content, intent of acquisition and its function in order to implement the goals of the program:
Integration of the curriculum of various chemical and biological courses and extension with specific chemical knowledge regarding properties, mechanism of action and analytics of drug substances.

Short description of the subject:
- **theory:** Teaching of synthesis, analytics, physico-chemical and chemical properties, structure-activity relationships, receptor-bindings and biochemical background of biological effects of drug substances.
- **practice:** Teaching of analytics, physico-chemical and chemical properties of drug substances.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>56</td>
<td>56</td>
<td>–</td>
<td>–</td>
<td>112</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Cardiac glycosides. Chemistry, analytics of cardiac glycosides, sugars
 Cardiovascular drugs: antiarrhythmic agents
2. week: Cardiovascular drugs: antianginal agents
 Cardiovascular drugs: antihypertensive agents
3. week: Cardiovascular drugs: antihyperlipidemic agents
 Cardiovascular drugs: anticoagulants
4. week: Antidiabetics
 Diuretics
5. week: Antihistamines
 Corticosteroids
6. week: Sexual hormones
 Vitamins I.
7. week: Vitamins II.
 Disinfectants
8. week: Chemotherapeutics: sulfonamides
 Chemotherapeutics: antimalarial drugs, fluoroquinolones
9. week: Chemotherapeutics: antituberculotics, antifungal agents
 Antibiotics: β-lactams, chloramphenicol
10. week: Antibiotics: tetracyclines, aminoglycosides
 Antiviral agents
11. week: Anticancer drugs
 Biological and biosimilar drugs
12. week: Drug research I.
 Drug research II.
13. week: Quality assurance, GLP, validation
 Drugs acting on the thyroid gland
14. week: Nootropics
 Consultation

Topics of practical classes (pro week):
1. week: Equipping, identification.
2. week: Cardiovascular drugs I. (digitalis glycosides and sugars)
3. week: Cardiovascular drugs II. (antiarrhythmic and antianginal agents)
4. week: Cardiovascular drugs III. (antihypertensive agents and anticoagulants)
5. week: Diuretics
6. week: Antihistamines
7. week: Steroid hormones
8. week: Vitamins
9. week: Disinfectants and chemotherapeutics I. (China alkaloids)
10. week: Chemotherapeutics II. (sulfonamides, fluoroquinolones)
11. week: Antibiotics
12. week: Validation of methods
13. week: Personal task: Complete pharmacopoeial qualification of an organic compound (Ph. Eur.)
14. week: Substitutional practice, desequipping

COURSE REQUIREMENTS

Prerequisites: Pharmaceutical Chemistry I. GYKGYK076E1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Based on the Study and Exam Regulation
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results: Project reports on weeks 6, 10 and 13.

Requirements of signature:
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.
Fulfilment of the compulsory personal task practice.

Type of the semester-end examination:

theory: final

practice: practical grade

Form of the semester-end examination: written and oral

Necessary equipment: practice: drug substances, reagents, laboratory equipments, instruments
Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.

Full name of the subject: Gyógyszerhatástan és toxikológia (elmélet) I., Gyógyszerhatástan és toxikológia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.
German name of the subject: Pharmakologie und Toxikologie (Vorlesung) I., Pharmakologie und Toxikologie (Praktikum) I.

Neptun code of the subject: GYKGYH086E1A, GYKGYH086G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Full Professor, DSc
Dr. György Bagdy Full Professor, DSc
Dr. László Tóthfalusi Associate Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. Rudolf Laufer Assistant lecturer

Classes per week: 2 lectures, 2 practices
Credit point(s): 2 (theory), 2 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Understanding the mechanism and effect of drugs

Short description of the subject:
The course aims at teaching of the mechanism of action, side effects and interactions of drugs and the basics of their therapeutic use.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):

1. week: General principles of drug action, receptor theory I
2. week: Pharmacokinetics
3. week: Factors influencing the drug effect. Basics of clinical pharmacology
4. week: Autonomic drugs. Striated muscle relaxants
5. week: Chemical neurotransmission in the CNS
6. week: General and local anesthetics. Opioids
7. week: Drugs used in affective disorders. Anxiolytic and hypnotic drugs
8. week: Antipsychotic drugs. Drugs of abuse
10. week: Immunopharmacology
11. week: Nonsteroidal anti-inflammatory drugs. Drugs of gout
12. week: Glucocorticoids. Pharmacology of the respiratory system
13. week: Drugs of inflammatory disorders.
14. week: Drug interactions and adverse drug reactions

Topics of practical classes (pro week):

1. week: Introduction to pharmacology
2. week: Drug targets, receptor-drug interaction
3. week: Dose-response curves
4. week: Administration routes
5. week: Blood level curves
6. week: Factors influencing the drug effect
7. week: Midterm exam: general pharmacology
8. week: Autonomic drugs
9. week: Drugs of heart
10. week: Drugs of circulation
11. week: Use of cardiovascular drugs
12. week: Midterm exam: autonomic and cardiovascular pharmacology
13. week: Drugs of coagulation and lipid lowering drugs
14. week: Review and summary

Course requirements

Prerequisites:
Basic Medical Pathophysiology I. GYKGYH083G1A
Physiological Pharmaceutics and Pharmaceutical dosage forms GYKGYI073G1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup: The attendance to lectures is highly recommended.
The attendance to practices is mandatory. Presence on minimum 75% of practices is required to the acceptance of the semester.
Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Two written midterm exams (on weeks 7 and 12)

Requirements of signature:
Attendance to lectures.
Attendance to practices. Completion of both midterm tests with at least pass (50%) results.
Type of the semester-end examination: signature/practical grade/examination/final
Form of the semester-end examination: written
Scientific, course related researches, publications, assays:
Physical Education VI.

Full name of the subject: Testnevelés VI.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: P. E. VI.
English name of the subject: Physical Education VI.
German name of the subject: Sport VI

Neptun code of the subject: GYKTSI116G6A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center
Responsible tutor: Várszegi, Kornélia
Phone: +36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:

* Fodor, Ákos tennis trainer
* Kalmár, Jessica aerobics trainer
* Kalmus, Dániel circuit training trainer
* Katona, László hiking, badminton, boulder trainer
* Lehel, Zsolt tennis, golf, icehockey trainer
* Nagy-Kismarci, Bence cheerleading trainer
* Rimay, István football trainer
* Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point(s): 0

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. semester</td>
<td>0</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>Spring semester*</td>
<td>–</td>
</tr>
</tbody>
</table>

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behaviour.
COURSE REQUIREMENTS

Prerequisites: –

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat
 until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.

Type of the semester-end examination: signature
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for fourth year students in the 2022/2023 academic year
7. SEMESTER 2022/2023/1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacognosy (practice) II.</td>
<td>–</td>
<td>4</td>
<td>2</td>
<td>Pharmacognosy I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacognosy (theory) II.</td>
<td>2</td>
<td>–</td>
<td>3</td>
<td>Pharm. Chemistry II, Pharmaceutical Technology II.</td>
<td>final*</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (practice)</td>
<td>–</td>
<td>5</td>
<td>4</td>
<td>Pharm. Chemistry II, Pharmaceutical Technology II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Instrumental Pharmaceutical Analysis (theory)</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) II.</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td></td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II.</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Introduction to Pharmacoeconomics (practice)</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Mathematics for Pharmacists (theory) Pharmacology and Toxicology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) III.</td>
<td>–</td>
<td>9</td>
<td>5</td>
<td>Pharm. Chemistry II, Pharm. Techn. II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) III.</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Industrial pharmaceutical Technology (theory) I.</td>
<td>2</td>
<td>–</td>
<td>2</td>
<td></td>
<td>examination</td>
</tr>
<tr>
<td>Biological Drugs (theory)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Pharm. Technology II, Pharm. Chem. and Anal.I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education VII.</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Total:</td>
<td>12</td>
<td>22</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacognosy (theory) II., Pharmacognosy (practice) II.

Full name of the subject: Gyógynövény és drogismeret (elmélet) II., Gyógynövény és drogismeret (gyakorlat) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmacognosy II.
English name of the subject: Pharmacognosy (theory) II., Pharmacognosy (practice) II.
German name of the subject: Pharmakognosie II.

Neptun code of the subject: GYKFMG130E2A; GYKFMG130G2A
Type of registration: obligatory
Responsible Department: Semmelweis University, Department of Pharmacognosy

Name of the persons responsible for the teaching of the subject:
- Szabolcs Béni associate professor, Ph.D.
- Ágnes Alberti associate professor, Ph.D.
- Andrea Böszörményi assistant professor, Ph.D.
- Orsolya Csernák assistant professor, Ph.D.
- Ida Fejős assistant professor, Ph.D.
- Eszter Riethmüller assistant professor, Ph.D.
- Attila Ványolós assistant professor, Ph.D.
- Nóra Gampe assistant lecturer, Ph.D.
- Csenge Anna Felegyi-Tóth trainee

Classes per week: 2 lectures, 4 practices,
Credit point: 3+2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to acquaint pharmacy students with medicinal plants, herbal drugs and the analytical methods applied in their quality assurance. By doing so, it contributes to the education of pharmacy students to become key experts in herbal medicines. It contributes to the training of students with modern knowledge of pharmacognosy at a time when the knowledge about natural substances and herbs has come to the fore and has expanded with new aspects due to European harmonization.

Short description of the subject:
The topics of the classes follow the biogenetic system of plant materials. It represents a shift in proportion and, in part, selection in the curriculum that sufficiently emphasizes the importance of knowledge of herbal drugs and their active ingredients that are important in therapeutic practice. At the same time, it provides sufficient knowledge in the context of structure-activity relationships for the sufficient processing of newly emerging herbal drugs, possibly of foreign origin, based on their chemical groups. It also introduces the requirements of the European Pharmacopoeia (Ph. Eur.) regarding herbal drugs and preparations. Thus, it provides knowledge of all herbal drugs and active substances that serve as raw materials for phytopharmaceuticals (including those that will soon become traditional OTC medicines) and preventive products (dietary supplements).

Knowledge of plant material: drug recognition; macroscopic and microscopic examination.

Detection of active ingredients and constituents of herbal drugs (preparation, extraction and purification techniques, general and specific chemical reactions, chromatographic methods), quantitative evaluations (pharmacopoeial and standard methods) and isolation of individual components or selective determination by complex chromatographic and spectroscopic methods. Application of herbal drugs based on their positive effects in prevention, phytotherapy and improving quality of life.
Program of semester

Topics of theoretical classes (pro week):

1. **week:** Terpenoids. Biogenetic generalities, classification. Essential oils in the plant kingdom and their therapeutic significance.

2. **week:** Acyclic, monocyclic and bicyclic monoterpens and their drugs.

3. **week:** Essential oil-rich drugs containing phenylpropane derivatives and aromatic monoterpens. Sesquiterpenes and their drugs. Balms, resins and their drugs.

4. **week:** Valeropatride iridoid ester-containing drugs. Iridoids and their drugs. Therapeutic significance of bitter substance-containing drugs and their preparations: secoiridoid, sesquiterpene lactone, diterpene, seco-triterpene, cinnamic acid pregnane ester, cucurbitacin type bitter substances and their drugs.

6. **week:** Drugs containing sterane-based cardiac glycosides and their significance in medicine. Ecdysteroids and their drugs.

8. **week:** Ornithine and lysine-derived alkaloids II: Pyrrolidine- and piperidine-based alkaloids, pyrrolizidine and quinolizidine-based alkaloids and their drugs. Tryptophan-derived alkaloids. Simple indole backbone, hemiterpenoid - indole backbone, monoterpenoid - indole backbone and dimeric indolylendole backbone alkaloids and their drugs. Strychnine and quinoline backbone alkaloids and their drugs.

9. **week:** Benzylisoquinoline alkaloids and further alkaloids of phenylalanine origin: aporphine, morphinan, protoberberin, benzophenanthridine, phthalidisoquinoline, bisbenzyl isoquinoline and monoterpenoid isoquinoline alkaloids, Amaryllidaceae alkaloids.

11. **week:** Terpene-derived alkaloids and their drugs. Mustard oil glycosides. Drugs containing other sulfur compounds.

12. **week:** Pharmaceutical biotechnology.

13. **week:** Obligatory written test.

14. **week:** Summarizing lecture, preparation for the final exam.

Topics of practical classes (pro week):

1. **week:** Work and fire safety. Bitter substances of plants. Classification, reactions, bitterness value.

2. **week:** Essential oil containing drugs. Determination of essential oil content. Qualitative investigation of essential oils by GC and TLC I.

3. **week:** Essential oil containing drugs. Determination of essential oil content. Qualitative investigation of essential oils by GC and TLC II.

4. **week:** Saponins and chief saponin drugs. Methods used in the identification and quality control of saponins.

5. **week:** Cardioactive glycosides and chief drugs.

6. **week:** Methods used in the analyses of cardioactive glycosides.

7. **week:** Tropane alkaloid containing drugs. Methods of extracting alkaloids from plant materials.

8. **week:** Isoquinoline alkaloids, their chief drugs.

9. **week:** Quinoline and indole alkaloids, their chief drugs.

10. **week:** Pseudo- and protoalkaloids, their chief drugs I.

11. **week:** Pseudo- and protoalkaloids, their chief drugs II.

12. **week:** Plant biotechnology.

13. **week:** Individual task I.: Natural product development.

14. **week:** Individual task II.: Identification of crude drugs based on the methods prescribed in the Ph. Eur.

Schedule of consultations:

As demanded

Prerequisites:

GYKFMG130G1A Pharmacognosy I.
Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of acceptable absences is regulated by the current Study and Exam regulations.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
During the term-time: two written or oral examinations based on the material of the practices. Test of the knowledge of herbal drugs: examination of unknown drug mixtures, identification of unknown drug powders, recognition of microscopic preparations. The grade of the obligatory midterm test is given double weight, the marks obtained during the further examinations are taken into account with single weight when determining the practical mark. Midterm examinations can be retaken twice. In the case of the improvement of the grade, the average of the correction mark (s) and the original grade (s) will be taken into account.

Demonstration of that the student: a) has adequate knowledge of plant materials (recognition of herbal drugs), and b) is able to independently perform quality testing of herbal drugs based on the Ph. Eur. Academic competition.

Requirements of signature:
Participation at the practices. Submission and acceptance of reports. The average of the grades of the midterm examinations is at least 2.0. Successful completion of the obligatory midterm test.

Number and type of projects students have to perform independently during the semester and their deadlines:
Preparation of a presentation in a chosen topic, performed at the last two weeks.

Type of the semester-end examination:
Lecture: final
Practice: practical grade

Form of the semester-end examination:
Lecture: oral examination

Necessary equipment:
Lecture hall, projection, wi-fi.
Practice: Laboratory equipped with microscopes, labwares, extractors, distillation equipment, instruments (UV-VIS, IR, HPLC, GC), chemicals
Instrumental Pharmaceutical Analysis (theory), Instrumental Pharmaceutical Analysis (practice)

Full name of the subject: Műszeres gyógyszeranalízis (elmélet), Műszeres gyógyszeranalízis (gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Instr. Pharm. An.
English name of the subject: Instrumental Pharmaceutical Analysis (theory), Instrumental Pharmaceutical Analysis (practice)
German name of the subject: Instrumentelle Arzneimittelanalytik (Vorlesung)
Neptun code of the subject: GYKGYK087E1A, GYKGYK087G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmaceutical Chemistry

Responsi ble tutor: Dr. Péter Horváth Head of the Department, Associate professor, Ph.D.
Phone: 06-1-217-0891
E-Mail: horvath.peter@pharma.semmelweis-univ.hu
Semmelweis University, Department of Pharmaceutical Chemistry, H-1092 Budapest, Hőgyes Endre u. 9.

Name of the persons responsible for the teaching of the subject:
Dr. Péter Horváth associate professor, head of the department, Ph.D.
Dr. Gergely Völgyi associate professor, Ph.D.
Dr. Károly Mazák associate professor, Ph.D.
Dr. Márta Mazák-Krasznai associate professor, Ph.D.
Dr. Gergő Tóth assistant professor, Ph.D.
Dr. Arash Mirzahosseini assistant professor Ph.D.

Classes per week: 2 lectures, 5 practices
Credit point: 2 (theory), 4 (practice)

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The theoretical basis and practical application of modern instrumental analytical methods used in the monographs of the Pharmacopoeia and by the pharmaceutical industry, in order to achieve a comprehensive understanding of the analysis of pharmaceutically active compounds, their intermediates and preparations, and to interpret the methods used in the monographs of the Pharmacopoeia. A further aim is to enable our students to find easier employment in the pharmaceutical industry.

Short description of the subject:
The basic objective of the course is to familiarise students with instrumental analytical methods for the determination of the quality and composition of pharmaceutical preparations and raw materials. The students will learn about the structure and operation of the various instruments. They will gain an insight into the application of the different instruments and gain experience through practical work.

<table>
<thead>
<tr>
<th>Course data</th>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>98</td>
<td>Autumn semester</td>
<td>-</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: UV-VIS spectrophotometry
2. week: Electroanalysis (Potentiometry, amperometry)
3. week: HPLC I.
4. week: HPLC II.
5. week: IR, Raman spectroscopy
6. week: ORD, CD spectroscopy
7. week: Capillary electrophoresis
8. week: Mass spectrometry, LC-MS
9. week: NMR spectroscopy I.
10. week: NMR spectroscopy II.
11. week: NMR spectroscopy III.
12. week: Solid-phase analysis
13. week: Gas chromatography
14. week: Consultation

Topics of practical classes (pro week):
1. week: UV-VIS spectrophotometry (qualification, identification, validation)
2. week: Potentiometry, UV-VIS spectrophotometry (assay)
3. week: Amperometry-nitritometry, Thin-layer chromatography+UV spectrophotometry (identification of multi-component drug mixtures)
4. week: UV spectrophotometry (multicomponent systems) Determination of specific rotation
5. week: Difference spectroscopy, Determination of water content by the Karl Fischer method
6. week: HPLC I. (principles, parameters), IR spectroscopy
7. week: ORD, CD spectroscopy (seminar)
8. week: HPLC II. (identification, assay), IR spectroscopy
9. week: Capillary electrophoresis (seminar)
10. week: HPLC III. (purity tests)
11. week: Mass spectrometry (seminar)
12. week: pKa determination
13. week: NMR spectroscopy (seminar)
14. week: Substitutional practice

COURSE REQUIREMENTS

Prerequisites:
Pharmaceutical Chemistry II. GYKGYK076E2A
Pharmaceutical Technology II. GYKGYI126E2A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Based on the Study and Exam Regulation

Requirements of signature:
Attendance on the practices. (Extent of the absence is based on the Study and Exam Regulation)
Attendance on the lectures. (Extent of the absence is based on the Study and Exam Regulation)
The average of the scheduled project reports is at least 2.
The required minimum amount of points during practices is accumulated.

Type of the semester-end examination:
three: final
practice: practical grade
Form of the semester-end examination: written

Necessary equipment:
practice:
- IR/NIR/RAMAN spectrometers
- NMR spectrometer
- HPLC equipments
- UV-Vis spectrophotometers
- CD spectropolarimeter
- CE equipment
Pharmaceutical Technology (theory) III., Pharmaceutical Technology (practice) III.

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Gyógyszertechnológia (elmélet) III., Gyógyszertechnológia (gyakorlat) III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>Full name of the subject:</td>
</tr>
<tr>
<td>English name of the subject:</td>
<td>Pharmaceutical Technology (theory) III., Pharmaceutical Technology (practice) III.</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td>Pharmazeutische Technologie (Vorlesung) III., Pharmazeutische Technologie (Praktikum) III</td>
</tr>
<tr>
<td>Neptun code of the subject:</td>
<td>GYKGYI126E3A, GYKGYI126G3A</td>
</tr>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Responsible department:</td>
<td>Semmelweis University, Department of Pharmaceutics</td>
</tr>
</tbody>
</table>

For further information please contact the Department of Pharmacodynamics.

Industrial pharmaceutical Technology (theory) I.

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Ipari gyógyszer-technológia (elmélet) I. (Gyógyszerforma és készítményfejlesztés)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>Industrial pharmaceutical Technology (theory) I.</td>
</tr>
<tr>
<td>English name of the subject:</td>
<td>Industrielle pharmazeutische Technologie (Vorlesung) I. (Arzneiform und Präparatentwicklung)</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td></td>
</tr>
<tr>
<td>Neptun code of the subject:</td>
<td>GYVGYI185E1A</td>
</tr>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Responsible department:</td>
<td>Semmelweis University, Department of Pharmaceutics</td>
</tr>
</tbody>
</table>

For further information please contact the Department of Pharmaceutics.

Biological Drugs (theory)

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Biológiai gyógyszerek (elmélet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>Biological Drugs (theory)</td>
</tr>
<tr>
<td>English name of the subject:</td>
<td>Biopharmazeutika (Vorlesung)</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td></td>
</tr>
<tr>
<td>Neptun code of the subject:</td>
<td>GYKGYI088E1A</td>
</tr>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Responsible department:</td>
<td>Semmelweis University, Department of Pharmaceutics</td>
</tr>
</tbody>
</table>

For further information please contact the Department of Pharmaceutics.
Pharmacology and Toxicology (theory) II., Pharmacology and Toxicology (practice) II.

Full name of the subject: Gyógyszerhatástan- toxikológia (elmélet) I., Gyógyszerhatástan- toxikológia (gyakorlat) I.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.
English name of the subject: Pharmacology and Toxicology (theory) I., Pharmacology and Toxicology (practice) I.
German name of the subject: Pharmakologie und Toxikologie (Vorlesung) I., Pharmakologie und Toxikologie (Praktikum) I.
Neptun code of the subject: GYKGYH086E2A, GYKGYH086G2A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Responsible tutor: Dr. Tamás Tábi Associate Professor, PhD
Phone: +36 1 210-44-11
E-mail: tabi.tamas@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Full Professor, DSc
Dr. György Bagdy Full Professor, DSc
Dr. László Tóthfalusi Associate Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. Rudolf Laufer Assistant lecturer

For further information please contact the Department of Pharmacodynamics.
Introduction to Pharmacoeconomics (practice)

Full name of the subject: Bevezetés a farmaökonomiába (gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Introduction to Pharmacoeconomics (practice)
German name of the subject: Einführung in die Pharmakoökonomie (Praktikum)
Neptun code of the subject: GYKETE089G1A
Type of registration: obligatory
Responsible department: Semmelweis University, Center for Health Technology Assessment

Responsible tutor: Assoc. Prof. András Inotai PhD, DrHabil
Phone: +3670 430 4645
E-Mail: inotai.andras@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Prof. Zoltán Kaló PhD, DrHabil
Assoc. Prof. Balázs Nagy PhD, DrHabil
Zsuzsanna Petykó PhD candidate

Classes per week: 1 practice
Credit point: 1

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>Autumn semester*</td>
<td>-</td>
</tr>
</tbody>
</table>

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Practice-oriented teaching of basic health- and pharmacoeconomic knowledge for pharmacy students to enable them interpreting and determining the cost-effectiveness of pharmaceuticals, and understanding the principles of pharmaceutical pricing and reimbursement.
Program of semester

Topics of practical classes (pro week):

<table>
<thead>
<tr>
<th>Class</th>
<th>Topic</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 90 min</td>
<td>Health care market and market failures</td>
<td>Zoltán Kaló</td>
</tr>
<tr>
<td></td>
<td>Elements of health care system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financing health care</td>
<td></td>
</tr>
<tr>
<td>Week 3 90 min</td>
<td>Pharmacoeconomics, Health Technology Assessment, Classification of economic evaluations</td>
<td>Zoltán Kaló</td>
</tr>
<tr>
<td>Week 5 90 min</td>
<td>Steps of health economic evaluation I - Evidence synthesis, health outcome measurement (quality of life, utility, quality adjusted life years)</td>
<td>Zsuzsanna Petykó, András Inotai</td>
</tr>
<tr>
<td>Week 7 90 min</td>
<td>Steps of health economic evaluation II – Measuring costs, decision rule (threshold, multicriteria decision analysis)</td>
<td>Balázs Nagy</td>
</tr>
<tr>
<td>Week 9 90 min</td>
<td>Health economic modelling (classification, applicability)</td>
<td>Balázs Nagy</td>
</tr>
<tr>
<td>Week 11 90 min</td>
<td>Pricing of original and generic medicines</td>
<td>András Inotai</td>
</tr>
<tr>
<td>Week 13 90 min</td>
<td>Pharmaceutical reimbursement system, cost control techniques</td>
<td>András Inotai</td>
</tr>
<tr>
<td>Evaluation Week 14</td>
<td>Test type exam</td>
<td></td>
</tr>
</tbody>
</table>

Schedule of consultations: 90 mins bi-weekly (contact hours)

COURSE REQUIREMENTS

Prerequisites:
Pharmacology and Toxicology (theory) I. GYKGYH086E1A
Mathematics for Pharmacists (theory) GYKEGY112E1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
There is an electronic attendance sheet, to be filled by students in each class. 1 unjustified absence is permitted. Way of justification: via e-mail. Opportunity for makeup: by reviewing materials uploaded to Moodle (video recording available for each class, to be shared with students during the entire semester)

Type of the semester-end examination:
practical grade

Scientific, course related researches, publications, assays:
slide deck, compulsory and recommended reading materials, all materials are available on Moodle. Video recording available for each class, to be shared with students during the entire semester

Necessary equipment:
No, personal laptop (with Excel) is recommended for interactive health economic modeling
Physical Education VII.

Full name of the subject: Testnevelés VII.
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Physical Education VII.
German name of the subject: Sport VII
Neptun code of the subject: GYKTSI116G7A
Type of registration: obligatory
Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director
E-Mail: varszegi.kornelia@semmelweis-univ.hu, sportkozpont@semmelweis-univ.hu
Phone: +36-1/264-1408

Name of the persons responsible for the teaching of the subject:
Imre, Kovács tennis trainer
Orsolya, Balogh aerobics trainer
Kálmus, Dániel circuit training trainer
Katona, László hiking, badminton, boulder trainer
Lehel, Zsolt tennis, golf, icehockey trainer
Nagy-Kismarci, Bence cheerleading trainer
Rimay, István football trainer
Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point: 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behaviour.

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td>Autumn semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of practical classes (pro week):
Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:
60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi útca 14.

1×60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, advanced Yoga, male football, salsa, step aerobics, badminton, beginner ultimate frisbee, advanced ultimate frisbee, zumba
1×90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2, 4×3 hrs. and 1×2 hrs. session packages: Hiking 1, Hiking 2.
2×90 mins./week sport training (competitive sport, for qualified only): cheerdance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:
at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

COURSE REQUIREMENTS

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
The number of active participations for physical education classes is 10, regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days, after registration in the Neptun system. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.
Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:
Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate to the TSK or
2. does sports regularly and submits a certificate of association and federation to the Foreign Students Secretariat until the last study day in the 4th week of the semester. On the basis of the submitted application and its annexes, the TVB decides on the exemption of both the Hungarian and foreign students.

Type of the semester-end examination: signature
8. SEMESTER 2022/2023/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial pharmaceutical Technology (theory) II. (\text{GYVGYI1185E2A})</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Pharm. and Tox. I. (\text{GYKGYH086G3A}) Pharm. Techn. III. (\text{GYKGYH086E3A}) Basic Med. Pathop. I.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (practice) II. (\text{GYKGYH126G4A})</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>Pharmacological Technology III.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacology and Toxicology (theory) II. (\text{GYKGYH126E4A})</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>Pharmacological Technology III.</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Technology (practice) IV. (\text{GYKGYI1126G4A})</td>
<td>-</td>
<td>9</td>
<td>6</td>
<td>Practical mark</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Technology (theory) IV. (\text{GYKGYI1126E4A})</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>Practical mark</td>
<td></td>
</tr>
<tr>
<td>Pharmacy Administration (practice) I. (\text{GYKEGY254G1A})</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Basics of Pharmacoeconomics Hist. of Scienc.and Prop. (\text{GYKFMG092E1A}) Pharmacognosy II.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Phytotherapy (theory) (\text{GYKFMG092E1A})</td>
<td>1</td>
<td>-</td>
<td>1**</td>
<td>Pharmacognosy II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical management (theory) (\text{GYKEGY255E1A})</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>Introduction to Pharmacoeconomics</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical management (practice) (\text{GYKEGY255G1A})</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Introduction to Pharmacoeconomics</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (practice) (\text{GYKNEI091G1A})</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>Basic Medical Pathophysiology I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Public Health (theory) (\text{GYKNEI091E1A})</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>Basic Medical Pathophysiology I.</td>
<td>examination</td>
</tr>
<tr>
<td>Physical Education VIII. (\text{GYKTSI116G8A})</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>signature</td>
</tr>
<tr>
<td>Diploma Work I. (\text{GYSZDSZDG1A})</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>Passing all semi-finals and finals of the 7th semester</td>
<td>signature</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>examination or practical mark</td>
</tr>
</tbody>
</table>

Total: 15 22 27 +1**
Pharmacology and Toxicology (theory) III., Pharmacology and Toxicology (practice) III.

Full name of the subject: Gyógyszerhatástan- toxikológia (elmélet) III., Gyógyszerhatástan- toxikológia (gyakorlat) III.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmacology and Toxicology (theory) III., Pharmacology and Toxicology (practice) III.
English name of the subject: Pharmacology and Toxicology (theory) III., Pharmacology and Toxicology (practice) III.
German name of the subject: Pharmakologie und Toxikologie (Vorlesung) III., Pharmakologie und Toxikologie (Praktikum) III.
Neptun code of the subject: GYKGYH086E3A, GYKGYH086G3A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics
Responsible tutor: Dr. Tamás Tábi Associate Professor, PhD
Phone: +36 1 210-44-11
E-mail: tabi.tamas@pharma.semmelweis-univ.hu

For further information contact the Department of Pharmacodynamics.
Pharmacy Administration (theory+practice) I.

Full name of the subject: Gyógyszerügyi ismeretek (elmélet+gyakorlat) I.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: English name of the subject: Pharmacy Administration (theory+practice) I.

German name of the subject: Pharmazeutische Administration (Vorlesung+Praktikum) I.

Neptun code of the subject: GYKEGY254G1A

Type of registration: obligatory

Responsible Department: Semmelweis University, University Pharmacy Department of Pharmacy Administration

Responsible tutor: Dr. Romána Zelkó professor, Ph.D., D.Sc.

Phone: 2170-927

E-mail: zelko.romana@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:

Dr. Ágnes Mészáros associate professor, Ph.D., Dr. Habil

Classes per week: 2 lectures, 2 practices

Credit point: 4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course seeks to introduce students with main fields of pharmacy, the responsibilities of the pharmacist: To teach about competencies and professional skills required in relation to drug dispensing, hospital-clinical pharmacy, and industrial pharmacy, as well as on economics and management, quality management.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>28</td>
<td>28</td>
<td>–</td>
<td>–</td>
<td>56</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
- Introduction to Pharmacy Administration
- Pharmaceutical research
- Pharmaceutical Industry
- Good Laboratory Practice (GLP)
- Quality Management and GMP I
- GMP II.
- European Marketing Authorization I.
- European Marketing Authorization II.
- Marketing of pharmaceuticals
- Good Distribution Practice (GDP)
- Risk assessment in relation to magisterial preparation
- Pharmacovigilance in daily practice
- Good Pharmacy Practice
- Hospital Pharmacy Practice
- Hospital Drug Purchase and applied health economics

Topics of practical classes (pro week):
- Pharmacy education (Good Pharmacy Education Practice)
- Importance of health promotion and patient education
- Publication strategies
- EBM and systematic literature reviews
- The importance of Medline and UpToDate databases
- GCP and the role of the hospital pharmacist
- Drug Utilization Studies (Lecture)
- Personal carrier management, CV
- Professional life after graduation
- ADR Website
- Health literacy and “Healthy websites”
- Student’s Presentation on health promotion I
- Student’s Presentation on health promotion II.
- Consultation and written practical exam (multiple choice)

COURSE REQUIREMENTS

Prerequisites:
GYKGYH086E2A Pharmacology and toxicology II.
GYKEGY160G1A Introduction to Pharmacoconomics,

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
according to the University’s Study and Examination Regulations

Requirements of signature: attendance at 75% of the practices

Number and type of projects students have to perform independently during the semester and their deadlines:
one presentation on health promotion topic

Type of the semester-end examination:
practical grade

Form of the semester-end examination:
written
Phytotherapy

Full name of the subject: Fitoterápia
Program: undivided program (pharmaceutical)
Schedule: full-time
English name of the subject: Phytotherapy
German name of the subject: Phytotherapie

Neptun code of the subject: GYKFMG092E1A
Type of registration: obligatory elective
Responsible Department: Semmelweis University, Department of Pharmacognosy

Responsible tutor: Ágnes Alberti associate professor, Ph.D.
alberti.agnes@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Ágnes Alberti associate professor, Ph.D.
Eszter Riethmüller assistant professor, Ph.D.
Orsolya Csernák assistant professor, Ph.D.
Ida Fejős assistant professor, Ph.D.
Nóra Gampe assistant lecturer, Ph.D.
Csenge Anna Felegyi-Tóth, trainee

Classes per week: 2 lecture(s)
Credit point(s): 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The aim of the course is to acquaint pharmacy students with herbal drugs and medicines, dietary supplements and other preparations that can be used in rational phytotherapy: focusing on their composition, effects, methods of administration, indications for therapy, relevant pharmacological and clinical data, major side effects and interactions. It provides a basis for the selection of herbal medicines with traditional and well-established use in stand-alone or complementary therapy. It contributes to the assessment of herbs according to their real values, to the recognition of their importance in prevention and therapy.

Short description of the subject:
In the context of the subject, lecturers describe the relevant areas of indication in rational phytotherapy and the medicinal plants and plant-based preparations that can be used in them, including their active ingredients. The subject describes industrial / galenic preparations, tea blends and recipes containing medicinal plants. It presents the mechanisms of action revealed so far, the most significant synergistic effects, the possible side effects and interactions. It deals with the data of clinical studies, recommendations for use and dosing, and presents examples for herbal medicines and phytotherapeutic preparations from Hungary and other countries.

<p>| Course data |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|</p>
<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>28</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Spring semester</td>
<td>–</td>
</tr>
</tbody>
</table>

778
Program of semester

Topics of theoretical classes (pro week):

1. week: The place of phytotherapy in drug therapy. Characteristics and development of phytotherapeutic products.
2. week: Interactions of medicinal plants and their active substances. Phytotherapeutics and adverse drug interactions
3. week: Evidence of efficacy of phytotherapeutics, herbal monographs (EMA/HMPC, ESCOP, WHO, etc.).
4. week: Side effects of medicinal plants and their active ingredients, the role of the quality of phytotherapeutics in the occurrence of side effects.
5. week: Herbs and their preparations acting on the central nervous system.
6. week: Herbs and their preparations for upper respiratory diseases.
7. week: Herbal products acting on the digestive
8. week: Herbal products acting on the digestive tract
9. week: Herbs and metabolic syndrome.
10. week: Herbs and their preparations that act on the cardiovascular system
11. week: Phytotherapeutics for diseases of the urogenital system
12. week: Herbal anti-inflammatories and analgesics.
13. week: Herbs for skin and oral mucosa diseases.
14. week: Immunomodulatory and adaptogenic medicinal plants

Schedule of consultations: as demanded

COURSE REQUIREMENTS

Prerequisites: GYFMG130E2A - Pharmacognosy II.

Type of the semester-end examination: examination

Form of the semester-end examination: oral examination
Pharmaceutical Management (theory), Pharmaceutical Management (practice)

Full name of the subject: Gyógyszerészi gazdálkodás és menedzsment (elmélet), Gyógyszerészi gazdálkodás és menedzsment (gyak.)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmaceutical Management (theory), Pharmaceutical Management (prac.)
German name of the subject: Pharmazeutischen Management (Vorlesung), Pharmazeutischen Management (Praktikum)

Neptun code of the subject: GYKEGY255E1A, GYKEGY255G1A
Type of registration: obligatory
Responsible Department: Semmelweis University, University Pharmacy Department Of Pharmacy Administration

Responsible tutor: Dr. Ágnes Mészáros associate professor, Ph.D., Dr. Habil
Phone: 06-20663-2460
E-Mail: meszaros.agnes@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject: Dr. Romána Zelkő associate professor, Ph.D., Dr. Habil

Classes per week: 1 lecture, 1 practice
Credit point: 1+1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
To provide the students with essentials about how management issues of a Pharmacy (community and hospital).
The aim of the course is to make students acquainted with the basic, theoretical and practical tasks of public/ hospital pharmacies related to their management activities.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>Spring semester</td>
<td></td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1-2: Community Pharm. Management: Responsibilities, duties of the Pharmacist
3-4: Community Pharm. Management: The Medical Prescription
5-6: Community Pharm. Management: Elements of therapeutic decision making (Pharmacist Prescribing)
7-8: Community Pharm. Management: Logistics and stock control; inventory models in pharmacy practice, IT possibilities dispensing robots
9-10: Hospital Pharm. Management: Handling of Drug shortages
11-12: Hospital Pharm. Management: The Unit Dose Dispensing system
13-14: Hospital Pharm. Management: The Drug and therapeutic committee

Topics of practical classes (pro week):
1-2: Community Pharm. Management: Responsibilities, duties of the Pharmacist
3-4: Community Pharm. Management: The Medical Prescription
5-6: Community Pharm. Management: Elements of therapeutic decision making (Pharmacist Prescribing)
7-8: Community Pharm. Management: Logistics and stock control; inventory models in pharmacy practice, IT possibilities dispensing robots
9-10: Hospital Pharm. Management: Handling of Drug shortages
11-12: Hospital Pharm. Management: The Unit Dose Dispensing system
13-14: Hospital Pharm. Management: The Drug and therapeutic committee

COURSE REQUIREMENTS

Prerequisite: GYKEGY160G1A Introduction to Pharmacoeconomics

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
According to the University’s Study and Examination Regulations

Requirements of signature: attending 75% of the practices

Type of the semester-end examination: signature/practical grade/examination/final

Form of the semester-end examination: written
Public Health (theory + practice)

<table>
<thead>
<tr>
<th>Full name of the subject:</th>
<th>Népegészségtan (elmélet+gyakorlat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program:</td>
<td>undivided program (pharmaceutical)</td>
</tr>
<tr>
<td>Schedule:</td>
<td>full-time</td>
</tr>
<tr>
<td>Short name of the subject:</td>
<td>English name of the subject: Public Health (theory + practice)</td>
</tr>
<tr>
<td>German name of the subject:</td>
<td>Gesundheitslehre (Vorlesung + Praktikum)</td>
</tr>
<tr>
<td>Neptun code of the subject:</td>
<td>GYNEINEGE1A, GYNEINETG1A</td>
</tr>
<tr>
<td>Type of registration:</td>
<td>obligatory</td>
</tr>
<tr>
<td>Responsible department:</td>
<td>Department of Public Health of Semmelweis University</td>
</tr>
<tr>
<td>Responsible tutor:</td>
<td>Zoltán Ungvári director, PhD</td>
</tr>
<tr>
<td></td>
<td>Contact information:</td>
</tr>
<tr>
<td></td>
<td>1089 Budapest, Nagyvárad tér 4. 13. em.</td>
</tr>
<tr>
<td></td>
<td>phone: 210-2954</td>
</tr>
<tr>
<td></td>
<td>e-mail: ungvari.zoltan@med.semmelweis-univ.hu</td>
</tr>
</tbody>
</table>

Name of the persons responsible for the teaching of the subject:
- **Melinda Pénzes** senior lecturer, PhD
- **András Terebessy** senior lecturer, PhD
- **Péter Csépe** senior research fellow, PhD
- **Ferenc Horváth** assistant lecturer
- **Vince Pongor** assistant lecturer

Classes per week: 2 lectures, 2 practices

Credit point: 2+2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Acquire skills in qualitative assessment of different epidemiological studies, comprehensive and comprehensible reading of the scientific evidence-based literature. Acquire basic statistical skills. Design and conduct research, choosing the most appropriate epidemiological methods. Conducting individual health promotion based on key lifestyle factors and learning the basics of community health promotion. Apply practical knowledge of epidemiology and infection control.

Short description of the subject:
Public health deals with issues affecting human health at the population level. As an applied science, its basic aim is to preserve and improve health and prevent disease. To achieve these objectives, public health integrates several disciplines. Epidemiology introduces students to the prevention of communicable diseases, with a particular focus on infection control. Classical public health describes the role of environmental factors in the development of disease, the clinical aspects of which are nowadays dealt with in environmental medicine. The main aim of occupational medicine is to protect the health of employees by preventing occupational diseases. Our professional background is strengthened by the fact that our Institute merged with the Department of Occupational and Environmental Medicine of the University in 2010. In addition to disease prevention, the idea of health promotion was pioneered in the second half of the 20th century with the formulation of the “new public health”. Our aim is to enable future pharmacists to carry out individual health promotion and to be familiar with the concept of community health promotion. For all these activities, the acquisition and use of epidemiology as a methodology of public health is essential. Our aim is to familiarise students with the application of health promotion and prevention at the population and individual level, preparing them for practice.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>Contact hours (lecture)</td>
</tr>
<tr>
<td>Contact hours (practice)</td>
</tr>
<tr>
<td>Contact hours (seminar)</td>
</tr>
<tr>
<td>Individual lectures</td>
</tr>
<tr>
<td>Total number of contact hours/semester</td>
</tr>
<tr>
<td>Normal course offer</td>
</tr>
<tr>
<td>Consultations</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
Week 1: History of Hungarian medicine/public health. Definition of health, levels of prevention. Theoretical foundations of health promotion. The concept and functioning of public health
Week 3: Epidemiology and prevention of smoking and smoking-related diseases
Week 4: Epidemiology and prevention of cardiovascular diseases. Epidemiology and prevention of cancer
Week 5: Epidemiology and prevention of respiratory diseases. Thyroid diseases. Vulnerable groups
Week 6: Mental health. Ageing
Week 7: Obesitas/Diabetes. Physical activity
Week 8: Epidemiology of communicable diseases. Vaccinations
Week 9: Infection control. Nosocomial infections
Week 10: Nutritional status and dietary habits of the Hungarian population. Food safety
Week 11: Environmental health: climate change, environmental health effects of air. Environmental health: soil, water
Week 12: Chemical safety and toxicology. Ionising radiation, types, effects, limits
Week 13: Occupational health. Maternal, infant, child and adolescent health, health inspector network and school health
Week 14: Structure, financing and administration of health and public health in Hungary. Health policy. Quality assurance and quality improvement in health care

Topics of practical classes (pro week):
Week 1: Introduction. Demography
Week 2: Epidemiology. Morbidity measurement (incidence, prevalence). Risk and causality (risk indicators). Epidemiological study types (descriptive studies, analytical studies: cross-sectional, cohort, case-control)
Week 3: Screening tests (population) for public health purposes. Evaluation of screening tests (sensitivity, specificity, predictive values, ROC curve)
Week 4: Interventions studies (RCTs). Meta-analyses. Critical reading
Week 5: Design, organisation and evaluation of health promotion programmes.
Week 6: Smoking and minimal intervention
Week 7: Alcohol SBI (screening and brief intervention)
Week 8: Physical activity/movement recommendations.
Week 9: Mental health, mental hygiene. Prevention of illicit drug use
Week 10: Preparing an individual health plan
Week 11: Epidemiological concepts. Epidemiology system. Epidemiological investigation
Week 12: Practical knowledge of vaccination
Week 13: Case studies in environmental and occupational health
Week 14: Practical exam

Schedule of consultations: if necessary, in agreement with the teacher

COURSE REQUIREMENTS

Prerequisites: GYGYHKKAE1A Basic Medical Pathophysiology (theory) I.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
In order to obtain a signature, the student must meet at least 75% of the attendance in the practical sessions and seminars. This means 11 completed practicals for 14 practicals (the 3 ‘allowed’ absences do not need to be certified). Make-ups can be made on another practice in the same week.

Number, topics and dates of tests during the semester, opportunities of makeup and improvement of results:
Week 14, a practical exam on the practical material. Failed practical examinations can be made up until the end of the first week of the examination period, in agreement with the trainer, up to a maximum of 2 times.

Requirements of signature: The condition for obtaining a signature is that the student meets the attendance and participation requirement of at least 75% in practical sessions and seminars.

Type of the semester-end examination:
Practice: practical grade
Lecture: examination

Form of the semester-end examination: oral practical exam and written test exam

Scientific, course related researches, publications, assays:
Public health e-learning material (https://itc.semmelweis.hu/moodle/)
Physical Education VIII.

Full name of the subject: Testnevelés VIII.

Program: undivided program (pharmaceutical)

Schedule: full-time

Short name of the subject: PE VIII.

English name of the subject: Physical Education VIII.

German name of the subject: Körpererziehung VIII

Neptun code of the subject: GYKTSI116G8A

Type of registration: obligatory

Responsible department: Semmelweis University, Physical Education and Sports Center

Responsible tutor: Várszegi, Kornélia director

Contact information:
- Phone: +36-1/264-1408
- E-Mail: varszegi.kornelia@semmelweis-univ.hu
- sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
- Imre, Kovács tennis trainer
- Orsolya, Balogh aerobics trainer
- Kalmus, Dániel circuit training trainer
- Katona, László hiking, badminton, boulder trainer
- Lehel, Zsolt tennis, golf, icehockey trainer
- Nagy-Kismarci, Bence cheerleading trainer
- Rimay, István football trainer
- Weisz, Miklós basketball trainer

Classes per week: 1 practice

Credit point: 0

Professional content, intent of acquirement and its function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the “beginner swimming” course, one will acquire water-confident swimming skills.

Short description of the subject:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice – so that they can represent those in their later practice, through their own health-promoting behavior.

<table>
<thead>
<tr>
<th>Course data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended term</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
Topics of practical classes (pro week):

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge and self-financed student as well. The former is available during classes and courses organized by the Semmelweis University’s Centre for Physical Education and Sports (TSK), and the latter is available at SE-TSK accredited partner locations.

Free of charge:

60 minute classes held at the same time on a weekly basis, on the premises of the TSK facilities and other locations.
1107 Bp, Zágrábi utca 14.

1×60 min./week sessions:
Aerobics, BlessYou Gym, boulder, functional circuit training, golf, beginner Yoga, male football, salsa, step aerobics, badminton, beginner ultimate Frisbee, advanced ultimate Frisbee, Zumba

1×90 mins./week sessions: women’s football, ice hockey, beginner tennis, beginner tennis 2,

4×3 hrs. and 1×2 hrs. session packages: Hiking 1, Hiking 2.

2×90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball, volleyball

Fee-based:

at the sports venues specified on www.semmelweis.hu/sportkozpont, which will also be advertised on the Neptun system. The list of these locations may vary per school year.

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:

The number of active participations for physical education classes is 10 (once a week), regardless of the number of school breaks, which is to be completed during the hours assigned to the group. Two hours can be recovered in the first week of the exam period, on two separate days. Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

Another way to complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes!

Requirements of signature:

Active participation in practice classes 10 times under the conditions described above.

May be exempted from attending classes the student who
1. whose diagnosis and the opinion of the sports doctor do not allow to exercise, and submits a certificate
 or
2. does sports regularly and submits a certificate of association and federation

Type of the semester-end examination: signature
FACULTY OF PHARMACEUTICAL SCIENCES

Curriculum of the credit-based training for fifth year students in the 2022/2023 academic year
9. SEMESTER 2022/2023/1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/week)</th>
<th>Practice (hour/week)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice I.</td>
<td>GYSZGSZVG1A</td>
<td>– 40</td>
<td>8**</td>
<td>Passing all finals of the 8th semester</td>
<td>practical mark</td>
</tr>
<tr>
<td>Drug Therapy (theory+practice)</td>
<td>GYGYSZTPE1A</td>
<td>2 2</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV. Basic Medical Pathophysiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Care (theory+practice)</td>
<td>GYEGYGGDE1A</td>
<td>2 3</td>
<td>4</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV. Basic Medical Pathophysiology II.</td>
<td>examination</td>
</tr>
<tr>
<td>Clinical Pharmacokinetics and Biopharmacy (theory+practice)</td>
<td>GYGYIKFBE1A</td>
<td>2 3</td>
<td>4</td>
<td>B. Med. Pathoph. II., Pharmac. and Tox.II., Pharm. Techn. IV., Public Health</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Communication and Integrated Consulting (theory+practice)</td>
<td>GYMAGGKKTG1A</td>
<td>1 2</td>
<td>1</td>
<td>Pharm. and Tox. II, Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Pharmacy Administration (theory) II.</td>
<td>GYEGYGISE2A</td>
<td>2 -</td>
<td>2</td>
<td>Pharm. Administr. I, Pharm. Techn. IV. Public Health</td>
<td>final*</td>
</tr>
<tr>
<td>Pharmaceutical Informatics (theory+practice)</td>
<td>GYDEIGIFG1A</td>
<td>1 1</td>
<td>1</td>
<td>Pharmacy Administration I.</td>
<td>practical mark</td>
</tr>
<tr>
<td>Clinical Pharmaceutics (theory+practice)</td>
<td>GYEGYKLGE1A</td>
<td>1 1</td>
<td>1</td>
<td>Pharm. and Tox. II, Pharm. Techn. IV.</td>
<td>examination</td>
</tr>
<tr>
<td>Pharmaceutical Ethics and Sociology (theory+practice)</td>
<td>GYMGGESE1A</td>
<td>1 1</td>
<td>1</td>
<td>Pharm. and Tox. II, Hist. of Scienc. and Prop.</td>
<td>examination</td>
</tr>
<tr>
<td>Diploma Work II.</td>
<td>GYSZDKG2A</td>
<td>– 5</td>
<td>–</td>
<td>Diploma Work I.</td>
<td>signature</td>
</tr>
<tr>
<td>Physical Education IX</td>
<td>GYTSITSG9A</td>
<td>– 1</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture (hour/sem.)</th>
<th>Practice (hour/sem.)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical industrial and regulatory affairs knowledge (teaching block)</td>
<td>28 28</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Licensing (theory+practice)</td>
<td>GYGYYGNG1A</td>
<td>12 12</td>
<td>–</td>
<td>Pharmacy Administr. I, Pharm. Techn. IV.</td>
<td>signature</td>
</tr>
<tr>
<td>Pharmacovigilance and pharmacoepidemiology (theory+practice)</td>
<td>GYGYYGGPG1A</td>
<td>4 4</td>
<td>–</td>
<td>Pharmac. and Tox. II.</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance (theory+practice)</td>
<td>GYGYYGMBG1A</td>
<td>4 4</td>
<td>–</td>
<td>Pharmac. Techn. IV, Pharmacy Administr. I.</td>
<td></td>
</tr>
<tr>
<td>Drug innovation and clinical studies (theory+practice)</td>
<td>GYGYGKGGVG1A</td>
<td>8 8/</td>
<td>–</td>
<td>Pharmac. Techn. IV, Pharmacology and Toxicology II.</td>
<td>examination or practical mark</td>
</tr>
<tr>
<td>Elective or obligatory elective subjects</td>
<td>– –</td>
<td>– –</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drug Therapy (theory+practice)

Full name of the subject: Gyógyszeres terápia (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Drug Therapy (theory+practice)
German name of the subject: –

Neptun code of the subject: GGYHGTP1A
Type of registration: obligatory
Responsible department: Semmelweis University, Department of Pharmacodynamics

Responsible tutor: Dr. Éva Szökő Full Professor, DSc

Name of the persons responsible for the teaching of the subject:
Dr. Éva Szökő Professor, DSc
Dr. Tamás Tábi Associate Professor, PhD
Dr. László Tóthfalusi Associate Professor, DSc
Gabriella Juhász Associate Professor, DSc

Invited physicians: Andras Telekes, PhD
Bernadette Rojkovich, PhD
Irén Szalay, PhD
Miklós Sipos, PhD

Classes per week: 2 lectures, 2 practices
Credit point: 4

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course aims at teaching the principles of evidence-based drug use and the treatment of common disorders according to the recent guidelines. Discussion of the frequent and severe adverse effects and clinically important drug interactions are important.

Short description of the subject:
Selected topics of the subject comprise drug therapy of chronic diseases, pain managements and diseases where self-medication for symptom relief are common.

| Course data |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Recommended term | Contact hours (lecture) | Contact hours (practice) | Contact hours (seminar) | Individual lectures | Total number of contact hours/semester | Normal course offer | Consultations |
| 9 | 20 | 20 | – | – | 40 | Autumn semester | – |
Program of semester

Topics of theoretical classes (pro week):
1. week: Strategies of drug therapy. Evidence-based medicine
2. week: Drug therapy of chronic cardiac failure and hypertension
3. week: Therapy of acute and chronic joint disorders
4. week: Pharmacotherapy of neuropathic pain and some neurological diseases
5. week: Pain management in cancer
6. week: Therapy of dermatologic inflammations
7. week: Therapy of gastroenterological diseases
8. week: Therapy of eye disorders
9. week: Therapy of urological disorders
10. week: Contraception. Treatment of common gynecological disorders

Topics of practical classes (pro week):
1. week: Therapy of venous disorders
2. week: Therapy of ischemic heart disease, myocardial infarction
3. week: Therapy of diabetes mellitus
4. week: Drug therapy of Parkinson's disease and schizophrenia
5. week: Pharmacotherapy of anxiety and sleep disorders
6. week: Pharmacotherapy of asthma and COPD
7. week: Therapy of allergic rhinitis
8. week: Drug therapy of osteoporosis. Pain management
9. week: Therapy of disorders of the gastrointestinal tract
10. week: Therapy of skin disorders: acne, fungal infections

COURSE REQUIREMENTS

Prerequisites:
Basic Medical Pathophysiology (theory) II. GYGYHKKAE2A
Pharmacology and Toxicology II. GYGYHHATE2A
Pharmaceutical Technology IV. GYKGYI126E4A, GYKGYI126G4A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
practice: maximum 2 absences are allowed.

Requirements of signature: attending at least 75% of the practice classes.

Type of the semester-end examination:
lecture: examination practice: signature
Pharmaceutical Communication and Integrated Consulting (theory+practice)

Complete name of the course: Gyógyszerészi kommunikáció és integrált tanácsadás
Name of the Programme: Pharmacy Basic Education
Abbreviated name of the course: Pharmaceutical Communication
English name of the course: Pharmaceutical Communication and Integrated Consulting (theory+practice)

Neptun-Code: GYMAGGKTG1A
Type of registration: obligatory
Institute: Institute of Behavioural Sciences

Name of the tutor/lecturer: Dr. Pilling János PhD, Associate professor
Phone: +36 (1) 2102930/56457
E-Mail: pilling.janos@med.semmelweis-univ.hu

Further tutors: Dr. Tóth Mónika Ditta PhD, assistant professor
Kinga Babonits-Farkas Psychologist, assigned lecturer
Zsuzsanna Papp Psychologist, assigned lecturer

Number of classes /week: 1 (lecture)+ 2 (practice)
Credit points: 2

Course principles:
Proper communication has an essential role in pharmaceutical practice. The main objectives of the course are the following:
- to teach basic skills to improve pharmacists’ communicational techniques of information gathering, active listening and patient education
- improving skills, which can help to handle difficult communicational situations, such as coping with angry, aggressive patients, intimate questions etc.
- to teach and practice communication techniques that can improve the success of pharmaceutical work, i.e. team, marketing and assertive communication

Brief course summary:
The education will be interactive and practical. In the first part of the semester students will get familiar with the basic concepts of pharmaceutical communication with a special focus on information delivery, patient education, active listening, and empathy. Risk communication and shared decision making will be also covered, such as improving compliance and promoting lifestyle changes. The second part of the semester will cover the possible coping strategies with communicational challenges in pharmaceutical practice such as handling tense, hostile patients, communication about intimate topics (menstruation, sexuality, stigmatizing disorders etc.), communication with patients from different age-groups. Students will learn communicational techniques to handle patients with mental health disorders such as anxiety, depression, suicidal ideation, alcohol/drug addiction, and psychosis. At the end of the semester marketing communication skills and team communication techniques will be the main focus of the seminars.

Course data

<table>
<thead>
<tr>
<th>Recommended semester of completing the course</th>
<th>Lecture (contact hrs/week)</th>
<th>Practice (contact hrs/week)</th>
<th>Seminar (contact hrs/week)</th>
<th>Individual lecture</th>
<th>Total number of contact hours/semester</th>
<th>Semester</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>30</td>
<td>autumn</td>
<td>–</td>
</tr>
</tbody>
</table>
Semester program

I. Lecture topics/week
1. week: Role of communication in pharmaceutical practice. Active listening and empathy.
2. week: Communication difficulties and possible solutions of patient education. Possibilities of improving health literacy.
4. week: Improving patient’s adherence and promoting lifestyle changes in the pharmacy.
5. week: The specialties of age and gender in pharmaceutical communication. Communication about intimate questions.
6. week: Team communication. Assertive communication
7. week: Communication with tense, hostile patients, strategies to prevent violence. Handling complaints and patient’s claims.
8. week: Communication with patients with mental health disorders I: anxiety, depression, crisis
9. week: Communication with patients with mental health disorder II: addiction, psychosis
10. week: Marketing communication in pharmaceutical practice.

II. Practice topics/week
1. week: Role of communication in pharmaceutical practice. Active listening and empathy. Verbal and non-verbal communication.
2. week: Communication difficulties and possible solutions of patient education. Possibilities of improving health literacy
4. week: Improving patient’s adherence and promoting lifestyle changes in the pharmacy.
5. week: The specialties of age and gender in pharmaceutical communication. Communication about intimate questions.
6. week: Team communication. Assertive communication
7. week: Communication with tense, hostile patients, strategies to prevent violence. Handling complaints and patient’s claims.
8. week: Communication with patients with mental health disorders I: anxiety, depression, crisis
9. week: Communication with patients with mental health disorder II: addiction, psychosis
10. week: Written exam

COURSE REQUIREMENTS

Seminars will ensure the possibility of ongoing consultation with the seminar leader.

Prerequisites:
Pharmacology and Toxicology II. GYGYHHATE2A GYGYH-HATG2A
Pharmacy Administration I. GYEGYGIMG1A

Semester acceptance conditions (successful course attendance, mid-term tests, absence, etc.):
The participation at minimum 75% of the practice seminars is the prerequisite of the signature. Makeup is possible in other seminar group the same week.

Knowledge testing during the semester:
Written examination at the end of the semester, on the last practice.

Requirements of the signature at the end of the semester:
The participation at minimum 75% of the practice seminars is the prerequisite of the signature.
Performance control in the examination period: final, examination
Performance control in the examination period (written, oral, written and oral)

Written examination.
Below 50%: 1
50%-65%: 2
66%-75%: 3
76%-85%: 4
85%-100%: 5

List of teaching materials (List of textbooks, hand-outs, scripts, etc.):
Pharmacy Administration (theory) II.

Full name of the subject: Gyógyszerügyi ismeretek (elmélet) II.
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmacy Administration (theory) II.
German name of the subject: –

Neptun code of the subject: GYEGYGISE2A
Type of registration: obligatory
Responsible Department: Semmelweis University, University Pharmacy Department Of Pharmacy Administration

Responsible tutor: Dr. Romána Zelkó professor, Ph.D., D.Sc
Contact:
– telephone: 2170-927
– e-mail: zelko.romana@pharma.semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Dr. Mészáros Ágnes associate professor, Ph.D., Dr. Habil

Classes per week: 2 lectures
Credit point: 2

Professional content, intent of acquirement and its function in order to implement the goals of the program:
The course seeks to introduce students with main fields of pharmacy, the responsibilities of the pharmacist: To teach about competencies and professional skills required in relation to drug dispensing, hospital-clinical pharmacy, and industrial pharmacy, as well as on economics and management, quality management.

Program of semester

Topics of theoretical classes (pro week):
1. The European Pharmacopoea
2. Quality management within the lifecycle of drugs
3. Good Documentation systems
4. Questionnaire Design
5. Fight against counterfeit Medicine
6. Financial pressures; Managing health care
7. Human resource management, leadership
8. Information need, managing quality in health care
9. Change management
10. Elements of decision making, pharmacist prescribing

COURSE REQUIREMENTS
Prerequisites:
GYEGYGIMG1A Pharmacy Administration I.,
GYGYIGYTG4A Pharmaceutical Technology IV.
GYNEINETG1A Public Health

Requirements of signature: successful exam
Type of the semester-end examination: final

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
according to the University’s Study and Examination Regulations
Pharmaceutical informatics (theory+practice)

Full name of the subject: Gyógyszerészi informatika (elmélet+gyakorlat)
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: Pharmaceutical Informatics
English name of the subject: Pharmaceutical informatics (theory+practice)
German name of the subject: Pharmazeutische Informatik (Vorlesung+Praktikum)
Neptun code of the subject: GYDEIGIG1A
Type of registration: obligatory
Responsible department: Institute of Digital Health Sciences of the Faculty of Health and Public Services of Semmelweis University
Responsible tutor: Dr. Szócska Miklós PhD, professor

Name of the persons responsible for the teaching of the subject:
Dr. Zajzon Gergely assistant lecturer
Dr. Tamus Zoltán Ádám PhD, associate professor
Tóth Tamás assistant lecturer
Iváncsy Tamás guest lecturer, PhD

Classes per week: 1 lecture, 1 practice
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
To acquaint students with the IT systems and applications used in pharmacy. The subject reviews the life cycle of medicines and related legislation, and then presents in detail the IT tools that can be used during each step, from drug development and official licensing to drug distribution.

Short description of the subject:
Successful completion of the subject will result in the acquisition of the following competencies: Knowledge of the processes of drug development, authorization and distribution. Getting to know the IT methods, tools, code systems and databases used in these.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Lifecycle of pharmaceutical products, Introduction to the relevant legal hierarchy
2. week: Methods of computer molecular design
3. week: Drug development process, approval of clinical trials
4. week: Introduction to Drug authorization (Regulatory Affairs): CTD (Common Technical Document), eCTD standards
5. week: Pharmacovigilance, related IT systems, databases (Eudra-Vigilance, E2B, PSUR)
6. week: Drug Reimbursement system and relevant databases
7. week: Pharmacy IT systems, Serialisation
8. week: Mobile devices, portable devices, sensors, smart devices in healthcare
9. week: IT tools for evidence-based medicine and personalized medicine
10. week: Prescription software, electronic prescription

Topics of practical classes (pro week):
1. week: Clinical trial related IT systems – EudraCT, clinicaltrials.gov, clinicaltrialsregister.eu
2. week: National and international pharmaceutical databases (OGYÉI database, basics of pharmaceutical electronic register system, EudraPharm, EudraGMP, EudraNET)
3. week: CTD, eCTD
4. week: IT background of pharmaceutical reimbursement: Pupha, OWL, fix reimbursement
5. week: Pharmaceutical code systems and standards (ATC, DDD)
6. week: Pharmaceutical code systems and standards (Active ingredients register, INN, BNO, MedDRA)
7. week: QRD, Readability, structure of product information files (SmPC, PIL)
8. week: Pharmaceutical promotion and marketing
9. week: IT systems for pharmaceutical sales information – OSAP1913 – P@NKA, IMS
10. week: ORKA prescription software

Schedule of consultations: by agreement

COURSE REQUIREMENTS

Prerequisites: Pharmacy Administration I. GYEGYGIMG1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Attendance of at least 75% of the classes. Max. 3 absences are allowed

Requirements of signature:
Attendance of at least 75% of the classes

Type of the semester-end examination:
practical grade

Form of the semester-end examination:
written (computer test)

Scientific, course related researches, publications, assays:
The educational materials are available at http://dei-cloud.semmelweis.hu. Username and password are announced at the first class. Clinical Clinical Pharmacokinetics and Biopharmacy (theory+practice)
Clinical Pharmacokinetics and Biopharmacy (theory+practice)
For details on this subject please contact the department or visit their website.
Pharmaceutical Ethics and Sociology (theory+practice)

Full name of the subject: Gyógyszerészi etika-szociológia
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Pharmaceutical Ethics and Sociology (theory+practice)
German name of the subject: Pharmazeutische Ethik und Soziologie (Vorlesung+Praktikum)
Neptun code of the subject: GYMAGGESE1A
Type of registration: obligatory
Responsible department: Institute of Behavioural Sciences of Semmelweis University

Responsible tutor:
Dr. József Kovács
Contact information: 210-2953
kovacs.jozsef@med.semmelweis-univ.hu
Title, academic degree: MD, PhD, (Head of the Department of Bioethics)

Name of the persons responsible for the teaching of the subject:
Dr. József Kovács MD, PhD, (Head of the Department of Bioethics)
Dr. Zsuzsa Győrffy PhD, associate professor
Dr. Edmond Girasek PhD Assistant Professor
Bence Döbrössy MSc assistant lecturer

Classes per week: 1 lecture, 1 practice
Credit point: 1

Professional content, intent of acquirement and its function in order to implement the goals of the program:
a.) To enable students to recognize ethical issues when encountered in everyday clinical practice and research
b.) To provide students with a conceptual-logical system, which helps them to address ethical questions and to resolve ethical dilemmas in an efficient way
c.) To introduce students to a body of knowledge, which helps them to understand, respect and protect the rights of patient research subjects and fellow health care professionals
d.) To help the would be health care professional to understand the responsibility of the individual, of the health care system and of the society as a whole in maintaining health
e.) To gain a solid foundation for future studies in any social subject related to pharmacy
f.) To enhance competence in designing, undertaking and evaluating research involving human subjects
g.) To enhance communication skills useful in dispensaries or in hospitals

Brief course summary:
The course is designed to give a broad overview of the field of bioethics, including concepts, theory, and research. Regarding sociology, the usage of medications became an integrated practice in modern societies which has several social connotations. Pharmacists will encounter the social problems connected with discovering, producing, distributing and consuming medicines on an everyday basis. The course aims to provide understanding of all these processes based on introducing some, selected sociological concepts.

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Topics of theoretical classes (pro week):
1. week: Principles of Medical Ethics (Jozsef Kovacs)
3. week: Informed consent II. Confidentiality and Medical Records (Jozsef Kovacs)
4. week: End of Life Issues (Jozsef Kovacs)
6. week: Introduction to sociology. Basic Concepts The Pharmaceutical Aspects of Illness Behaviour (Bence Döbrössy)
7. week: Inequalities in Health (Edmond Girasek)
8. week: The pharmaceutical Aspects of Intercultural (Bence Döbrössy)
9. week: Technology and Society (Zsuzsa Győrffy)
10. week: Healthcare Systems (Edmond Girasek)

Topics of practical classes (pro week):
1. week: Principles of Medical Ethics (Jozsef Kovacs)
3. week: Informed consent II. Confidentiality and Medical Records (Jozsef Kovacs)
4. week: End of Life Issues (Jozsef Kovacs)
6. week: Introduction to sociology. Basic Concepts The Pharmaceutical Aspects of Illness Behaviour (Bence Döbrössy)
7. week: Inequalities in Health (Edmond Girasek)
8. week: The pharmaceutical Aspects of Intercultural (Bence Döbrössy)
9. week: Technology and Society (Zsuzsa Győrffy)
10. week: Healthcare Systems (Edmond Girasek)

COURSE REQUIREMENTS

Prerequisites:
Pharmacology and Toxicology (theory) II. GYGYHHATE2A
Pharmacology and Toxicology (practice) II. GYGYHHATG2A
History of Sciences, Propedeutics GYEGYTTPE1A

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Students are expected to attend regularly the course and participation list will be recorded at the end of every lecture. Participating on at least 75% of the total number of lectures is a prerequisite for getting the signature needed to absolve the course. The maximum number of absences permitted: three absences from the classes

Requirements of signature:
Participation on at least 75% of the total number of classes is a prerequisite for getting the signature needed to absolve the course
Type of the semester-end examination:
Written final of the sociology component of the course
Written test on the ethics component of the course

Form of the semester-end examination: written

Scientific, course related researches, publications, essays:
List of teaching materials: (List of textbooks, hand-outs, scripts, etc.)
 MHID 1-25-964121-X
2. The textbook is available in the following bookshop: Medicina könyvesbolt, Budapest, IX. Üllői út 91/a (tel: 06-1-215-3786)
3. Graham Scrambler (ed) Sociology as Applied to Health and Medicine, Palgrave Macmillan 2018
 Lectures: The power point slides of the lectures can be found at:
 http://semmelweis.hu/magtud/en/education/faculty-of-pharmacy
 The lecture slides are also available on Moodle
Physical Education IX.

Full name of the subject: Testnevelés IX
Program: undivided program (pharmaceutical)
Schedule: full-time
Short name of the subject: English name of the subject: Physical Education IX.

Neptun code of the subject: GYTSITSNG9A
Type of registration: obligatory
Responsible Department: Semmelweis University, Physical Education and Sports Center

Responsible tutor:
Várszegi, Kornélia director
Contact information:
Phone: -36-1/264-1408
E-Mail: varszegi.kornelia@semmelweis-univ.hu
sportkozpont@semmelweis-univ.hu

Name of the persons responsible for the teaching of the subject:
Lehel, Zsolt icehockey trainer
Nagy-Kismarci, Bence cheerleading trainer
Rimay, István football trainer
Várszegi, Kornélia P.E. teacher
Weisz, Miklós basketball trainer

Classes per week: 1 practice
Credit point: 0

Professional content, intent of acquirement and it's function in order to implement the goals of the program:
Upon completion of the course the student will be able to carry out regular physical activity.
After completing the „beginner swimming” course, one will acquire water-confident swimming skills.

Brief course summary:
The short-term goal of the course is to maintain and improve the students’ current state of health, to create the physical conditions for a better quality of life by learning and practicing (new) branches of sports that can be practiced after graduation as well. The long-term goal is to improve the quality of life and life prospects of future physicians, and to provide students with credible preventive attitudes and lifestyle advice - so that they can represent those in their later practice, through their own health-promoting behavior.

Course data

<table>
<thead>
<tr>
<th>Recommended term</th>
<th>Contact hours (lecture)</th>
<th>Contact hours (practice)</th>
<th>Contact hours (seminar)</th>
<th>Individual lectures</th>
<th>Total number of contact hours/semester</th>
<th>Normal course offer</th>
<th>Consultations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>Autumn semester</td>
<td>–</td>
</tr>
</tbody>
</table>
Program of semester

Within the framework of compulsory regular physical activity, the requirements of the subject can be fulfilled as free of charge. The former is available during classes, students can also choose the „Other” course category, where they record their weekly physical activity independently.

Free of charge:
2×90 mins./week sport training (competitive sport, for qualified only): cheer dance, cheerleader, men’s football, handball, basketball, volleyball

Prerequisites: -

Conditions of attending the classes, amount of acceptable absents, way of presentation of leave, opportunity for makeup:
Complete the Physical Education course is to 15 times actively participate in the trainings of university teams. As teams take part in championships during the school year, we only accept applications from professional athletes! Lessons missed do not need to be certified; however, catching up is mandatory. The days of study breaks do not qualify as automatic attendance. Practice leaders follow an online presence registration at the beginning and end of the lessons, which can be individually tracked on semmelweis.hu/sportkozpont homepage.

The student who completes the course either individually is also supposed to attend 10 classes and record their participation in the weekly sent UniPoll questionnaire.

Requirements of signature: attending 75% of the practices

Type of the semester-end examination: signature

Form of the semester-end examination: -
Drug Licensing (theory+practice)
For details on this subject please contact the department or visit their website.

Pharmacovigilance and pharmacoepidemiology (theory+practice)
For details on this subject please contact the department or visit their website.

Quality Assurance (theory+practice)
For details on this subject please contact the department or visit their website.

Drug innovation and clinical studies (theory+practice)
For details on this subject please contact the department or visit their website.
10. SEMESTER 2022/2023/2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture</th>
<th>Practice (hour/sem.)</th>
<th>Credit</th>
<th>Prerequisites</th>
<th>Exam type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Practice II. GYSZGSZVG2A</td>
<td>–</td>
<td>40</td>
<td>16**</td>
<td>Compulsory Practice I. GYSZGSZVG1A</td>
<td>practical mark</td>
</tr>
<tr>
<td>Diploma work/Thesis defense GYSZDDIVE1A</td>
<td>1/sem.</td>
<td>–</td>
<td>10**</td>
<td>Diploma Work II. GYSZDSDKG2A</td>
<td>final*</td>
</tr>
<tr>
<td>Principles of Professional Ethics II. GYKANG071E2A</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>signature</td>
</tr>
<tr>
<td>Total:</td>
<td>1/sem.</td>
<td>40</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Counts to the qualification of the diploma
** Obligatory electives built-in in the curriculum
EVALUATION OF PROGRESS

Grading system
a) Five-scale
 excellent (5)
 good (4)
 average/fair (3)
 satisfactory/pass (2)
 unsatisfactory/fail (1)

b) Three-scale
 excellent (5)
 fair (3)
 fail (1)

Types of evaluation
1. Practical course grade (gyakorlati jegy) (according to either the 5-scale or the 3-scale grading system)
2. Semi-final examination (kollokvium) Evaluation of a one-semester subject matter (1–5 grading system)
3. Final examination (szigorlat) Evaluation of the whole subject matter (1–5 grading system)
4. Obligatory practice at hospital (3-scale grading system)

Average Results
When the student has taken all the compulsory examinations and fulfilled every other obligation during the examination period, the semester will be validated in the student’s lecture book by the Dean’s signature.

The student’s average results are:

- Outstanding (kitűnő) if the average is 5.00
- Excellent (jeles) if the average is 4.51–4.99
- Good (jó) if the average is 3.51–4.50
- Satisfactory (közepes) if the average is 2.51–3.50
- Pass (elégséges) if the average is 2.00–2.50

EXEMPTION

Exemption from courses and examinations may be granted on the basis of the student’s previously documented studies or additional credit-by-examinations stipulated by the departments. The student must submit all relevant documents at the departments concerned. Exemption may be granted by the Educational Board of each Faculty on the basis of the department’s written prior approval. “Checking” exams can be prescribed by the departments. PE exemption: Only under condition the diagnosis is checked by a licensed Hungarian health care practitioner, too.

Application deadline: Prior to registration to the first and the second semester!

No reduction of tuition fee is granted in case of exemptions.
REQUIREMENTS FOR APPLICATION AND ADMISSION

Application Criteria

Applicants must be at least 18 years of age by the end of the calendar year of application, and preferably under the age of 30. Applicants are requested to either have completed high school/senior secondary school before the time of application, or to currently attend the last year of high school/secondary school. In the latter case, the Matriculation / School Leaving Certificate has to be uploaded into SEMAPHOR by the 21st of August the year of application.

Semmelweis University seeks students who possess a strong background and interest in natural sciences (particularly in biology and chemistry), a good command of English, and a strong motivation to study and practice medicine, dentistry, pharmaceutical sciences or other health care professions.

Applications should be submitted online in SEMAPHOR (Semmelweis Application Handling and Online Review) system at https://semaphor.semmelweis.hu until the 31st of May.

The following documents are required to be uploaded (original, or as certified copies, in English or in the original language with a certified English translation).

1. Matriculation / School Leaving Certificate from an accredited high school / senior secondary school. Registration number of documents should be indicated. If you are in your final year and have not yet received this certificate, you can still apply and take the entrance examination. The final deadline for uploading the Matriculation Certificates is the 21st of August.

2. Curriculum Vitae (Resume) in English.

3. Motivation letter

4. Copy of passport (or ID card for citizens of Schengen Area member countries) with your personal data.

5. Passport photo.

Medical Certificate – Certification that the applicant is physically and mentally able to complete higher educational studies, and does not suffer from chronic or infectious diseases is requested from the successful applicants for the acceptance of an offered admission. The certificate downloaded from the University’s website should be issued within 90 days before the date of uploading.

Applicants have to register (sign up) for the entrance examinations in SEMAPHOR after having submitted a valid application (and paid the Admission Procedure Fee). Registrations can only be withdrawn before the deadline for registration to the given examination. The absence of a registered applicant at the entrance examination is not considered as the withdrawal of registration but as an examination attended without valuable result.
COST OF THE PROGRAM FOR TWO SEMESTERS

Tuition fee for the 2021/2022 academic year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fee 1st Semester</th>
<th>Fee 2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>USD 9,100</td>
<td>USD 9,100</td>
</tr>
<tr>
<td>Dentistry</td>
<td>USD 9,100</td>
<td>USD 9,100</td>
</tr>
<tr>
<td>Pharmaceutical Sciences</td>
<td>USD 6,000</td>
<td>USD 6,000</td>
</tr>
</tbody>
</table>

The first year tuition fee (+ the enrollment fee – USD 220 payable in the 1st semester) should be paid in two installments (unless the Hungarian Visa regulations have different conditions):

<table>
<thead>
<tr>
<th>Course</th>
<th>Fee 1st Installment</th>
<th>Fee 2nd Installment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>USD 9,320</td>
<td></td>
</tr>
<tr>
<td>Dentistry</td>
<td>USD 9,320</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Sciences</td>
<td>USD 6,220</td>
<td></td>
</tr>
</tbody>
</table>

Before February 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Fee 1st Semester</th>
<th>Fee 2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>USD 9,100</td>
<td>USD 9,100</td>
</tr>
<tr>
<td>Dentistry</td>
<td>USD 9,100</td>
<td>USD 9,100</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>USD 6,000</td>
<td>USD 6,000</td>
</tr>
</tbody>
</table>

Dentistry students pay additional material fee:

- years 3, 4 & 5: USD 3,600
- (first semester: USD 1,800)
- (second semester: USD 1,800)

Please note: the material fee is subject to change; also 2nd year students taking clinical subject(s) from the 3rd year have to pay material fee 3rd, 4th and 5th year students may apply for exemption from paying the material fee under certain conditions. Please inquire about the rule regarding eligibility for exemption at the **Directorate of International Studies**.

Students admitted to the 1st year are obliged to pay a deposit fee of USD 2000 to confirm their seat. The deposit fee is non-refundable.

Students failing a year or after passive status pay the sum of the year they join after the failure/passive status.

Transfer students pay the highest tuition fee in force in the actual academic year.

Application fee for transfer students: USD 350 (non-refundable)

Enrollment fee for transfer students: USD 220 (payable together with the tuition fee)

The student admitted delaying the commencement of his/her studies is obliged to pay the tuition fee of that academic year when he/she starts his/her studies.
Payment Details

Payment can be either made by bank transfer to the USD joint account of the student or sent to the main USD account of Semmelweis University:

USD currency joint account

Account holder: Semmelweis University
Account Number (IBAN): HU69117638420088301800000000
Bank name: OTP Bank Nyrt.
Bank address: Nádor u. 6. 1051 Budapest, Hungary
SWIFT code (BIC): OTPVHUHB

USD currency main account

Account holder: Semmelweis University
Account Number (IBAN): HU57117638420088101600000000
Bank name: OTP Bank Nyrt.
Bank address: Nádor u. 6. 1051 Budapest, Hungary
SWIFT code (BIC): OTPVHUHB

To be identified, the student’s Neptun ID (code) must be entered in the comment field when making the transfer: e.g. NK-123ABC (NK = Neptun Kód)

Personal checks and money orders are not accepted.

Please note that the above mentioned net amounts have to arrive to the account – the bank commission charges have to be paid by the student.

Important: If the tuition fee is not credited to our bank account by the above deadlines, students have to pay a default charge to the university and may be suspended/dismissed.

OTHER MEDICAL UNIVERSITIES IN HUNGARY

University of Szeged, Hungary
H-6720 Szeged, Dugonics square 13.
Phone: (+36-62) 544-000
Fax: (+36-62) 546-371
Foreign Students’ Secretariat
Head: Andrea Lehoki-Balog
office.fs@med.u-szeged.hu
Tel.: +36 62 545-458

University of Pécs, Medical School
H-7624 Pécs, Szigeti út 12., HUNGARY
General Medicine in English
Dentistry in English
Pharmacy
Lívia Csídei (Ms.)
Head of the English Student Service Center
Tel.: +36 72/ 536-018
Fax: +36 72/ 536-110
E-mail: studentservice.center@aok.pte.hu

University of Debrecen Medical and Health Science Center
International Education Center
Address: Nagyerdei krt. 98.
4032 Debrecen
Hungary
E-mail: info@edu.unideb.hu
Tel.: +36 52 258-051, +36 52 258-052
VISA AND RESIDENCE PERMIT INSTRUCTIONS

Application for Entry Visa & Residence Permit

Foreign nationals (under visa obligation) wishing to pursue studies in Hungary are required to apply for entry visa & residence permit (exceeding 90 days) in their home countries and enter the country on the entry visa issued by the Hungarian Embassy or Consulate. The entry visa is valid for a single entry and up to 30 days of stay in Hungary. Within 3 DAYS upon arrival, you will have to register your address and within 30 DAYS you have to submit your application for the residence permit to the Immigration Office in Budapest.

The following documents are required for the application for the entry permit:

- A wholly and legibly completed Application for Residence Permit (+ INSET 14 – Purpose of Study or Student Mobility)
- a valid passport (valid for at least eighteen months at the time of submitting the application)
- two passport size color photos (not older than six months)
- Letter of Acceptance from the University
- proof of payment of the tuition fee* (you get it from the University after your tuition fee has arrived)
- proof of financial means ensuring livelihood in Hungary (bank statement about the balance of your credit card, cash, or a declaration by the parents that they will provide the funds for all your expenses in Hungary)
- an application fee of 60 EUR
- the Hungarian Embassy may ask for your flight reservation and air ticket
- the address of your residence in Hungary
- certification of valid medical insurance coverage in Hungary

REGISTRATION PROCEDURE FOR EU AND EEA CITIZENS

Citizens of the member states of the European Union and the European Economic Area are not required to obtain a student visa in order to enter Hungary for the purpose of studies. They will, however, be required to register their stay with the Immigration Office not later than 93 days, following their entry into Hungary.

The following documents are required for registration:

- completed Data Sheet for the Issuance of Registration Certificate and for the Registration of Residence
- school certificate in Hungarian from the secretariat of your college / university
- your ID card or your valid travel document
- lease contract (lakásbérlési szerződés) for the apartment (It has to specify the landlord’s and your personal data – date and place of birth, mother’s maiden name, permanent address, landlord’s ID number, your passport number. The contract has to be signed by two witnesses.)*

If you stay with an acquaintance or a relative as a guest, a statement of admission (befogadói nyilatkozat) has to be attached by the owner of the apartment that you stay with them as a guest. If the apartment is your property, a property sheet (tulajdoni lap) has to be attached to verify it. If you rent the apartment through an agency and you signed a contract with the agency, the agency should provide the authorization received from the owner of the apartment.

- The administrative service fee charged for the issue of a registration certificate is HUF 1,000, payable by credit card at the Immigration office
- proof of funds to cover your expenses (bank statement for 3 months) – You may also be required to hand in maintenance statement signed by your parents.

*Citizens of countries in Africa, Asia, Eastern Europe (under visa obligation) and the Middle East are required to transfer the tuition fee for the first academic year in full before applying for the entry permit.
If you are the holder of the bank account (opened in your home country or in Hungary), it is sufficient to enclose a bank statement on the current balance. If the holder of the account is a parent or a relative, you should document that you have exchanged or drawn funds from ATM in the amount of at least approx. USD 800 and enclose a photocopy of the bank card.

- copy of a valid medical insurance coverage in Hungary (EHIC card, contract with a private medical insurance company or a valid health insurance policy), but take the original too with you.

If you meet all conditions for residence in Hungary for a period longer than three months, the immigration authority will issue a Registration Certificate to you that contains the address of your first residence in Hungary. You will receive your ID card on spot and Address Card by mail. Please see below for how to reach the Immigration Office.

Application for residence permit for students from non-EU countries with a permanent residence visa

Within 30 days of your arrival in Hungary, you have to go to the Immigration Office to Clients’ Service II. (“II. sz. Kirendeltség”) to receive your residence permit and to register your accommodation in Hungary.

The following documents are required:
- your passport with your visa inside
- 1 passport-size photo
- your lease contract
- completed address registration form (signed by the owner of the property).

Please see below for how to reach the Immigration Office.

Application for residence permit for students from Non-EU countries with a permanent residence visa

After arriving in Budapest

Within 30 days on arrival in Hungary, you have to go to the Immigration Office to Clients’ Service II. (“II. sz. Kirendeltség”) to receive your residence permit and to register your accommodation in Hungary.

The following documents are required:
- your passport with your visa inside
- 1 passport-size photo
- your lease contract
- completed address registration form (signed by the owner of the property)
Application for residence permit for citizens of Non-EU countries arriving without visa

You are required to submit your application for residence permit to the Immigration Office within 90 days after your arrival.

Documents required for the residence permit:
- passport valid for at least 3 more months longer than the period you are applying for (about 15 months)
- application form (Application for Residence Permit + INSET 14 – Purpose of Study or Student Mobility)
- address registration form („lakcímbejelentő”) signed by the owner(s) or an authorized person
- lease contract for the apartment (It has to specify the landlord’s and your personal data: date and place of birth, mother’s maiden name, permanent address, landlord’s ID number, your passport number. The contract has to be signed by two witnesses.)
- 1 passport-size photo
- the administrative service fee charged for the issue of a registration certificate is HUF 18,000 payable by credit card at the Immigration office
- proof of funds to cover your expenses
- certification of valid medical insurance coverage in Hungary
- school certificate in Hungarian from the secretariat of your college / university.

Please see below for how to reach the Immigration Office.

Application for extension of residence permit for citizens of Non-EU countries

You are required to submit your application for extension of residence permit to the Immigration Office at least 30 days prior to the expiry of your present one.

Documents required for extension of residence permit:
- passport valid for at least 3 more months longer than the period you are applying for (about 15 months)
- application form (Application for Residence Permit + INSET 14 – Purpose of Study or Student Mobility)
- address registration form („lakcímbejelentő”) signed by the owner(s) or an authorized person
- lease contract for the apartment (It has to specify the landlord’s and your personal data: date and place of birth, mother’s maiden name, permanent address, landlord’s ID number, your passport number. The contract has to be signed by two witnesses.)
- 1 passport-size photo
- the administrative service fee charged for the issue of a registration certificate is HUF 10,000 payable by credit card at the Immigration office
- proof of funds to cover your expenses
- certification of valid medical insurance coverage in Hungary
- school certificate in Hungarian from the secretariat of your college / university.

Please see below for how to reach the Immigration Office.

How to reach the Immigration Office in Budapest

The Immigration Office is located at the Twin Office Center Office Building, Szegedi út 35-37, 1135 Budapest (13th district), Hungary. Within the building, the Immigration Office is located at the Ground Floor, Clients’ Service II. (”II. sz. Kirendeltség”)

Office hours:
- Monday 8:30 am to 1:00 pm
- Tuesday 1:00 pm to 5:00 pm
- Wednesday 8:30 am to 12:00 noon
- Thursday 8:30 am to 1:00 pm
- Friday 8:30 am to 12:00 noon

E-mail: bp2@bah.b-m.hu (It is possible to book an appointment in advance.)

To get there, please take buses number 20E, 30, 30A or 32 from the Keleti Railway Station („Keleti pályaudvar”) and get off at the bus stop named ‘Szegedi út’.
REDUCTION OF TUITION FEE

1. Students may apply for a reduction after completing the first semester of the first academic year if their semester weighted average results were above 4.51. From the third semester the reduction is granted under an extra condition: from the end of the second semester, all their semester weighted average results have to be continuously above 4.51, including the weighted average of the second semester. The reduction is 10% of the tuition fee with average results above 4.51 and 15% with average result of 5.00.
Students may apply for a reduction after completing each semester on condition they meet the above requirements, and in case they have completed all the obligatory semester subjects, and gained minimum 20 credits in each semester.
No reduction is given in case of exemption from one or more subjects (except from PE).
No reduction is given during retaken semesters on account of subjects already completed.
Students eligible for the tuition fee reduction pay with 10-15% reduced tuition fee in the next semester.

Application deadlines:
 first semester: until the 15th of September
 second semester: until the 15th of February

2. Students taking just either one normal or one exempted “FM” course (regardless plus how many exam courses “CV”) in a semester pay 50% of their semester tuition fee. Signing up solely for one or more exam courses “CV” also entitles for the 50% reduction. (Note: The permission can be granted upon the student’s written request that has to be handed in at the Directorate of International Studies before starting the semester!)

3. Tuition fee for the 6th year:
In case the student completes all the rotations regardless whether the 1 week Transfusion course is completed at Semmelweis University or abroad, he/she has to pay 80% of the tuition fee valid in the academic year. The relevant acceptance letters should be handed in latest until December 15, 2021. Otherwise the student is not entitled for the reduction!

Please write a letter of request addressed to the Director of the Directorate of International Studies when applying for the 20% reduction!
HOW TO GET A CERTIFICATE WHICH PROVES THAT THE DIPLOMA ISSUED BY SEMMELWEIS UNIVERSITY IS IN CONFORMITY WITH THE EU REQUIREMENTS, AND A CERTIFICATE OF GOOD STANDING

The National Directorate General for Hospitals (Országos Kórházi Főigazgatóság; OKFŐ) congratulates you for being awarded a university healthcare degree by one of our Universities.

This brochure aims to briefly summarize the procedures of the OKFŐ that may be necessary to access the healthcare profession granted by your diploma, either in Hungary or abroad. Further information can be found on the OKFŐ’s website.

After graduation your University has 30 calendar days to report the diploma details of the newly graduated students to the OKFŐ in order to get them listed in the National Basic Register of the Healthcare Professionals.

Once you have your diploma listed in the Basic Register, you should decide if you intend to
- leave Hungary and work abroad (see point A) **OR**
- stay and work in Hungary (see point B)

We hope you find the information provided in this publication to be informative and helpful.

For the procedure please study the following document carefully:
https://semmelweis.hu/english/files/2021/05/information-for-foreign-graduates_2021.pdf
DECLARATION

for foreign citizens intending to work outside of Hungary

Personal details
 Basic registration number:
 Surname:
 Given name:
 Name at birth:
 Mother’s maiden name:
 Place and date of birth:
 Nationality:

I, .. (name) hereby declare that I am a healthcare professional with foreign citizenship and I do not intend to work in the area of healthcare in Hungary currently, the license to pursue healthcare activities – getting registered in the Operational Registry – is only necessary for the recognition of my professional qualification abroad. Due to the abovementioned it is not obligatory to have the membership of the chamber. I, furthermore, acknowledge that in case I return to Hungary to pursue healthcare activities, I will be required to become a member of the chamber.

Date: ...

..
Signature
STUDENT CARD

How to order a new student card

1. **To obtain a new student card, you must first have an official photo taken and provide your official signature at „Központi Okmányiroda” (Central Document Office) Address: 13th District, 110 – 112 Visegrádi utca. You must take your residence permit and passport with you to the Központi Okmányiroda.**

2. **There you will be given a NEK (Nemzeti Egységes Kártyarendszer) datasheet. This form has a 16-character identification number in the upper right corner.**

3. **Log on to your Neptun site, go to ‘Administration’ and click on ‘Student Card request’ in the drop-down list. A smiley :) will warn you not to add the hyphens when typing in your 16 character NEK identifier into yellow text box!**

3/a. **Click on the grey tab ‘Add new’ and type your 16 character NEK identifier into the blank called ‘NEK azonosító’**

3/b. **then choose ‘Demand type’. Check that your permanent (home) address is correct and shows up in the ‘Street, number’ text box. Please note that you will also need your temporary (Hungarian) address written in the Neptun. This will serve for your temporary, A4-format student card you will receive at the Directorate of International Studies.**

The plastic card **takes about 6-8 weeks** to be produced after being ordered from the Directorate of International Studies. You will need to **use the temporary, A4-format certificate** until you receive your official card. Please note that the temporary certificate is valid only for 2 month, after which time it must be renewed.

INSURANCE

By paying the tuition fee, and signing the insurance contract during - or after - registration, students are entitled to use the services offered under the insurance policy established on September 1, 2017 between Generali Biztosító Zrt and Semmelweis University.

You will receive an information sheet about the details of this insurance policy during the registration itself (or alternatively, you can also acquire the information sheet at the front desk of the Directorate of International Studies, or online through https://semmelweiskft.hu).

Throughout the duration of your studies, this insurance will cover the medical bills of outpatient and inpatient treatments provided by the designated health care service providers, as well as emergency medical care during the active semester(s). Details about terms and conditions found in „Customer information and General Provisions Governing Insurance Policies” as well as in the „Product Information on Generali’s Fee-for-Service Health Insurance”.

Living Costs

In addition to tuition, students may have the following expenses:

- In addition to tuition, students may have the following expenses:
- Expenses related to studies (student ID card, books, photocopying, etc.) about 200 EUR/semester
- Accommodation (depending on the size and the location of the flat, as well as on the number of students sharing it) about 250-350 EUR/month/person
- Living expenses (food, transport, miscellaneous) 200-250 EUR/month
FREQUENTLY ASKED QUESTIONS - FAQ-s

● Where can I find the Directorate of International Studies?
EOK (Basic Medical Science Center) 37-47 Tűzoltó utca, 1st Floor, room 1.604

What are the Directorate of International Studies’s office hours?
- Monday 09.30 – 12.00
- Tuesday 09.30 – 12.00
- Wednesday closed
- Thursday 10.00 – 12.00
- Friday 10.00 – 12.00

● How do I get my class schedule for the next term?
You can check your schedule in your Neptun under Studies/Class schedule after subject registration.

● How do I get a Student card?
Read detailed information for the students of all faculties – Student Card Request (pdf)

● How many credits do I need to graduate?

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Medicine</td>
<td>360</td>
</tr>
<tr>
<td>Dentistry</td>
<td>300</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>300</td>
</tr>
</tbody>
</table>

● How many credits do I have to earn per semester?
Please see your semester curriculum in the Calendar. The amount of the required credits are set out by each semester’s curriculum under the curriculum schedule.

Attention!
Training and Examination Regulations
Section 26. The certificate of degree (Diploma)
The diploma, the certificate.
1. The credit value of subjects accomplished in other institutions of higher education and recognized by the University in a credit transfer procedure shall not exceed two-thirds of the credits required for the award of the diploma as defined by the qualification requirements.

● How can I apply for the approval of the place of the summer practice?
1. Summer practice at an Institution/Clinic of Semmelweis University
No approval or certificate on completion is needed in this case. The completion is recorded in the Neptun system by the host Institution/Clinic. To organize your practice and ensure that you will be accepted you should contact the relevant Institution/Clinic and speak with your tutor.

Please note: some Semmelweis departments require that you do a special registration via Neptun for their summer practice. About details and departmental regulations, please consult your tutor.

2. Summer practice at an Institution/Clinic outside of Semmelweis University
Approval of such summer practice is needed beforehand, and a certificate on completion must be submitted at registration to the next term. Please contact your registrar for details with specifics.

● When and how do I have to submit the certification on my completed summer practice?
Certificates on a completed summer practice outside Semmelweis University should be submitted to the Directorate of International Studies at the registration to the next term.

Please note: students are not allowed to proceed to the next year unless the form of completion is submitted to the Directorate of International Studies at registration.
Please use the downloadable forms at each Faculty.
Compulsory summer practices by Faculties:

<table>
<thead>
<tr>
<th>year/Faculty</th>
<th>General Medicine</th>
<th>Dentistry</th>
<th>Pharmaceutical Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Summer Nursing Practice* (1 month) (*after 1st or 2nd year)</td>
<td>Summer Nursing Practice (2 weeks) Summer Dental Laboratory Practice (2 weeks)</td>
<td>–</td>
</tr>
<tr>
<td>2nd</td>
<td>–</td>
<td>–</td>
<td>Summer Practice I. (4 weeks)</td>
</tr>
<tr>
<td>3rd</td>
<td>Summer Internal Medicine Practice (1 month)</td>
<td>Summer Dento-Alveolar Practice (1 week)</td>
<td>Summer Practice II. (4 weeks)</td>
</tr>
<tr>
<td>4th</td>
<td>Summer Surgery Practice (1 month)</td>
<td>Summer General Dentistry Practice (4 weeks)</td>
<td>–</td>
</tr>
</tbody>
</table>

- **How much is the tuition fee per semester?**

 The tuition fee is determined by the year of enrollment to the Program. Students who complete their studies continually (without failing a year) pay the same tuition fee every year (see the table below). Students who repeat a year due to failure or a passive semester, and students transferred from another university have to pay the tuition fee according to the year of enrollment at the course they are joining. Eg. a student enrolled in 2015/2016 academic year and failed a semester has to pay the tuition fee of those enrolled in 2016/2017.

<table>
<thead>
<tr>
<th>year of enrollment/ Faculty</th>
<th>General Medicine</th>
<th>Dentistry</th>
<th>Pharmaceutical Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006.</td>
<td>6 100 USD</td>
<td>5 400 USD</td>
<td>5 400 USD</td>
</tr>
<tr>
<td>2007.</td>
<td>6 100 USD</td>
<td>5 400 USD</td>
<td>5 400 USD</td>
</tr>
<tr>
<td>2008.</td>
<td>6 100 USD</td>
<td>6 600 USD</td>
<td>5 400 USD</td>
</tr>
<tr>
<td>2009.</td>
<td>7 200 USD</td>
<td>8 000 USD</td>
<td>5 800 USD</td>
</tr>
<tr>
<td>2010.</td>
<td>8 000 USD</td>
<td>8 000 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2011.</td>
<td>8 200 USD</td>
<td>8 200 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2012.</td>
<td>8 500 USD</td>
<td>8 500 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2013.</td>
<td>8 750 USD</td>
<td>8 750 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2014.</td>
<td>8 750 USD</td>
<td>8 750 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2015.</td>
<td>8 950 USD</td>
<td>8 950 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2016.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2017.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2018.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2019.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2020.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2021.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
<tr>
<td>2022.</td>
<td>9 100 USD</td>
<td>9 100 USD</td>
<td>6 000 USD</td>
</tr>
</tbody>
</table>
- **When is my tuition fee due?**
 Generally:
 Fall semesters: 31st of August
 Spring semesters: 31st of January
 The current deadlines of payment are announced by the registrars before the beginning of every semester.
 Rules regarding tuition fee payment and penalty:
 - Students have **one month** (counted from the first day of the semester) for paying the tuition fee of the given semester **without penalty**. *(Please note that students cannot get a student certificate, a valid insurance or validation of their student card until their tuition fee is completely settled.)*
 - **After the semester's first month** has passed, the tuition fee can be paid with a default **penalty of 500 USD**.
 - The **latest deadline** for paying the tuition fee and penalty is the **last day of the study period**. *(Please note that students cannot register for any exam until their tuition fee plus penalty are completely settled.)*
 - **If the above final deadline is missed**, i.e. the tuition fee plus penalty are not settled by the end of the study period, the tuition fee for the current semester can no longer be paid, student's **status will remain active**, but every signature acquired and every grade earned by the student during the semester will be deleted.
 - **Please take the above rules and deadlines seriously as they will be strictly enforced.**

- **What is my tuition per semester?**
 All continuing students will remain on the same fee rate as when they first enrolled in the program. Students who take a semester off, failed a year, or transferred from another university has to pay the tuition fee of that specific year they join the program (again).

- **How can I ensure full payment of the tuition fee on time by bank transfer?**
 To ensure full payment, please consider that a transfer fee is usually applied when sending money by bank transfer. When transferring the exact amount for the tuition fee, a transfer fee might be deducted from that amount, rendering your tuition fee deficient. Therefore, please contact your home bank prior to transferring the tuition fee and find out whether the bank deducts a transfer fee from the transferred amount. If yes, please pay the transfer fee in addition to the tuition fee.
 Payment by wire transfer:
 all payments can be made by wire transfer to Neptun joint account. Payments have to be made in USD.

 USD currency joint account
 Account holder: Semmelweis University
 Account Number (IBAN): HU6911763842008830180000000
 Bank name: OTP Bank Nyrt.
 Bank address: Nádor u. 6. 1051 Budapest, Hungary
 SWIFT code (BIC): OTPVHUHB
 It is your responsibility to ensure timely and full payment of your tuition fee. It is important for you to keep in mind that checking whether the tuition fee has been paid properly is your responsibility. You are recommended to contact your registrar each term before the payment deadline to find out whether the tuition fee has arrived without any problem.

- **Am I eligible for a reduction of the tuition fee?**
 Tuition fee reduction in the following case:
 Excellent study record
 Students may apply for a reduction if they completed all the obligatory subjects and gained at least 20 credits in the semester, and their weighted average is 4.51 or above continuously started from the first or the second semester of the first year. If the weighted average is 4.51 or above in the first semester a reduction can be granted in the second semester. If the weighted average is 4.51 or above only from the second semester then the reduction can be granted from the third semester. The reduction is 10% for students having a weighted average between 4.51 and 4.99, and it is 15% for students having a weighted average 5.00. Students who have a weighted average below 4.51 during their studies after the first year are no longer eligible for a reduction of the tuition fee. No reduction is given in case of exemption from one or more subjects.

 Please write a letter of request addressed to the Academic Program Director when applying for the reduction!
How do I calculate my average?
Study average means the weighted average, which is a way to measure a student’s academic success in school. The weighted average is calculated from the grades and the credit points belonging to each subject. For each completed course for the previous semester, the number of credit points must be multiplied with the grade received. All subjects are added up and then this amount is divided by the total number of credits collected in the semester.

Example for one semester:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Grade</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy:</td>
<td>grade 3</td>
<td>9</td>
</tr>
<tr>
<td>Basics of Biostatistics and Informatics:</td>
<td>grade 4</td>
<td>3</td>
</tr>
<tr>
<td>Hungarian Medical Terminology I:</td>
<td>grade 5</td>
<td>4</td>
</tr>
<tr>
<td>Basics of Medical Physics:</td>
<td>grade 5</td>
<td>3</td>
</tr>
<tr>
<td>Medical Chemistry:</td>
<td>grade 4</td>
<td>6</td>
</tr>
<tr>
<td>Basics of Medical Chemistry:</td>
<td>grade 5</td>
<td>3</td>
</tr>
<tr>
<td>Medical Terminology:</td>
<td>grade 5</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education I.</td>
<td>grade 5</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\sum: 27 + 12 + 20 + 15 + 24 + 15 + 10 = 123 \]
Number of credits earned in the semester: 30
Weighted average from the first semester: 123/30 = 4.1

What is the difference between weighted average and cumulative weighted average?
The weighted average and cumulative weighted average are based on grades given for each course taken and the number of credit hours specified for those courses over the specified period of time (one term for weighted average; more or all terms for cumulative weighted average). The difference between the two is that weighted average is calculated for one semester of the year and cumulative weighted average is based on two or more semesters of the individual.

What if I can’t attend an exam or class at the time scheduled?
Students are required by university regulations to present written justification stating the reasons of their absence. Upon returning to school after an absence, students should report to the department’s office and present a doctor’s note, if their absence was caused by medical reasons. Excuses not provided within 3 days after the missed exam or class will result in the absence being marked as an unexcused absence.
It should be noted that the student will be recorded absent even if s/he is absent for a valid reason such as sickness. In the case of absence with a valid reason, an official document that proves the reason of absence should be provided. The department has the right to reject any document of questionable credibility. If you are sick and cannot take the exam or class, you should telephone your tutor immediately and leave a message for the department office even if this is not the first day of your absence.

Do I have to pay a fine if in case of my absence from an exam remains uncertified?
Yes. Please see „Extra curricular fees” on the home page.

How do I pay my missed exam fees online?
Go to Finances/ Payment
Transcribe item
Payment titles: Service
Service type: Missed exam fee (7450 HUF)

Do I have to pay for exams?
Students have to pay for their second and third retake exam (3rd and 4th exam) for a given subject. Please see „Extra curricular fees” on the home page.

How do I pay for my 3rd or 4th exam in a given subject?
Log on to your Neptun account, go to „Finances”, choose „Payment”, then „Transcribe item”. Choose „Retake exam”, choose „Semester” then the relevant subject from the list and finally click on „Create item”.
To pay online you will have to select ‘Payment by credit card’ from the two payment options offered to you.
EXEMPTION

- **Should I go directly to the department when applying for an exemption?**
 Yes, except in case of Physical Education, summer practices and First Aid. Physical education medical certificates and certificates/degree proving the completion of summer practices/first aid course must be submitted to the Directorate of International Studies by registration to both semesters each year. For a physical education exemption you must also submit a letter of request describing your problem in a few words and apply for a permission to be exempted from the subject. The request letter must be addressed to the Directorate of International Studies.
 For other subjects you must first get a blank exemption form from the Directorate of International Studies. Then, you must show the form and certificate of your previous studies to the competent department, which will be reviewed before granting an exemption from the subject. You need to get your exemption form signed and stamped at the department.
 Important: the teacher must indicate the grade for the subject on the form. After having the form completed and stamped, you have to return it to the Directorate of International Studies for processing. If everything is OK with the form, your registrar will enter the given grade into the Neptun system and indicate it in your grade book. If you successfully complete the above, you have no further obligations regarding that particular subject.

 Approved exemptions must be submitted to the Directorate of International Studies by the start of the semester!

- **Can I be exempted from Physical Education if I have a gym membership?**
 No. You will not be exempt because of your gym membership so please do not apply for an exemption on these grounds.

- **What is the process of submitting a doctor’s note for Physical Education exemption?**
 If you are requesting an exemption from physical education due to medical complications that inhibit you from partaking in physical activity for an indefinite time; you then must submit evidence to the Directorate of International Studies in Hungarian or in English language from a licensed health care practitioner that documents a diagnosis of a temporary physical or mental disability.

- **What do the so-called CV and FM exams mean?**
 CV and FM are abbreviations. CV stands for the Hungarian term „Csak Vizsga”, meaning „Exam only”. The term indicates that the student has already received the signature for taking the course, that is, fulfilled the semester requirements and only the exam is missing, which can be taken in the following semester.
 FM stands for the Hungarian term „Felmentett”, meaning „Exempt”. This term also indicates that the subject requirements have been fulfilled and student only needs to take the exam. The student is not obliged to take the course again, however since the subject is offered again, he/she can decide to do so. [Should the student decide to attend the course again, even though he/she has already fulfilled the requirements, the same rules shall apply to him/her as to those attending the class for the first time (Absence, attendance at classes, etc.).]

- **Do I have to fail a course at least once in order to be allowed to take the CV course in the next term?**
 No. You can roll over all 3 exam opportunities to the following semester and take them as a CV course.

- **How many retake opportunities do I have in a semester and in an academic year?**
 There are 3 exam opportunities in each subject per semester (1 exam, and 2 retakes) when the subject is offered as a normal or FM course. In the following semester – when the subject is offered as a CV course – only the remaining chances left from the previous semester can be used. There is a special 4th try once a year (the 3rd retake), which may be used exclusively in 1 chosen subject. After using this 4th exam opportunity in one subject, the student shall not have a 4th try in any other subjects; they also will not be granted “special permission” for a 5th opportunity. Please count your remaining exam opportunities carefully!
 For example, if you use 2 exam opportunities for Biophysics II in the 2nd semester, you will have only one remaining opportunity for the retake in the following semester (plus the one extra (4th) chance, if you haven’t used it already in that specific academic year in another subject).

- **What is a prerequisite?**
 Prerequisites are courses that must be taken before another course. For example, Medical Chemistry is a prerequisite for Medical Biochemistry, Molecular and Cell Biology I.
 Students must successfully complete Medical Chemistry before registering for Medical Biochemistry, Molecular and Cell Biology I. Please note that prerequisites are clearly listed in the curriculum.

818
• **What is a corequisite?**
 Corequisites are courses that must be taken at the same time as normal courses. Registration for corequisites must be done prior to registration for normal courses in the given term. Corequisites are marked with a star symbol in the Calendar of each semester’s curriculum affected (e.g. 3rd and 4th year)

• **What do I need to do if I am planning to take a leave of absence?**
 If you take a semester off you will need to email your registrar and register for a ‘passive’ semester via the Neptun system during the registration period for the next semester.
 For details, please see the Neptun manual/ Registration in the beginning of the Calendar

• **What do I need to do if I am returning from a leave of absence?**
 Contact your registrar for procedures regarding returning from an official leave of absence and check your Neptun account on a regular basis. Make sure your tuition fee is paid by the relevant deadline.

TRANSCRIPT

• **What is a transcript? How do I request my transcript?**
 The transcript is an official statement of all results achieved through study at Semmelweis University as of the date of printing. You cannot have a transcript until all grades are posted in the Neptun student information system by the departments and your grade book is submitted to the Directorate of International Studies with all results. It is the department’s responsibility to upload the exam results to the Neptun system.
 Transcript requests must be made in writing. To make your request, you may stop by the Directorate of International Studies or send it via e-mail. You can indicate in your request if you would like us to forward the transcript to your email address. Processing of transcript requests takes approximately 5 business days. However, during certain times of the year there will be a slight delay, 2-3 days, due to the heavy volume of requests. The fee for the transcript must be paid for prior to the issuance of the transcript(s). Please be sure to allow sufficient processing time for your request.

 Please note: the university may discontinue or suspend this service at any time without notice if the fee for the transcript is not paid.
The Institute of Behavioural Sciences at Semmelweis University is providing student counselling in English and German as well. Coming to university can be a very exciting and rewarding time. It can also be a time of change and stress, especially if you study in Budapest, left your home country and have to face a new culture, language and environment. There may be a whole range of difficulties and dilemmas affecting your life and studies. These may be the result of either past or present experiences. The University Counselling Service is one of the services which are there to help. One way of starting to with things is to see a counsellor. This involves meeting with a trained person to talk about the issues that are important for you.

There are a number of ways in which counselling can help, such as:

- Dealing with a crisis or immediate concern
- Support with longer term difficulties
- Getting access to specialist help
- Referring on to other resources

Counselling is an active process that is designed to give you the time, space and encouragement to explore and understand the issues you bring. The counsellor will be able to help you think about your problems from a different perspective. Their role is to provide you with a secure framework in which to reflect upon your circumstances. The aim is, that in time this will increase your awareness of yourself, your situation, and the choices that are open to you. Coming for counselling can take courage as it involves facing yourself and asking someone else for help.

Counselling provides a safe place, separate from your daily life, where you can explore issues or feelings which are causing you difficulty. The counsellor will aim to relate to you in a supportive and purposeful manner and assist you in the task of finding your own way forward. Your use of counselling remains confidential to the service within the limits agreed with your counsellor.

Emotional and psychological problems encountered by student counselling services include:

- anxieties about aspects of study including exams and presentations
- general stress and anxiety
- depression
- relationship difficulties
- eating problems
- bereavements and parental separations
- loneliness and homesickness
- lack of self confidence or low self esteem
- managing transitions
- making difficult decisions
- traumatic experiences including rape, assault and abuse
- difficulties with alcohol or drugs
- issues around sex, sexual orientation and sexuality
- self-injury
- suicidal thoughts
- anger management
- worries about appearance
- any other topic or problem you wish to talk about

Contact:
If you have any question, need to talk to someone on the phone in advance, or want to book an appointment to see a counsellor, just send us an email and we will get back to you within 48h:
Dr. János Kollár
E-mail: studentcounselling@net.sote.hu
Home page: http://behsci.hu/health/student-counselling
Institute of Behavioural Sciences
Nagyvárad tér 4, 20th floor,
1089 Budapest
Appointments are available between Monday and Friday (16-20 o’clock) upon request (via mail)
Office Hours and Contacts

Office Hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>9 a.m. – 12 p.m.</td>
</tr>
<tr>
<td>Tuesday</td>
<td>1 p.m. – 3 p.m.</td>
</tr>
<tr>
<td>Wednesday</td>
<td>9 a.m. – 12 p.m.</td>
</tr>
<tr>
<td>Thursday</td>
<td>1 p.m. – 3 p.m.</td>
</tr>
<tr>
<td>Friday</td>
<td>CLOSED</td>
</tr>
</tbody>
</table>

For the efficient and continuous work of the office, we kindly ask that you respect our office hours! In case of an urgent matter, please contact the ERASMUS office either by phone or email, in order to obtain a personal appointment.

Address
H-1085 Budapest, Üllői út 26. Room 202

Contact Information
Ms. Nóra Schreiberné Seres
ERASMUS Institutional Coordinator
Tel: (+36-1) 459-1491
E-mail: erasmus@semmelweis-univ.hu seres.nora@semmelweis-univ.hu
Mission Statement

Semmelweis Alumni’s mission is to help build long-lasting and mutually beneficial relationships between the University and its current students, alumni, faculty and researchers.

Membership

To become a member of Semmelweis Alumni, you need to complete a registration form. Registration is free of charge and memberships remain valid indefinitely.
You may become a member if you meet any of the following criteria:

- You are currently a student at Semmelweis University and have successfully completed at least four semesters;
- You are a former student of Semmelweis University or one of its legal predecessors and successfully completed at least four semesters;
- You are currently a faculty member or researcher at Semmelweis University
- You were formerly a faculty member or researcher at Semmelweis University
It is an association made up of students from different faculties at Semmelweis University in different years with very different nationalities and backgrounds. Their aim is to give voice to the international student community at Semmelweis University and support them in different methods. Their reach includes but is not limited to the following:

1. Organizing international student events two of which is the Freshmen’s Day event for the incoming students every year and also the Semmelweis Carnival
2. Creating a bridge between the students and staff (teaching and non-teaching) through conducting interviews
3. Listening to students concerns through Student Affairs and handling case by case
4. Creating a magazine dedicated to international student committee Review which is full of information for the students and also from students
5. and many more...

The association is actively working to create a pleasant life for the students at Semmelweis University and give voice to their needs. Our mission statement is as follows:

– **Learning** – We compliment and enhance the academic experience.
– **Service** – We are dedicated to serving students and our broader community. We provide good customer service and resources for events/event planning and offer leadership development opportunities.
– **Advocates** – We strive to serve as student advocates.
– **Balance** – We strive for wellness and balance in our activities and events.
– **Ethical Decision Making** – We believe in honesty and integrity during all interactions.
– **Stewardship** – We strive to use all resources effectively and efficiently.
– **Community** – We strive to build a supportive and inclusive office environment/campus community where everyone feels welcome.

The **Student Affairs Committee (SAC)** is a student-run organization within ISSA. Our express goal is to improve lines of communication between students and members of faculty, as well as advocate on behalf of students’ opinions and interests. The backbone of the Student Affairs Committee is the representatives from each year and faculty (Dentistry, Medicine, Pharmaceutical Sciences). Representatives are responsible to both their classmates and their fellow committee members. They are the first to be approached should any issues arise among students within their year. They then bring these problems to the committee so that the SAC team may resolve them. At times, the representative may be responsible for resolving the problems themselves; at times they will be charged with handing over the responsibility to a higher up. Class reps may also be called on to speak with members of the administration, something they are able to do with confidence and professionalism.
A unique feature of Hungarian universities is that undergraduate students have the opportunity to be involved in top-level scientific research starting in their undergraduate years. To facilitate this, students maintain their own organisation, the Students’ Scientific Association (in Hungarian: Tudományos Diákkör – TDK). TDK activities, which include organising scientific conferences, are overseen by the TDK Council. During the last ten years, the number of students involved in scientific research has grown twofold, while the number of lecturers attending TDK conferences has increased threefold. Currently, over 1000 Semmelweis University students pursue science in addition to their regular studies, more than 400 of whom present their research results at the annual TDK conferences.

The University’s students often receive great honours at national and international conferences and many of them publish scientific research articles in international journals as either first or co-authors. Each year, the ten best graduating students receive the “Outstanding TDK Student of Semmelweis University” distinction. It is pleasing to see that the University is attracting ever more students who had started doing research during their high school years. To encourage the continuation of this practice, the TDK Council promotes the involvement of students in scientific research from their very first year at university.

The TDK Council also promotes close contacts with fellow TDK organisations abroad. Students are sent to international TDK conferences and cooperate with the Hungarian Medical Students’ International Relations Committee (HuMSIRC), through whom longer study tours can be organised.

To support the talented and gifted students the Senate of Semmelweis University initiated a Talent Support Program named after the former professor of our University, Ödön Kerpel-Fronius.

Participants of the program will be recruited after a personal assessment interview of the students on the Excellency List organized by the Talent Support Council of the University.

The Excellency List contains not more than the best 5% of the students of the university.

Application for the inclusion in the Excellency List is possible by filling in the Application Form, which can be downloaded from the kerpel.sote.hu/kivalosagi_lista_kerules_szabalyrendszere or kerpel.sote.hu/kivalosagi_lista web-sites.

Applications should be sent electronically to the tehetsegpont.se@gmail.com email address as an attached file until March of each year.

Students on the Excellency List will be called for an interview by the Talent Support Council of the Semmelweis University and approximately half of them will be included to the Kerpel-Fronius Ödön Talent Support Program.
General information on Ph.D. studies, resident training and postgraduate studies for foreign applicants

In principle, there is no possibility to continue medical (or dental) studies at Semmelweis University with an undergraduate degree obtained at a foreign university, due to the differences in the structure of the curriculum and that of the degree system. It must be noted that there is no Bachelor level in the medical (and dental) education in Hungary and therefore such foreign degrees do not enjoy automatic acceptance in our country.

The general medical education in Hungary is a single, 6-year-long full time course that is divided into three modules: the basic medical sciences module (2 years), the preclinical module (1 year) and the clinical module (2 years). The sixth year of education is an internship year. After successfully completing the sixth year and passing all the exams, medical students in Hungary obtain the Doctor of Medicine (MD) degree.

Against this background, holders of Bachelor-level degrees are not entitled to study at Semmelweis University as postgraduate students. However, one may sit for the entrance examination for the first academic year and after being accepted and enrolled, one may ask for exemptions on the documented previous studies and examinations of his/her Bachelor-level course.

For further information on our English language undergraduate programmes please visit the website at http://semmelweis.hu/english/education/english-language-program/

Those who already hold a Doctor of Medicine (MD) degree and wish to continue their studies in order to obtain a Ph.D. degree, may send an application to the School of Doctoral Studies. For further information please visit http://phd.semmelweis.hu/en/

School of Ph.D. Studies
Phone: +36 1 266-7483 és +36 1 266-2343
Fax: +36 1 317-4888 (only fax!)
Office hours:
Monday: closed
Tuesday, Thursday, Friday: 8.30-12.00
Wednesday: 13.00-16.00

Those persons who hold a Doctor of Medicine degree obtained at a non-Hungarian university and wish to join a medical Residency Training at Semmelweis University have to go through a special application procedure. Please note that a good command of the Hungarian language is a precondition to join the Residency Training. Further information can be obtained from http://semmelweis.hu/english/education/continuing-education/

Directorate of Continuing Education
Phone: +36-1-210-1784, +36-1-459-1446
Address: 1091 Budapest, Üllői út 25. (City Corner Office Block)
Mailing address: 1085 Budapest Üllői út 26.
E-mail: szakestovabbkepzes@semmelweis-univ.hu

Postgraduate Courses at Faculty of Dentistry
Address: 1088 Budapest, Szentkirályi u. 47. VII/751.
Phone: 36 1 266 7006
E-mail: szkepz@dent.semmelweis-univ.hu
Office hours:
Thursday: 09.00-11.00

Postgraduate Courses at Faculty of Pharmaceutical Sciences
Address: 1092 Budapest, Hőgyes Endre u. 7-9. B
Phone: + 36 1 266 8411
E-mail: szakkepzes@pharma.semmelweis-univ.hu
Office hours:
Monday, Tuesday, Thursday: 13.00 - 15.00
Wednesday: 10.00 - 13.30
Friday: 09.00 - 12.00
Group of Unprompted Instructors

We are happy to announce, that from this year the famous Spring Training of IÖCS (Instruktor Öntevékeny Csoport – Group of Unprompted Instructors) is open for international students as well. It is one of the oldest student association of the university, and certainly the one with most members. We help organising most of the biggest events for Freshmen like the Summer Camp and the Ball, we also take a huge part in the Carnival and many others. It is a strictly non-profit organisation; our greatest reward is the time and fun we spend together.

What can you expect from the spring training?

- Meetings every other week, where you will learn about the association, our structure and programs, you can improve your social skills, get to know an immense amount of new people and form a strong group together.
- Teambuilding games, workshops.
- Spend a weekend together with every newcomer in the organisation at the end of the training, it’s a lot like a mini Freshmen’s Camp.
- Eventually you will be an Instructor, you can take part in all of our events, work together and welcome the freshmen at the university so we can help them finding their way in this big community.

Lóránt Csehi (csehi.lorant@iocs.hu)
Brief History of the Faculty of Health Sciences

The University’s second largest Faculty is the Faculty of Health Sciences. The Faculty started its first academic year in 1975 with the aim of training highly accomplished, skilled, committed and open-minded health care professionals. This was the first higher-level school in Hungary that trained dietitians, health visitors, physiotherapists, public health and epidemiology inspectors, vocational teachers and paramedics. During the past years both the structure of education and the curriculum have undergone changes in the spirit of modernization. The Faculty continuously expands the range of its Hungarian and English language training programmes. To its prospective students, the Faculty offers study rooms, lecture halls, specialist laboratories, demonstration rooms and a public library that are all equipped with state-of-the-art technology, as well as a great variety of opportunities for an active student life, and a motivating environment. Following graduation, students of the Faculty can immediately be involved in various areas (ex.: health care, tourism, education, sociology) and they are able to have a positive impact on their close and broad environment.

Facts and Figures

The Faculty of Health Sciences celebrated its 40th anniversary in 2015. Since its foundation, more than 30,000 students graduated from the Faculty and today almost 4000 students are studying at this institution. The Faculty is very proud of its library containing more than 50,000 volumes.

During the last four decades the Faculty has developed extensive international relations, and as a result, we have connections with about 50 higher educational institutions throughout Europe, Asia and America. Many students and staff members have the opportunity to take part in short- and long-term exchanges in the framework of the Erasmus+ programme in our partner institutions.

The Faculty’s Asian relations have also been largely extended by establishing a fruitful relationship with Shanghai Jiao Tong University School of Medicine (SJTU) and with Heilongjiang University of Chinese Medicine (HLJUCM), that launched its off-campus B.Sc. Traditional Chinese Medicine training at our Faculty. In the framework of the programme, students study in Hungary during the first 4 years, while they can get acquainted with the practical aspects of Chinese Medicine at the Chinese university in the last year in China.

We are also proud of having operated our bilingual (Italian and English) B.Sc. Physiotherapy training in Lugano, Switzerland since 2009. Currently, over 300 students participate in our programme there. The extent of our international relationships is growing on a daily basis and we accept several groups of students from different countries on our 2-3 weeks advanced professional programmes mainly from the USA, China and Japan. In these programmes our students have the opportunity to participate in, and to build international professional connections.
Leadership, Dean’s Office

Address: H-1088 Budapest, Vas utca 17.

Phone: +(36-1)486-5910
Fax: +(36-1)486-5913
E-mail: student@se-etk.hu
Home Page: https://semmelweis.hu/etk

Dean
College Professor Dr. Gabriella Dörnyei PhD

Vice Deans
College Professor Dr. Klára Gadó PhD –Vice Dean for General Affairs
College Professor Dr. István Vingender PhD – Vice Dean Responsible for Academic Affairs
College Professor Dr. Zoltán Balogh PhD – Vice Dean Responsible for Clinical Relations

Director of the English Language Programmes
Professor Dr. Alán Alpár MD, PhD, Vice Rector Responsible for International Training Programmes

Dean’s Office

Ms. Marianna Kakuk – Head of Dean’s Office
Phone: +(36-1)486-5912 e-mail: kakuk.m@se-etk.hu
Mr. Benedek Horváth – Secretary
Phone: +(36-1)486-5911 e-mail: horvath.benedek@se-etk.hu
Ms. Nóra Oltvölgyi – Erasmus+ Coordinator
Phone: +(36-1)486-4893 e-mail: erasmus.etk@se-etk.hu
Ms. Éva Kámán – Coordinator of International Affairs
Phone: +(36-1)486-5917 e-mail: kaman.eva.maria@se-etk.hu

Foreign Students’ Secretariat

Fax: +(36-1)486-5913 room: 129
Hannya Zakiya – Administrator
Phone: +(36-1)486-4970 e-mail: trencsenyi.monikahannya.zakiya@se-etk.hu
Fax: +(36-1)486-5913 room: 129
Ms. Orsolya Neszt – Administrator
Phone: +(36-1)486-5916 e-mail: neszt.orsolya@se-etk.hu
Fax: +(36-1)486-5913 room: 129
Ms. Anikó Gergye – Administrator
Phone: +(36-1)486-5905 e-mail: gergye.anita@se-etk.hu
Fax: +(36-1)486-5913 room: 129
Ms. Panna Herczeg – Administrator
Phone: +(36-1)486-5909 e-mail: herczeg.panna@se-etk.hu
Fax: +(36-1)486-5913 room: 129
Information about the B.Sc. and M.Sc. programmes

Training system

Hungary, as a member of the European Union, belongs to the unified European Higher Education Area, which in principal follows the multi-cycle (bachelor, master and doctorate) training system. In this system it is much easier for students, lecturers and researchers to travel and build international relations, moreover, as citizens of the European Union they can continue their studies and plan their future as employees or entrepreneurs in any of the member states.

These opportunities open up a wider field for non-European citizens studying in Hungary as well, since the possibilities of internal mobility inside the unified Europe are based on the training channels and close relationships between countries in the labour market and among institutions.
Programmes of the Faculty

I. Bachelor of Science (B.Sc.) Programmes

1. Nursing and Patient Care B.Sc. Programme

Specialized programmes: Physiotherapy (Hungarian, English), Nursing (Hungarian, English), Midwifery (Hungarian, English), Dietetics (Hungarian, English), Paramedics (Hungarian), Voice, speech and swallowing therapy (Hungarian)

Physiotherapy

Physiotherapists act as autonomous practitioners who are able to perform functional examinations, identify impairments, functional limitations, abilities and disabilities by using clinical decision-making processes. Physiotherapists treat patients with therapeutic exercises, manual techniques and other therapeutic modalities as the professionals’ chief task is to improve the functions of the musculoskeletal system. The therapists develop movement therapies and apply electrotherapeutic treatment, therapeutic ultrasound, and various manual and massage treatments for the sake of healing and rehabilitation or for the prevention of health damage. Graduates take part in healing locomotor (orthopaedic, rheumatologic, traumatologic), cardiovascular, obstetrical, gynaecological, neurological and psychiatric disorders. Prevention and health promotion belong to the specialists’ profession, too. Physiotherapists plan, explain, carry out, and adapt an examination-based treatment, draw conclusions from the examination as a whole and rank the main problems according to priority.

Qualification

Physiotherapist

Nursing

The occupation of nurses is a vocation that is pursued for the sake of health preservation, promotion and patient healing. Nurses observe patients in the hospital and continuously monitor their needs, take part in disease prevention and act as active contributors to the process of the patient’s recovery and rehabilitation. They help patients absorb and understand the information on their health status. Nurses holding a B.Sc. degree can organise, manage and supervise all their internal medical, surgical, obstetric-gynaecological, psychiatric, intensive nursing and primary care tasks in every area of health care. They are responsible for conducting the healing-nursing activities prescribed by the physician, and help the patient and the physician perform certain examinations. Graduates of the speciality are able to provide health care treatment for each age group from premature infants to elderly patients, explore the special needs of the patient and the person cared for, prepare nursing diagnoses and perform the tasks professionally on the basis of priorities, participate in planning, developing and implementing health care and social services.

Qualification

Nurse

Midwifery

Midwives fulfil caring and nursing tasks during pregnancies, in the postpartum period and on the occasion of gynaecological problems. Their responsibilities are to monitor pregnancies, labours and the postpartum progress while cooperating with other health care professionals in order to achieve the best possible outcome for each family. From the start of the parturition, midwives prepare and continuously support and encourage the woman during labour, monitor the process of delivery and the mother-infant connection, assess and register their observations. Midwives individually assist deliveries, take care of the pro-
tection of the perineum and of the treatment of the woman and the new-born baby during the post-delivery period. Graduate midwives look after, nurse and care for female patients and perform the required specialised treatment. State of the art skill laboratories help the preparation of the students for their future profession.

Qualification
Midwife

Dietetics

Dietitians deal with the questions of human nutrition and possess knowledge about healthy diet and diseases caused by unhealthy nutrition. Graduates are able to practise diet therapy independently, or perform dietetic and catering tasks as members of a therapist team. The specialist’s tasks include individual and group counselling, preventing nutrition related chronic and non-contagious diseases, organising diet plans according to the client’s sensitivity and disease type. They manage catering units: lead the catering service, organise catering work procedures, and establish appropriate and acceptable conditions for catering. Dietitians play an important role in teaching how to lead a preventive and healthy life as they can also develop and implement programmes for health promotion.

Qualification
Dietitian

Paramedics

Graduates are able to approach professionally and safely patients or victims in prehospital emergency care (oxylogy), able to perform triage, on an individual basis and during a catastrophic event. On the scene, paramedics familiarise themselves with the nature of the emergency, examine the patient, and make a primary diagnosis. They stabilise and care for the patient, decide on the possibilities of leaving the patient on the scene. Paramedics observe and monitor the patient during transport, communicate appropriately with the patient and his/her relatives, complete the necessary interventions, and provide psychological support for the suffering patient. Paramedics holding a B.Sc. degree also complete standby on-call duties, organise teamwork in the system of emergency care within health institutions, teach First Aid, and participate in the further training of emergency nurses and ambulance car drivers. Paramedics work in close alliance with the control staff, ambulance assistants, physicians, and health care professionals of hospital emergency care.

Qualification
Ambulance Officer (Paramedic)

Voice, speech and swallowing therapy

Voice, speech and swallowing therapists perform diagnostic and therapeutic tasks in otolaryngology, phoniatrics, neurology, paediatrics, geriatrics and rehabilitation units as well as in outpatient services and can treat certain functional disorders in private practice. Their responsibilities include the functional examination and therapy of phoniatrics, articulation, speech-language abilities, nutrition intake (chewing, swallowing). Graduates are able to treat the disorders of two fundamental functions of human life: the disorders of communication and of food intake. They are able to contribute to the rehabilitation of persons suffering from these functional disorders, thus enabling them to manage their social responsibilities and to integrate into society. Graduates are able to participate in preventive, curative, nursing and rehabilitating professional work on any level of the health care and/or social care system.

Qualification
Voice, speech and swallowing therapist
2. Health Care and Disease Prevention B.Sc. Programme

Specialized programmes: Health Visitor (Hungarian), Public Health Care Inspector (Hungarian, English)

Health Visitor

The health visitor is present in the families’ life during the most important steps of life: during pregnancy, reception of the new-born baby, formation of family life and at the time of enrolment to nursery and elementary school. Graduates are able to provide counselling concerning family planning and parenthood, help and provide nursing care to the pregnant woman, and perform screening tests. After childbirth, the health visitor teaches the mother the ways of breastfeeding and her tasks related to the child. They monitor the health condition and development of neonates, provide community health care for children (aged 3-18), aid in the prevention of behavioural disorders and bad habits, solve the problems of teenagers and direct them to the appropriate professional. Health visitors give mental hygiene support to families and organise vaccinations. Health visitors take part in planning, organising and conducting health development and promotion programmes for individuals and communities. They perform their duties either independently or in cooperation with doctors and other medical experts.

Qualification

Health Visitor

Public Health Supervisor

A public health supervisor deals with epidemiological tasks that consist of the organisation of public health investigations and the analysis of data retrieved during the investigations. Graduates of the speciality are able to perform public health related municipal activities, conduct appropriate municipal supervision based on current regulations, initiate, plan and manage epidemiological tasks, analyse, interpret, use and critically apply the results of epidemiological examinations, process and realize local and central health policies in order to improve the health status of the population. Public health supervisors plan and realize nosocomial surveillance, monitor the health status of the population, plan, organize, realize and evaluate preventive programmes.

Qualification

Public Health Supervisor

3. Medical Diagnostic Analysis B.Sc. Programme

Specialized programmes: Optometry (Hungarian, English), Radiography (Hungarian)

Optometry

Optometrists are able to utilise their optic, optometric, measuring and clinical knowledge gained during the training programme, conduct the examination and correction of the eye individually and prescribe optical aids (eyeglasses, contact lenses) with the aim of attaining the optimal visual acuity in patients. The professionals are able to estimate the refractive medium, refractive ability, errors of refraction, the way eye muscles function, and the ability of heterophoria and convergence. Professionals examine binocular vision, the chamber of the eye, crystalline lens, vitreous humour and the eye fundus with the help of a slit lamp, and they estimate ocular tension. Optometrists utilize their clinical and nursing knowledge during their daily activities, actively participate in improving the culture of vision of individuals, communities and the population. Through examinations, the optometrist recognises and evaluates the disorders of the eye and so contributes to the immediate receipt of specialised care.
Qualification
Medical Diagnostic Analyst (Optometrist)

Radiography
Medical diagnostic analysts individually operate modern diagnostic imaging appliances (e.g. X-ray, ultrasound, computer tomography/CT) while keeping the related regulations and procedures. They process, evaluate and archive diagnostic imaging information, establish a daily contact with patients and prepare them for diagnostic imaging therapies. The specialists observe patients during examinations, perceive pathological situations, participate in therapeutic examinations, recognize health damaging effects as results of radiological interventions, and other technological errors, and they prevent them.

Qualification
Medical Diagnostic Analyst (Radiographer)

4. Health Care Management B.Sc. Programme

Specialized programme: Health Tourism Management (English)

Health Tourism Management
Graduates of the training take part in organising and managing health promotion activities, prepare projects that aim at developing health tourism and strengthening international cooperation, and they participate in the implementation of tourism development programmes of the European Union. The health care manager is a versatile professional who is proficient both in health care processes and in the field of tourism. Their acquired knowledge comprises information on health, tourism and business, therefore they are not only able to see through, organise and coordinate the operation of health care institutions but with appropriate business knowledge they are able to market and manage them, too. The speciality provides the necessary knowledge to create health tourism, health preservation, curative and rehabilitation programmes.

Qualification
Health Care Manager (Health Tourism Management)

Traditional Chinese Medicine B.Sc. Programme –graduate programme of Heilongjiang University of Chinese Medicine

Heilongjiang University of Chinese Medicine organizes its Traditional Chinese Medicine B.Sc. training programme in Hungary at Semmelweis University Faculty of Health Sciences.

The programme based on traditional Chinese medicine is a unique training in Hungary as it is a 5-year bachelor training programme. In this framework, students study in Hungary during the first 4 years, while they can get acquainted with the practical aspects of Chinese Medicine at the Chinese university in the last year. Students who successfully complete the programme receive the B.Sc. degree of the university of Harbin.

Qualification
Bachelor of Chinese Medicine – Accupuncture, Moxibustion and Tuina
II. Master of Science (M.Sc.) Programmes

Physiotherapy M.Sc. Programme

Master’s level physiotherapists develop therapeutic procedures and protocols based on their extensive national and international knowledge and skills, recognise and analyse physical, anatomical, physiological and pathological factors affecting physical ability and capacity. They participate in solving scientific problems in physiotherapy, and finding new skills and knowledge in their expertise. The specialists perform scientific evaluation of the effectiveness of physiotherapeutic methods, organise and realise clinical research in physiotherapy, publish new scientific results and act as leaders in hospital units of physiotherapy, apply fundamental regulations and quality control principles in the management of health institutions and private enterprises. The promotion of health education on local, community, national and international levels also belongs to the tasks of a physiotherapist.

Qualification
Physiotherapist

Languages
Hungarian, English

Nursing M.Sc. Programme (Advanced Practice Nurse)

Master’s level nurses characterise the health status of the population, formulate problems, priorities and aims in public health. They conduct research and analyse technical literature, interpret the results of modern statistical methods, perform tasks of organisation and management related to the nursing process. They are able to perform human resource management tasks related to nursing. Planning budget and writing tenders, planning, realising and evaluating programmes, and establishing cooperation between institutions and individuals belong to the tasks of nurses, too. The health care professionals are acquainted with the role and the possibilities of the improvement of health sciences in the life of society, and they are able to characterise the health status of the population. Master’s level nurses formulate problems, priorities and aims in public health, they take part in solving the scientific problems of nursing, in finding new and constructing ideas about the profession and in the promotion of their practical usage.

Specialisations within the Nursing M.Sc. programme

Emergency Nursing (Hungarian)
Geriatric Nursing (Hungarian)
Community Nursing (Hungarian, English)
Intensive Nursing (Hungarian)
Perioperative Nursing (Hungarian)

Qualification
Nurse

Languages
Hungarian, English
Nutritional Sciences M.Sc. Programme (Joint training of Semmelweis University and the Hungarian University of Agriculture and Life Sciences)

Nutritionists develop quality food, functional food, food supplements, special nutrients, eco products and organic food. They develop food industrial innovations, determine food qualities considering hygienic aspects, take part in professional and counselling tasks in the field of nutrition sciences and catering. Master-level dietitians determine the composition of food and diets for healthy people and those with different diseases, perform innovative research and development work preferred by the support system of the European Union. Master’s level dietitians are able to understand and solve professional problems assertively, come up with reform ideas, and carry out innovative activities. The nutrition specialist plans and compiles healthy diets in the field of health industry, wellness, medical tourism and hotel industry. Nutritionists promote the achievements of nutrition science in order to improve public health figures, work as highly qualified nutritionists, researchers, advisors and health educators.

Qualification

Nutritionist

Language

Hungarian

Teacher of Health Sciences and Health Care M.Sc. Programme

Master’s level health care teachers are capable of educating people about healthy lifestyle using their knowledge gained in the fields of health sciences and pedagogy. For the sake of improving the quality of life of people, professionals plan, develop and adopt prevention programmes in the specialist training, suggest problem solving and up-to-date life models in accordance with the altered health statuses. They give advice on career orientation, career choices and career planning. While applying health education methods, the teachers are able to recognize those negative effects that arise from harmful environment or poor social situation and lifestyle. In specialised health related interpersonal relationships, their activity is characterised by high communication standards and didactic preparedness. Master’s level health care teachers possess the ability to educate, and to demonstrate good example while teaching, moreover, they are able to recognize the relationship and development opportunities between the training institutions, the economy, the labour market and the social environment.

Qualification

Teacher of Health Sciences and Health Care

Language

Hungarian
III. Doctoral School

Address:
H-1088 Budapest, Vas u. 17, room V/103
Mailing address: csaszar.gabor@se-etk.hu
Phone: +(36-1)486 5901

Head of Doctoral School:
Professor Dr. Zoltán Zsolt Nagy PhD

Contact person:
Secretary Gábor Császár
Phone: +(36-1)486 5901
e-mail: csaszar.gabor@se-etk.hu

The main objective of the Doctoral School of Health Sciences is to combine theoretical and preclinical knowledge, clinical and comparative health science research, and public and public health sciences, and to improve the social sciences related to health sciences. It also aims to complement the doctoral programs at the University to ensure that health sciences are also incorporated, thus giving extra emphasis to preventive – domestic and international – health preservation programmes that satisfy public health needs and affect society as a whole.

PhD studies can be conducted in the following professional fields:
1. Clinical and comparative health sciences
2. Theoretical and preclinical health sciences
3. Society and health
4. Public health sciences

IV. Postgraduate specialist training courses

Addictology Counselling (Hungarian)
Podiatrist (Hungarian)
DEPARTMENTS

Department of Nursing

Address
H-1088 Budapest, Vas u. 17., room 152
Phone: +(36-1)486-5929
E-mail: apolastan@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Dr. Zoltán Balogh RN, PT, M.Sc., PhD

Contact person
Senior lecturer Dr. Veronika Rajki PhD
Phone: +(36-1)486-5836
e-mail: rajki.veronika@se-etk.hu

Background
The Department was founded in 1975 as a part of the College of Health Care of the Postgraduate Medical School (now Semmelweis University Faculty of Health Sciences). It was the first college in Hungary to award degree to health care teachers in 1977. Academic level training of nurses began with part-time courses in 1989/90; since 1990/91 a full-time course has been offered as well. The College of Health Care was also the first to introduce a four-year baccalaureate certificate programme in nursing. The Masters-level programme in nursing was introduced in Academic Year 2002/2003.

Education
B.Sc. in Nursing is an eight-semester programme, either a full-time or part-time, which provides students a general knowledge of science related to nursing, health and social sciences. The Nursing B.Sc. programme is based on the Directive 2005/36/EC of the European Parliament and the one of the European Council of 7 September 2005 on recognition of professional qualifications. Our programme has been running in English since the 2011/2012 academic year.
M.Sc. in Nursing is a three-semester part-time programme based on a former bachelor degree in nursing. During their studies, students learn the planning of nursing in all areas of health care, the organisation of the nursing work, the teaching of the basics of nursing and health care, the organisation of research projects in nursing, and the supervision of quality assurance in nursing care.

Research
The previous members of the Department’s staff supported projects such as the development of a nursing curriculum with the introduction of distance education methodology into nursing training programmes (in collaboration with Columbia University, School of Nursing (USA) in 1995-98 and a Hungarian-Canadian nursing programme for a methodology and model of prior learning assessment and recognition (PLAR) of nurse-candidates (Douglas College, Canada) in 1999-2000.
In co-operation with the Chamber of Hungarian Health Care Professionals, the present members of the Department performed investigative research into the Hungarian situation with regard to needle-stick injuries in 2006, 2008, 2013, 2018 among health care professionals. The objectives of the study were twofold: to reveal the trend in the extent to which health workers are affected, and to draw the attention of economic and education decision-makers to the importance and prevalence of the issue.
The other research programme aims to explore from an international perspective the meaning of care from the point of view of nurses and patients and to find common and shared definitions between these partners of caring. In addition, it aims to identify the relationship between nurse caring and patient satisfaction and to clarify the opinion of nurses and patients on individualized nurse caring. In this study (2008-2014), participants from 6 EU countries: Cyprus, Czech Republic, Finland, Greece, Hungary and Italy united their efforts in order to achieve the aims of the study. Europe faces severe population ageing in the near future. A new positive vision of ageing and promotion of possibilities in older age is needed. The challenge is how to transfer this vision into practice. Higher Education Institutes and associations agreed to launch a project. Funding was received from Lifelong Learning Program-Erasmus Academic Networks for a project for the years 2013-2016.

Department of Clinical Studies in Obstetrics and Gynaecology

Address
H-1088 Budapest, Vas u. 17., room 144

Phone: +(36-1)486-4890
Fax: +(36-1)486-4891
E-mail: szuleszeti.tanszek@se- etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Dr. János Rigó MD, PhD, DSc

Contact person
Senior lecturer Dr. Eszter Borján PhD
Phone: +(36-1)486-4893
e-mail: borjan.e@se- etk.hu

Background
The Department of Clinical Studies in Obstetrics and Gynaecology was founded in 2014. Earlier, the training of midwives was performed by the Division of Midwifery of the Department of Nursing. Academic level training of nurses began through part-time courses in 1989/90; since 1990/91 a full-time training programme is offered as well. Additional programmes have been introduced in recent years, including the training of midwives (2002) and a masters-level programme in nursing (2003). The English language midwifery training programme was introduced in the 2011/12 academic year.

Education
The B.Sc. midwifery training programme can be completed on either a full-time or part-time track. Those who receive a midwifery degree upon successful completion of this programme are able to carry out communicational/informational/documentation activities, provide a safe and hygienic environment, complete general midwifery tasks, and provide first aid, complete tasks related to antenatal care, conduct deliveries, care for female patients, and care for the new-born and the postpartum mother. The Midwifery B.Sc. programme is based on the Directive 2005/36/EC of the European Parliament and of the European Council of 7 September 2005 on the recognition of professional qualifications. Duration of the training: 8 semesters, number of credits: 240 ECTS.
Research
Members of the Department’s staff support projects and conduct research in different fields of health care and health care education, e.g.: health behaviour of practising midwives, simulation education and curriculum development, and the impact of maternal depression on pregnancies and early attachment.

Department of Physiotherapy

Address
H-1088 Budapest, Vas u. 17., room 305
Mailing address: H-1085 Budapest, Úllői út 26.

Phone: +(36-1)486-5980
Fax.: +(36-1)486-5981
E-mail.: fizioterapia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Dr. Mónika Horváth PhD

Contact person
Master teacher Ms. Zsuzsanna Gerencsér
Phone: +(36-1)486-5984
e-mail: gerencserzs@se-etk.hu

Background
Underwater therapy equipment was used in the Császár baths as early as 1891. The first physiotherapy training in Hungary, which was more like an artistic movement therapy, was started by Alice Madzsar in 1912. The need for physiotherapy arose during the time of the Poliomyelitis epidemic, resulting in the foundation of a proper physiotherapy school in Budapest in 1955. At this time, the training was two years long, the duration of studies increased to four years only in 2000.

Education
The Department’s aim is to train physiotherapists who can be valuable members of a health care team of prevention, care and rehabilitation. The Physiotherapy undergraduate programme consists of 240 credits, which corresponds to the requirements of a Bachelor’s degree. The Department also offers the Master’s Programme for another 90 credits in 3 semesters. Each term consists of courses corresponding to 30 credits. Courses are divided into theoretical and practical units, each unit covering a particular field of physiotherapy. At the B.Sc. programme the supervised clinical practice takes place from the 1th to the 7th semester (two to three weeks), and in the 8th semester (12 weeks) at a variety of medical centres. The physiotherapy programme comprises an independent graduate project corresponding to 1152 clinical practice hours, which is equal with 48 credits. The Master’s programme’s last semester can be divided into two halves. At the beginning the students have theoretical and practical courses and in the last 8 weeks they attend specialised clinical practice and scientific research.
Successful completion of the programme requires that students:
- acquired sufficient knowledge and skills to be able to work independently as physiotherapists;
- acquired knowledge and skills of physiotherapeutic methods of assessment and treatment, as well as knowledge of
 the connection between science and long-established experience;
- developed their self-recognition and capacity for empathy, thereby paying attention to ethical considerations;
- and familiarised themselves with conditions in society which affect people’s health, and gained an ability to initiate
 and take part in the health-promoting and preventive efforts.

Biomechanical Lab

The biomechanical lab is equipped with the latest technology. With these modern pieces of equipment we can perform dy-

namic and kinematic measurements to demonstrate the discrepancies of musculoskeletal, neurological and other problems,
moreover, we can compare the physiological and pathological movement patterns. The use of these devices helps us to test the
validity of traditional physiotherapy examination methods, as well as measuring the effectiveness of the therapies by objective
data. In addition, our laboratory with the new visual stimulation biofeedback equipment can be used not only to analyse the
walking but to correct and develop it. So now it is suitable for therapeutic interventions.
Both the B.Sc. and M.Sc. programmes’ curriculum include subjects that instruct the students how to use these devices for their

Research

Some areas of research interests at the Department:
- the biomechanical characteristics of standing stability and balance maintenance, testing by biomechanical equip-
 ment and therapeutic possibilities with physiotherapy;
- examination of posture with ultrasound-based 3D movement analyser equipment, correction of posture by physio-
 therapy;
- treatment of incontinence with complex physiotherapy methods;
- effects of positive end-expiratory pressure in cystic fibrosis;
- conservative therapeutic options of the knee-instabilities;
- chest physiotherapy in cystic fibrosis with the specific features of childhood;
- clinical features of paraneoplastic syndrome in the musculoskeletal system;
- the effect of exercise in cardiac rehabilitation;
- the effect of exercise in musculoskeletal rehabilitation;
- gait analysis according to the ultrasound-based 3D method.
Division of Physical Education

Contact person:
Head: Mr. Gábor Soós
Phone: +(36-1)486-5850
e-mail: testneveles@se-etk.hu

The Division of Physical Education teaches the 4-semesters long criteria subject, the Physical Education (PE) for each full-time B.Sc. student. PE classes enable students to several opportunities for sport (swimming, volleyball, handball, basketball, football, floorball, conditioning, aerobic) in different locations (gym, swimming pool).

Apart from the PE course, therapeutic swimming that is highly demanded by our students is also launched as a selective subject in each semester.

Colleagues of the Division participate in the operation of the Student Sport Association (DSE). Primarily, the Association provides student participation in the university’s system of sport competitions.

Department of Dietetics and Nutritional Sciences

Address
H-1088 Budapest, Vas u. 17., room 39
Phone: +(36-1)486-4820
Fax: +(36-1)486-4830
E-mail: dietetika@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
College Professor Dr. Márta Veresné Bálint PhD

Contact person
College Associate Professor Dr. Éva Csajbókné Csobold PhD
Phone: +(36-1)486-4823
e-mail: csajbokne@se-etk.hu

Background
Education of dietetics in Hungary dates back to the 1920s and was initiated by Aladár Soós. The Department of Dietetics was founded in 1975 as part of the newly established College of Health Care (now Semmelweis University Faculty of Health Sciences). The main task of the Department is the undergraduate and graduate training of dieticians while providing courses on nutritional sciences and dietotherapy for other health professionals educated at the Faculty. The Department of Dietetics and Nutrition Sciences is responsible also for the training of Masters of nutrition and food sciences. The programme is carried out in collaboration with the Hungarian University of Agricultural and Life Sciences.
Education

Over the last 40 years, as many as 2000 dietitians completed their studies here. The undergraduate training course consists of eight semesters, with a total number of 240 ECTS, of which 40% is devoted to theoretical training and 60% to practice. During the education students are taught about each scope of dietetic practice such as clinical, administrative and public health/community dietitians. Graduate students can be employed in different areas of public health nutrition and nutritional research fields. Postgraduate training programmes are also available for dietitians.

In the 2009/2010 academic year a new training programme, the Master of Nutrition and Food Sciences was launched. Students are taught by experienced teachers who are recognized as experts in the field of nutrition and food technology as well as in research methodology. The duration of the training is 4 semesters with a total number of 120 ECTS. Graduate students can be employed in different areas of public health nutrition and nutritional research fields.

Postgraduate training programmes are also available for dietitians. Graduating as Masters of nutrition and food sciences allows students to continue their studies at PhD level at Semmelweis University Doctoral School in Health Sciences.

The Department of Dietetics and Nutrition Sciences has collaborative partnership with the European Federation of the Associations of Dietitians (EFAD).

Research

The Department has been involved in several projects sponsored by, for example, the EU: the “Ageing Nutrition” project (2004-06, organised by the Department), the “PORGRROW” project (2004-06), furthermore, the Department participated as partner institution in the thematic network called DIETS1, „Dietitians Improving the Education and Training Standards (2006-09)” and DIETS2, ‘Dietitians ensuring education, teaching and professional quality’ (funded by the EACEA 2010-13). The Department is involved in the preparation of the Hungarian version of EPODE Project collaborating with the Association of Hungarian Dieticians (2014).

Members of the Department’s staff are involved in the PhD education as tutor teachers.

Research area:

- Food production by fermentation for patients with food allergy and intolerance
- Nutrition Science Analysis and Diethoterapic Interventions
- Innovation in public catering
- Disease Specific Nutrition Therapy and Communication Method
- Examination of the nutrition and nutritional status of the elderly

Fields of scientific interest are:

- Investigation of biologically active component of vegetable and fruit during cultivation, post harvesting, food technology and food preparation
- Determination of mycotoxin contamination in foodstuffs
- Monitoring of allergen contamination of equipment, tools and food preparation process
- Role of food labelling in order to improve informed and safe food choice of people with special dietetic needs
- Monitoring of different groups’ nutritional status and nutrient intake for the purpose of health preservation and to identify risk factors of diet-related diseases
- Assessment and analysis of the fluid consumption habits, attitudes and product choice preferences and education of theme for the purpose of health preservation
- Teaching correct dietary habits in children’s catering, development of eating behaviours
- Members of the Department’s staff are actively involved in the boards of various professional organizations in the field of nutrition, such as Hungarian Society of Nutrition, Association of Hungarian Dieticians, Hungarian Food Allergy and Food Intolerance Databank, College of Health Dietetics and Human Nutrition Council, National Association of Catering Managers.
- Moreover, they hold positions in the editorial boards of several professional periodicals.
Department of Oxyology and Emergency Care

Address
H-1088 Budapest, Vas u. 17., room 148
Mailing address: H-1085 Budapest, Úllői út 26.

Phone: +36-1-486-5840,
Fax: +36-1-486-5841
E-mail: oxiologia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department:
Associate Professor Dr.Andrea Székely MD, PhD

Contact person:
College Associate Professor Dr. István Hornyák PhD
Phone: +(36-1)486-5842
e-mail: hornyaki@se-etk.hu

Background
Oxyology – the science of rapid intervention as described by the famous Hungarian physician Aurel Gabor - is a specialisation that has been recognized since 1975. The main task of the Department of Oxyology and Emergency Care is the training of paramedics at the highest possible level. It is our mission to qualify health care providers not only for the National Ambulance Services but also for the national emergency departments. The department is also responsible for the first aid teaching at the Faculty of Medicine in English and German language, and for first aid classes held at the Faculty of Dentistry.

Besides theoretical and practical B.Sc. trainings, we offer postgraduate specialist trainings for qualified nurses and paramedics, and regular accredited courses in various areas of acute care for physicians and nurses. We have been participating in the training of the Doctoral School of the Faculty with an independent research subject since 2009, while regularly offering advanced education for the students of Semmelweis University’s School of PhD Studies.

The Department manages its tasks with four full-time members and a number of highly qualified consulting teachers. Practical teaching is organized with the co-operation of the National Ambulance Service, hospital practices are completed in accredited teaching hospitals.

Education
- Regularly provides vocational and postgraduate trainings.
- Is closely connected with the new University Emergency Centre where practical teaching takes place.
- Has an established relationship with the University of Massachusetts, Department of Emergency Medicine in the area of research and development.
- Members of the Department participate in numerous professional and societal organizations of acute care and hold leading positions in the Society of Emergency Medicine and Oxyology.
- The leader of the Department is an active Examiner in Emergency Medicine for the European Board of Emergency Medicine.
- Students can join the PhD School offering participation and thesis work on “Point-of-care technologies in emergency medical care”.
- An M.Sc. training programme targeting the intrahospital emergency care has been started resulting in the qualification of advanced practice nurses (APN), those capable health care professionals who work in the emergency departments under the supervision of the lead physician.
We have launched a monthly meeting named OxyNox for trainee and graduate paramedics. This event is held in the Vas utca building where a well-known representative of prehospital care is invited as guest speaker followed by case discussions from everyday practice.

The Paramedic Day is organised each May, where students demonstrate their practical skills during a competition.

Research

PhD research topic:
- Point of Care technologies in emergency medical care.

Students’ Scientific Association research topics:
- Acute Coronary Syndrome;
- First aid training;
- Position and activities of paramedics in the Emergency Department;
- Care of the multiple injured patients;
- Shock management;
- Mental aspects of rescue/emergency work;
- Complex cardiopulmonary resuscitation;
- Communication in emergency situations;
- Role players and standardized patients in HiFi simulation.

Department of Family Care Methodology

Address
H-1088 Budapest, Vas u. 17., room 245
Phone: +(36-1)486-4840
Fax: +(36-1)486-4845
Email: csaladgondozas@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department:
College Associate Professor Dr. Lajos Attila Réthly MD, PhD, med. habil.

Contact person:
College Associate Professor Dr. Lajos Attila Réthly MD, PhD, med. habil.
Phone: +(36-1)486-4841
e-mail: rethy.lajos@se-etk.hu
Background

Academic level training of health visitors (similar to district or family nurse) started in 1975 in Hungary.

Education

The aim of this eight-semester programme is to train health visitors who can give assistance to children and pregnant women in social care and in the prevention of illnesses. Practical training takes place under clinical and real-life circumstances (e.g. in hospitals and district consulting rooms).

The basic subjects (e.g. anatomy, physiology, pathology, biology) are followed by special studies in paediatrics, nursing, obstetrics, sanitation and nursing methodology. Pedagogy, psychology, health education, social sciences and information sciences are integrated into the curriculum. After submitting a thesis, students are tested in theoretical, practical and professional skills before attaining their diploma. Upon completion of the programme health visitors are entitled to work in municipal primary health care facilities, or in schools and in the area of primary preventive medical services. They can perform their duties either independently or in cooperation with doctors and other medical experts.

Research

- Preventive/visiting nurse system in Europe
- The characteristics of childhood onset depression according to depressive symptoms, co-morbidities and quality of life
- Influence of smoking during pregnancy on preterm-birth and low birth-weight
- Connection between childhood obesity, IDDM and physical activity

Department of Public Health Sciences

Address
H-1088 Budapest, Vas u. 17., room 1268
Phone: +(36-1)486-4870
E-mail: kozeg@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
College Associate Professor Dr. Tamás Pándics PhD

Contact person
College Associate Professor Dr. Tamás Pándics PhD
Phone: +(36-1)486-4862
e-mail: pandics.tamas@se-etk.hu
Background
The overall duty of the Department of Public Health Sciences, the legal successor of the Department of Epidemiology, is to provide appropriate training for health practitioners in the field of public health and carry out different research projects. Our aim is to equip students with the knowledge and skills to make valuable contribution to public health.

The Department offers undergraduate degree programmes at B.Sc. level and a master programme will be introduced in the near future.

Courses of disease prevention and health promotion are available in English for full time students of physiotherapy. The Department for Epidemiology offers a wide range of research topics with professional assistance for students, and they also contribute to the improvement of our doctoral degree programme.

A well-equipped laboratory belongs to the Department for laboratory practices of microbiology and infection control investigations.

Education
Within epidemiology, students are taught both general and specific aspects of pest control and disinfection techniques, including insect and rodent control. Following the fourth and sixth semesters, students take part in four-week practice sessions, and during the eighth semester they participate in a thirteen-week practicum.

Research

Infection Control Centre
- In order to prevent nosocomial and healthcare associated infections, the Department forms an infection control centre in collaboration with external public health partners.
- The key elements of active laboratory surveillance system:
 - molecular biology methods for comparison/characterization of strains isolated from different sources;
 - monitoring infections;
 - computer data analysis of bacterial isolates including antimicrobial-resistance patterns.

Burial customs and funeral practices
- Treatment of dead persons according to the law and the process of mourning
- Dead people – from a public health and cultural historical view
- Characteristics and forms of burial from an intercultural perspective

Research Projects for the Students’ Scientific Association
- Epidemiology and prevention of infectious diseases
- Epidemiology of diseases of civilization
- Profile of secondary prevention in Hungary and in the EU
- Appropriate food hygiene practice, infestation of food, food poisoning
- Probiotics and their effects on the human body
- The impact of climate change on food safety
- Research on natural antimicrobial proteins
Department of Clinical Studies

Address
H-1088 Budapest, Vas u. 17., room F/9
Mailing address: H-1085 Budapest, Úllői út 26.
Phone: +(36-1)486-5970
Fax: +(36-1)486-4860
E-mail: gadok@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
College Professor Dr. Klára Gadó PhD, MD

Contact person
Professor Dr. Klára Gadó PhD, MD
Phone: +(36-1)486-5970
e-mail: gadok@se-etk.hu

Background
The tasks of the Department of Clinical Studies are: instruction of clinical knowledge in the frame of the bachelor and master degree programmes of the Faculty of Health Sciences, and participation in health sciences programmes of Semmelweis University’s School of PhD Studies as consultant or reviewer.

Education
- The Department’s educational activities include:
 - transmission of evidence-based, modern, medical-clinical knowledge, and familiarization with the etiology and pathomechanism of different diseases;
 - enabling students to recognize the signs of diseases, evaluate symptoms, and complete adequate patient care based on competences;
 - providing basic pharmacological knowledge, therapeutic possibilities and effects, side effects, therapeutic responses;
 - helping students to gain insights into the clinical significance of most important laboratory, radiological and endoscopic examinations, into the methods of clinical problem-solving, and into the pharmacological basis of medical therapy;
 - preparation for the assistance in advanced diagnostic and therapeutic methods, the understanding of current medical science, and the acquirement of the competences required for health practitioners;
 - the development of the solid approach of prevention-remedy-nursing-care-rehabilitation.
- The Department actively participates:
 - in the preparation of student-focused didactical strategies;
 - in the development of new subjects and training programmes;
 - in the preparation of textbooks and lecture books;
 - and in special didactical and applied clinical researches.
Research

- Hemostasis changes in pregnancies
- Diagnosis and therapy of thrombophilias
- The methodology of teaching clinical knowledge
- Fitting the level of higher education to the European Qualification Framework
- Development of validation processes in higher education
- Family planning, family care
- Social and cultural background of health care employees
- The support of parents expecting their first child; application of the APP model (PhD research)
- Family planning and maternity plans of Health Visitor students
- Anaesthesiology and Intensive therapy – patient security/safety, monitoring
- Clinical nutrition and its management with pharmaceutical aspects
- Risk screening, nutritional assessment, oral nutrition support, enteral and parenteral nutrition,
- Parenteral nutrition compatibility and incompatibility
- Methods of examination of TPN emulsions, physicochemical stability of TPN
- Role of nutrition team

Department of Clinical Ophthalmology

Address
H- 1088 Budapest, Vas u. 17., room 20
Mailing address: H-1085 Budapest, Úllői út 26.
Phone: +(36-1)486-5855
Fax: +(36-1)486-5858
E-mail: szemeszeti.tanszek@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Associate Professor Dr. Illés Kovács MD, Ph.D

Contact persons
Master teachers:
Ms. Kata Réz
Phone: 0+(36-1)486-5858
e-mail: kata_rez@se-etk.hu
Dr. Beáta Tapasztó MD
e-mail: tapaszto.beata@se-etk.hu

Background
The education of optometry started in 1992 in Hungary at the College of Health Care (now Semmelweis University Faculty of Health Sciences). The Department of Clinical Ophthalmology was established in 2008. Prior to this, the education of optometry belonged to the tasks of the Department of Clinical Studies. The Department is responsible for training optometrists. This includes developing the curriculum of the optometry training, organising clinical and optical trainings for students, and keeping connection with educators and institutions who participate in the practical training.

Education

The training is the one and only optometry training in Hungary and runs as a part time training programme. The undergraduate training programme consists of eight semesters and 240 ECTS with a total number of 1062 of contact hours and 6138 individual hours, of which 40% is devoted to theoretical training and 60% to practice. Graduate training programmes are also available after completion of the basic training.

Research

The Department conducts scientific research activities in two ways:

1. **In cooperation with the Department of Ophthalmology at the University in the following fields:**
 - Femtolaser in the surgery of cataracts;
 - Development of a new intraocular lens in surgery of cataracts.

2. **The Department’s individual scientific work is carried out in the following fields:**
 - Correction of presbyopia with contact lens;
 - Screening of the visual acuity and ametropia of children of age 7 to 14;
 - Contact lens related dry eye;
 - Contact lens wearing in childhood;
 - Computer Vision Syndrome and its connection with ametropies.

Department of Imaging and Medical Instrumentation

Address

H-1088 Budapest, Vas u. 17., room 348
Phone: +(36-1)486-5960
Fax: +(36-1)486-5961
E-mail: kepalkoto@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department

Associate Professor Dr. Attila Doros MD, PhD

Contact person

Associate Professor Dr. Attila Doros MD, PhD
Phone: 36-(1)486-4916
e-mail: doros.attila@se-etk.hu

Background

The Department of Imaging and Medical Instrumentation conducts teaching, scientific and supplemental activities. The Department is responsible for the education of imaging diagnostic analyst specialists corresponding to the task of training highly qualified radiographers who are experienced in every sub-field of radiology.
Education
In the four-year part-time B.Sc. education, the first three basic semesters are followed by specialist courses (Conventional radiology, US, MRI, Nuclear Medicine, Interventional therapy, Radiation therapy).
Students attaining the degree are able to use imaging tools to plan and perform examinations on their own, and to process and apply the obtained information.
Teaching is performed by leading radiologists and radiographers, mainly of Semmelweis University and of large teaching hospitals. Practical training takes place in these hospitals as well.
The Medical Engineering group teaches “Basics of Biophysics and Medical Technology” and “Info-Communication” to dietitian, nurse, health visitor, physiotherapist, paramedics and public health supervisor students.

The Department continuously produces innovative books, image collections and other teaching materials necessary for the education. For this purpose, the Department works in collaboration with the other 3 similar departments in the country to harmonize the teaching materials and the requirements.
An emphasized task of the Department is the graduate teaching of radiographers including the organisation of courses.

Research
The professors of the Department have leading positions in associations of radiology, radiography and medical technology inside and outside Hungary, and they are in the editorial boards of various scientific papers. The focus of the researchers is on clinical decision support, medical informatics, self-monitoring, on developing an immersive learning environment, or a virtual learning environment. Significant focus is put on emergency care systems, on the reduction of supply times and on successful cooperation with emergency departments.
Moreover, the Department joined the European Association of Radiographers.

Department of Applied Psychology

Address
H-1088 Budapest, Vas u. 17., room 343/A
Phone: +(36-1)486-4919
Fax: +(36-1)486-4912
E-mail: pszichologia@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Dr, Ildikó Baji PhD

Contact person
College Professor Dr. Ildikó Baji PhD
Phone: +(36-1)486-4920
e-mail: baji.ildiko@se-etk.hu
Education

The main task of the Department is to offer basic psychological knowledge for all departments of the Faculty of Health Sciences in four modules which are as follows:

- **Basics of Psychology** – theoretical course including general psychology, developmental psychology, theories of personality.
- **Social Psychology** – theoretical course including group dynamics, social phenomena, attitudes, prejudices, attributes, stereotypes.
- **Communication and Personal-Development** – We use structured exercises to develop skills in the following fields: enhance group cohesion, basic communication skills, assertive communication, emphatic communication, stress managing methods, conflict management, and profession-specific communication strategies.
- **Health Psychology** – Health psychology is the field within psychology devoted to understanding psychological influences on how people stay healthy, why they become ill, and how they respond when they do get ill. It focuses on health promotion and maintenance; prevention and treatment of illness; the ethology and correlates of health, illness, and dysfunctions; and improvement of the health care system and the formulation of health policy. Health psychologists’ fields of work: behavior risk factors/“pathogens” (possibilities of intervention for correction of risk behavior) behavior health preservation / „immunogenic”. Conducting research into what are the views, opinions, attributes of health and illness among everyday people. Communication, cooperation, decision-making (health professional – patient interaction). The environment of treatment (how the work environment influences the health worker). Psychology of patients with chronic diseases (disabled, dying).

Division of Applied Pedagogy

Another task of the Department is promoting the basic knowledge of theoretical and practical health education and prevention for students in B.Sc. and M.Sc. trainings; emphasising the pedagogical aspects of patient-care; improving the indispensable skills in counselling and education in paramedical professions; teaching methods of health promotion, and the possibilities of development of health culture, lifestyle and health behaviour.

Research

Since the Department’s scope is necessarily broad, staff members have been participating in research activities of various psychological fields:

- Nutritional and sport habits of students;
 - Stress among the Professional helpers;
 - The exploration of the learning attitude among 19-26 years old students;
 - The relationship between burn out, emotion regulation and empathy among health professionals;
 - Assessment of ethical and legal issues regarding professional tasks of doctors and nurses working in perinatal centres from the point of view of dilemmas related to the beginning and the end of life.
Department of Addictology

Address
H-1088 Budapest, Vas u. 17., room 325
Phone: +36-1)486-4919
Fax: +36-1)486-4912
E-mail: addiktologia@se-etk.hu
Web: https://semmelweis.hu/etk

Head of Department
Professor Dr. József Rácz MD, PhD, DSc

Contact person
Senior lecturer Dr. Máté Kapitány-Fövény PhD
Phone: +36-1)486-5990
e-mail: kapitany.foveny@se-etk.hu

Background
The Department of Addictology coordinates the educational and research activities of the Faculty related to addictive disorders. Some of our fields are the symptomatology, therapy, and prevention of addictive problems. Addiction medicine is present at every specialization of our Faculty; secondary topics like intravenous drug-use, models of preventive medicine are especially practical and optional courses. Our students are involved in many of our research programmes in collaboration with other institutions in Hungary or abroad. The new fields of addiction medicine like gambling and Internet-addiction are also present in our teaching and research activities.
We have close contacts with therapeutic and rehabilitation institutions in Hungary, preventive and outpatient centers (Blue Point Center).

Education
Our Department coordinates the „Addiction Counsellor” specialization, which is the first and only opportunity to study addiction counselling in our country. The most important specialists of this field are our invited teachers. Our counsellors are also taught economics and management, which are necessary for their everyday work as coordinators of therapeutic and financial processes. They are also able to organize preventive courses on alcohol and illegal drug abuse fields.

Research
Our research interests include the application and adaptation of counselling methods in the health and social care of alcohol and drug abusers, the analytic epidemiological study of deviant behaviour, biological and ethic sides of human behaviour, the social background of medical organizations, and researches about the newest therapeutical approaches for intravenous drug users and dependent patients as well as the qualitative and quantitative approaches in the study of hidden substance users (epidemiological, qualitative and quantitative studies on the users of new psychoactive substances).
Department of Morphology and Physiology

Address

H-1088 Budapest, Vas u. 17., room 345
Phone: +(36-1)486-4940
Fax: +(36-1)486-4942
Email: morfologia@se-etu.h
Website: https://semmelweis.hu/etk

Head of Department
College Professor Dr. Gabriella Dörnyei PhD

Contact person
Associate Professor Dr. Judit Kiss PhD
Phone: +(36-1)486-4945
e-mail: kissj@se-etk.hu

Background

The Department of Morphology and Physiology as a unit of the Institute of Basic Health Sciences has been operating at Semmelweis University Faculty of Health Sciences since its foundation in 1975. The Department participates in the education of the full time English language physiotherapy B.Sc. programme since 2005. The full time English language training of nurses and midwives was introduced in the 2011/2012 academic year.

Education

The Department’s educational tasks include the teaching of core and optional subjects to students participating in the full- and part time trainings of the Faculty, as well as to students taking part in the Master’s level programmes, in the doctorate courses and in vocational trainings. Members of the Department’s staff contribute to different medical and health care research projects, too.

The Morphology Working Group teaches Anatomy and Applied Biology, whilst the Physiology Working Group teaches Physiology-Pathophysiology, Chemistry and Biochemistry in the first, second and third semesters. The following optional subjects are offered in English language:

- Biology of stem cells;
- From classical genetics to epigenetics;
- Chapters of venous circulation and hemodynamics;
- The genetic basis of muscle disorders;
- Functions of hormone receptors: scientific research and clinical practice, health and disease;
- Applied sport physiology and sport health sciences.
Research

The main research areas of the teaching staff are as follows:

- Maintaining of functional abilities and prevention of falls among older adults;
- The examination of decreased function due to low back pain with validated, self-reported questionnaires;
- The examination of posture balance and talent parameters of high school student age group;
- Signalling pathways and autophagy in cancer;
- Stem cells: prospects and challenges;
- Statistical analysis of Hungarian twin data;
- Signal transduction pathways in maternal-fetal interactions in normal and complicated pregnancies;
- A possible model of venous varicosity in rats;
- Effects of hormones on vascular remodelling;
- Roles of G protein-coupled receptor signalling in the vascular function;
- Roles of physical activity in prevention of chronic diseases;
- Signs of cardiovascular sport adaptation;
- Gerontokinesiology – translational animal models: organization of motor control and cognitive functions,
- Walking assessment and dementia prediction;
- Prevention of falling and fracture in elderlies;
- Movement/sport nutrition;
- Active and passive exercise (experimental and human studies);
- Bariatric and metabolic surgery in rats;
- Neurocardiological aspects of exercise-driven rehabilitation in rats,
- Survey of environmental factors influencing ADHD symptoms among elementary school children.

Department of Social Sciences

Address
H-1088 Budapest, Vas u. 17., room 332
Phone: +(36-1)486-4910
Fax: +(36-1)486-4912
E-mail: tarstud@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Habil. College Professor Dr. Judit Helga Feith PhD
Contact person
Habil. College Professor Dr. Judit Helga Feith PhD
Phone: +(36-1)486-4910
e-mail: h.feith@se-etk.hu

Background
The Department of Social Sciences belongs to the Institute of Basic Health Sciences. The role of the Department is to support all students to recognize and to prepare for the social, cultural and economic embeddedness of their future health care professions. Our Department offers theoretical and practice-oriented knowledge – discussing general and special health care related problems – in the fields of Sociology, Social Anthropology, History of Health Sciences, Law, Ethics, Scientific Research Methods, as well as Medical Economy and Management. These modules – as essentials in health care labour market – are to improve conscious employee competencies and social responsibility. Our Department actively participates in an extended Europe-wide network, COHEHRE. The members of the Department of Social Sciences occupy leading positions in several professional and social organizations and take part in their work (Hungarian Association of Medical History, Public Body of Hungarian Academy of Sciences, Hungarian Sociological Association, American Anthropological Association, The European Association for the History of Medicine and Health (EAHMH), Hungarian Association of Sport Studies). Furthermore, our colleagues have a hand in the edition of different scientific journals, such as Development and Financing, Central European Studies, Kaleidoscope – Journal of History of Culture, Science and Medicine, and the newly initiated Developments of Health Sciences.

Education
The Department takes part in the educational development of all B.Sc. and M.Sc. programmes of the Faculty and in the elaboration of curricular directives. As a participant of full time and part time trainings in Nursing and Patient Care, Health Care and Disease Prevention, and Medical Laboratorial Diagnostic Imaging programmes, the Department is responsible for teaching the following subjects: Health and Society, Introduction to Health Care Economics, Health Care Management, Health Care Law, Bioethics and Professional Ethics, Philosophy of Health, Thesis Methodology. Additionally, the Department has been organizing the Health Care Project Manager postgraduate course (in Hungarian) since 2008, which enables graduates of the course to successfully (project) manage tasks and situations in every area of the health system. As a result of an educational cooperation between Semmelweis University Faculty of Health and Public Services, Semmelweis University Faculty of Health Sciences and the Budapest Metropolitan University, the Health Care Management B.Sc. started in Hungarian language (with Health Tourism Management speciality) in a form of part time programme in September 2014. The programme is supervised by the Faculty of Health and Public Services (the programme supervisor is Dr. Miklós Szócska). Our Department is involved in the coordination and teaching work related to the programme.

The Health Care Management B.Sc. programme enables graduates of the course to successfully design and construct client-centred health tourism programs, to analyse statistical data related to tourism, and to coordinate touristic and health touristic projects with the implementation of knowledge about the system of health care and touristic institutions.

One of the main concerns of the Department is to provide adequate and flexible knowledge in the most suitable ways, therefore we devote special attention to the innovation of our methods of instruction. To keep a continuous interdisciplinary discussion about this topic, we have organized eight ‘Professional Days on Teaching and Research Methodologies’ so far. Most of our staff have experience in teaching abroad, which has broadened our perspectives and made us more conscious about the approaches we apply.
Research and professional forums

With the aim of building networks of knowledge relating to social sciences and health, the Department of Social Sciences highly engaged with the creation of forums for interdisciplinary and inter-professional discussion. As a result, the Department hosted various professional days and conferences in the past years.

As a result of this work, in 2016 the Department organized the 5th Professional Day and Conference on Patient Rights. The next edition of this bi-yearly event was in the fall of 2018. The aim of the conference was to examine the current ethical and legal issues arising in the everyday practice of health care with the involvement of a wide circle of scientific and professional audience. The highlighted topics of the conference are the ethical and legal questions of health care for children, the dilemmas related to informed consent and communicational gaps during health care delivery, the questions of legal liability in emergency care and the opportunities for implication patients’ rights during health care delivery.

In 2018, the Department gave place for the Professional Day on Health Tourism. The programme of the event put emphasis on the facilitation of discussion about the opportunities, weak points, results and possible legal regulation of health tourism.

With the initiation of the Faculty of Health Sciences, Department of Social Sciences a conference has been organized since 2017 with the title of ‘Harmful/Protective Society’. The conference is a fruit of cooperation between three organizational units of Semmelweis University: The Faculty of Medicine Institute of Behavioural Sciences, the Faculty of Health and Public Service, Institute of Mental Health and the Faculty of Health Sciences Department of Social Sciences. The primary aim of the conference is to build a scientific community for those researchers who work on better understanding of the interconnectedness of health and society. The programme of the conference represents the results of ongoing research projects in the fields of Medical Sociology and Sociology of Health, with the emphasis on the mental, physical, and social dimension of health. Furthermore, the participants may share their experiences about challenges of teaching social sciences in health care training programmes.

Main research areas of the Department include: labour migrants in the health care sector; health and social care of migrants and minorities in Europe; comparative analysis of archive sources, legal sources on health care of the 18-19th centuries; epistemology of interpretive anthropology; developing intercultural competences; minority education and its effects on cultural connectedness; comparative analysis of dentistry business income producing capability; typology of ancient votive uterus-representations; analysis of the archival sources related to the birth-control and the midwife training; ethical and legal dilemmas in the practice of perinatal intensive care from the point of view of the beginning and the end of life; the socio-economic status of nurses and its sociocultural context; modern pedagogical approaches of Hungarian health promotion by peer education (TANTUdSZ Programme).

Our department provides external review and evaluation for the Healthy Diversity project, which is an international consortium of 7 different organisations aiming at developing training materials for health care professionals in VET sector.
Department Health Promotion Methodology

Address
H-1088 Budapest, Vas u. 17.,
Phone: +36-1-486-4919
Fax: +36-1-486-4912
E-mail: lantos.zoltan@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Dr. Zoltán Tibor Lantos PhD

Contact person
Dr. Zoltán Tibor Lantos PhD
Phone: +36-1-486-4919
e-mail: lantos.zoltan@se-etk.hu

Background
The mission of the Department of Health Promotion Methodology is to represent in the higher education sector the healthy lifestyle and healthcare decision support solutions increasingly used on electronic devices; which is world-class in its form as an educational, research, knowledge and service center.

Education
The department’s areas of expertise cover the basic knowledge of process-based and value-based healthcare as well as healthcare founded on evidence obtained in real life, with special emphasis on health promotion as function of health behavior, the processes of patient support, health planning, health care communication and health-cooperation, the user experience and health experience, the human-machine collaboration and service-planning responding to this, job competency development as well as device design.

In education, it is primarily adapted to the training programs of the Faculty, while it also plays a role in the training programs of other faculties. It makes its training materials available for medical and health sciences students of other domestic institutions.

Research and professional forums
Its research focuses on the areas of health promotion solutions and human-machine collaboration emerging with the development of technology, with its sub-themes being organization, analysis and evaluation, behavioral, social, planning and design.
Through its knowledge-sharing activities, it assumes an active role in disseminating knowledge about people-centered healthcare to both other disciplines and to the general public.
Through a wide range of collaborations, the University is developing health-promoting applications that can be used by the population.
Department of Voice, Speech and Swallowing Therapy

Address
H-1088 Budapest, Vas u. 17, room V/9
Phone: +(36-1)486-4960
Email: hbnyt@se-etk.hu
Website: https://semmelweis.hu/etk

Head of Department
Professor Dr. László Tamás MD, PhD

Contact person
Associate Professor Dr. Edina Szabó PhD
Phone: +(36-1)486-4981
e-mail: szabo.edina@se-etk.hu

Background
The task of the Department of Voice, Speech and Swallowing Therapy is primarily to train its students, to teach professional subjects related to the program, to elaborate and develop subject programs, and to perform organizational work related to theoretical and practical education.

In order to ensure the professional development of our students, our task is to maintain continuous contact, cooperation and coordination with all organizational units and professional practice venues involved in the training of voice, speech and swallowing therapist students.

We regularly hold further training and preparation consultations, workshops and professional trainings for the therapists and master instructors conducting internships.

Education
At the department, we carry out research aimed at the development of the profession of voice, speech and swallowing therapist, and publish the results of the research in domestic and foreign journals.

We provide an opportunity for students to get involved in research work, we help their Students’ Scientific Association (TDK) and the preparation of their dissertation as a supervisor.

We participate as a lecturer in professional national and international conferences and domestic trainings in the fields of ear, nose, laryngology, phoniatrics, neurology, rehabilitation, child rehabilitation, special education.

The instructors are members of the management and are professional supporters of various national professional and social organizations.